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CONVERGENCE ANALYSIS OF A COVOLUME SCHEME FOR
MAXWELL’S EQUATIONS IN THREE DIMENSIONS

R. A. NICOLAIDES AND D.-Q. WANG

Abstract. This paper contains error estimates for covolume discretizations of
Maxwell’s equations in three space dimensions. Several estimates are proved.
First, an estimate for a semi-discrete scheme is given. Second, the estimate
is extended to cover the classical interlaced time marching technique. Third,
some of our unstructured mesh results are specialized to rectangular meshes,
both uniform and nonuniform. By means of some additional analysis it is
shown that the spatial convergence rate is one order higher than for the un-
structured case.

1. Introduction

Staggered mesh schemes for the numerical solution of Maxwell’s equations go
back as far as [18]. Over the years this scheme has seen a number of generaliza-
tions intended to enhance its usefulness. Mostly, these generalizations are aimed
at increasing the geometric complexity that can be handled. Thus, in [3] a tensor
formulation was given. This permits the method to be extended from rectangular
meshes to meshes defined by curvilinear coordinates. Two dimensional generaliza-
tions using quadrilateral meshes are given in [6] and [8].

For three dimensions, hexahedral mesh formulations were proposed in [7] and
[9]. These formulations use interpolation to obtain values for nonbasic field compo-
nents—those which, in the rectangular situation, lie along the primal or dual mesh
edges. Another approach is the “control path” method of [4] and [5]. The control
path method uses the classical finite difference approach of modifying the finite
difference stencil near the boundary of the domain.

A natural generalization of the standard staggered mesh scheme to tetrahedral
meshes was given in [10]. A similar technique was used independently in [14] to
solve the Navier-Stokes equations. This “covolume” approach does not use any
interpolations and is a very natural way to generalize the original rectangular stag-
gered mesh approach. A characteristic feature of covolume schemes is the use of
Voronoi-Delaunay mesh pairs to replace the rectangular staggered mesh arrange-
ment.

Very little rigorous analysis of staggered mesh schemes for electromagnetics is
available. We know only of the rectangular mesh analysis of [11] and [12]. For
the incompressible Navier-Stokes equations results may be found in [14], [15], and
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[16]. Our goal in this paper is to provide a rigorous proof of convergence for the
covolume discretization applied to the interior problem for Maxwell’s equations.
The corresponding analysis for the exterior problem involves the application of
radiation conditions at a finite distance from the scatterer and will be given in a
subsequent report.

The contents of the paper are as follows. In the first section we state Maxwell’s
equations for bounded domains with perfect conductor boundary conditions. Fol-
lowing that is a section on Voronoi-Delaunay mesh notations and properties. The
main result of Section 3 is an error estimate for a semi-discrete covolume approx-
imation to Maxwell’s equations. In practice, a kind of leapfrog scheme is used to
time march the discrete equations. Section 4 contains an error estimate for the
resulting fully discrete approximation to Maxwell’s equations. In the last section
we specialize our results to the rectangular case. The rate of convergence is shown
to be one order higher than for an arbitrary triangulation.

2. Maxwell’s equations

Let Ω be a bounded domain in R3 with boundary Γ and unit outward normal n.
Let the constants ε and µ denote, respectively, the electric and magnetic permeabil-
ities of the medium occupying Ω. Then if E(x, t) and H(x, t) denote, respectively,
the electric and magnetic fields, Maxwell’s equations [2] are:

εEt − curlH = J in Ω× (0, T ),(2.1)

µHt + curlE = 0 in Ω× (0, T ),(2.2)

div(εE) = ρ and div(µH) = 0,(2.3)

where J = J(x, t) is a known applied current and ρ(x, t) is a charge density. We
shall assume a perfect conductor boundary condition so that

E× n = 0 on Γ× (0, T ).(2.4)

In addition, initial conditions are prescribed so that

E(x, 0) = E0(x) and H(x, 0) = H0(x), ∀x ∈ Ω,(2.5)

where E0 and H0 are given functions satisfying

div(εE0) = ρ(x, 0), div(µH0) = 0,

and where it is assumed that
∂ρ

∂t
= div J.(2.6)

Let Lp(0, T ; X) denote the set of all strongly measurable functions u(t, ·) from [0, T ]
into the Hilbert space X such that∫ T

0

||u(t)||pX dt < ∞ 1 ≤ p < ∞.

We say u ∈ W 1,p(0, T ; X) if and only if both u and
∂u

∂t
are in Lp(0, T ; X). Also

Cm(0, T ; X) denotes the space of m times continuously differentiable functions from
[0,T] into X . By H(curl; Ω) and H(div; Ω) we mean the Hilbert spaces defined by

H(curl; Ω) : = {v ∈ (L2(Ω))3, curl v ∈ (L2(Ω))3},
H(div; Ω) : = {v ∈ (L2(Ω))3, div v ∈ L2(Ω)}.
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We shall assume the existence of (E,H) to (2.1)–(2.5) such that

E,H ∈ C1(0, T ; (L2(Ω))3) ∩ C0(0, T ; H( curl; Ω) ∩H( div; Ω)).

For this, it is sufficient that J ∈ C0(0, T ; (L2(Ω))3), ρ ∈ C0(0, T ; L2(Ω)) and ∂ρ
∂t ∈

L2(0, T ; H−1(Ω)), see [2].

3. Mesh notations and discrete vector fields

In this section some basic properties of dual mesh systems are introduced. These
will lead to a detailed formulation and analysis of our numerical schemes in the
following sections.

Assume that the polyhedral domain Ω has a primal family of finite element
style tetrahedral partitions, parametrized by the maximum side length which is
generically denoted by h. We will assume that the ratio of radii of circumscrib-
ing spheres and inscribed spheres of all the individual tetrahedra are uniformly
bounded above and below as h approaches 0. A dual mesh is formed by connecting
adjacent tetrahedral circumcenters and, in the case of a tetrahedron with a face on
a boundary, by connecting their circumcenters with those of their boundary faces.
By elementary geometry these dual edges are perpendicular to the associated tetra-
hedral faces. These connections also form the edges of a set of polyhedra. It follows
from elementary geometry that the edges of tetrahedra are perpendicular to and in
one-to-one correspondence with the faces of dual polyhedra or “covolumes”. The
reciprocal orthogonality between edges, and faces is the key to the results which
follow.

The N nodes of the tetrahedral mesh are assumed to be numbered sequentially
in some convenient way, and likewise the T nodes of dual mesh. Similarly the
F faces (edges) and M edges (faces) of the primal (dual) mesh are sequentially
numbered. The individual tetrahedra, faces, edges, and nodes of the primal mesh
are denoted by τi, κj , σk, and νl, respectively. Those of the dual mesh are denoted
by primed quantities such as σ′j . A direction is assigned to each primal edge by
the rule that the positive direction is from low to high node number. The dual
edges are directed by the corresponding rule. We also denote F1 the number of
tetrahedral interior faces (or dual edges) and M1 the number of tetrahedral interior
edges (or dual faces). Let sj denote the area of κj and h′j the length of σ′j . In RF1 ,
where F1 denotes the number of interior primal faces, we will introduce the inner
product (·, ·)W defined by

(u, v)W :=
∑

κj∈Ω̄

ujvjsjh
′
j = (Su, D′v) = (D′u, Sv)(3.1)

and denote the resulting inner product space by U and the associated norm by

||u||W := (u, u)
1
2
W .(3.2)

In (3.1), (·, ·) denotes the standard Euclidean inner product, S := diag(sj),
D′ := diag(h′j) and W := SD′ are F1 × F1 invertible diagonal matrices. The
norm defined by (3.2) is clearly three times a discrete L2 norm. Similarly, we will
introduce an inner product in RM , where M denotes the number of primal edges:

(u, v)W ′ :=
∑

κ′j∈Ω

ujvjs
′
jhj = (S′u, Dv) = (Du, S′v)(3.3)
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and denote the inner product space by U ′. The associated norm is

||u||W ′ := (u, u)
1
2
W ′ .(3.4)

The notations in(3.3) and (3.4) correspond to those of (3.1) and (3.2). For example,
s′j denotes the area of dual face κ′j .

For each primal face κi a discrete circulation is defined by

(Cu)κi :=
∑

σj∈∂κi

uj h̃j.(3.5)

Similarly, for each interior covolume face κ′i the discrete circulation is

(C ′u)κ′i :=
∑

σ′j∈∂κ′i

ujh̃
′
j .(3.6)

A tilde on hj or h′j means that the quantity is to be taken with a negative sign
if the dual edge is directed against the positive sense of the description of ∂κi or
∂κ′i, respectively, and with a positive sign otherwise. The linear operators C and
C′ map from RM to RF1 and RF1 to RM1 , respectively.

For each strictly interior dual edge σ′j we can form a vector whose ith component
is the sign of the orientation of the edge relative to the orientation of the ith strictly
interior dual face. From these vectors we obtain the F1 ×M1 matrix G defined as
follows:

(G)ji :=


1 if σ′j is oriented positively along κ′i
−1 if σ′j is oriented negatively along κ′i
0 if σ′j does not meet κ′i.

Let w ∈ RM denote the vector whose kth component is the value assigned on
the kth primal edge. Denote w1 ∈ RM1 the restriction of w to the interior primal
edges. So w|Γ = 0 means that the components of w ∈ RM related to the boundary
edges are zero. A direct computation shows:

Cw = GDw1.

Also it can be verified that if v ∈ RF1 ,

C′v = GT D′v.

From these two identities we can prove

Lemma 1. With the above definitions of w,v and w1 with w|Γ = 0,

(Cw, D′v) = (C′v, Dw1).

Proof. This is proved as follows:

(C ′v, Dw1) = (GT D′v, Dw1) = (D′v, GD′w1) = (D′v, Cw).

This lemma provides a discrete analog of the integration formula∫
Ω

curlE ·H dx =
∫

Ω

curlH · E dx

which holds when E× n = 0 on Γ.
For each tetrahedron τi a discrete flux is defined by

(Du)i :=
∑

µj∈∂τi

uj s̃j , ∀u ∈ RF1 .
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By s̃j we mean sj negatively signed if the corresponding velocity component is
directed toward the inside of τi and positively signed otherwise.

In addition to G we will introduce another matrix B1 of dimension F1 × T

(B1)ji :=

 1 if κj is oriented positively along ∂τi

−1 if κj is oriented negatively along ∂τi

0 if κj does not meet ∂τi.

It can be checked directly that

D = BT
1 S.

Using B1 we will define the difference operator P by

Pφ := D′−1
B1φ, ∀φ ∈ RT .

Now we have

Lemma 2.

BT
1 C = 0,(3.7)

and

(u,Pφ)W = (Du, φ), ∀φ ∈ RT , u ∈ RF1 .(3.8)

Proof. For (3.7) see [17], Theorem 1. For (3.8), we have

(u,Pφ)W = (SD′u, D′−1
B1φ) = (BT

1 Su, φ) = (Du, φ).

We remark that (3.7) and (3.8) provide the discrete analogs of the identity
div(curlu) = 0 and Green’s formula

∫
Ω

u · gradφdx =
∫
Ω
(div u)φdx for φ ∈

H1
0 (Ω),u ∈ H(div; Ω), respectively.
For additional details and relations between other discrete operators in Voronoi-

Delaunay meshes, see [13] and [17].

4. Semi-discrete Maxwell’s equations

In this section the covolume method is used to obtain a spatial discretization of
Maxwell’s equations (2.1)–(2.5) from which we will obtain a formulation of a semi-
discrete form of Maxwell’s equations. A basic error estimate is given in Theorem
2.

First we introduce, for general field A, its “face averages” Af ∈ RF and its “edge
averages” Ae ∈ RM as follows (refer to Figure 1):

Af :=
1
si

∫
κi

A · n ds,

A′f :=
1
si
′

∫
κ′i

A · n ds,

Ae :=
1
hj

∫
σj

A · t dσ,

A′e :=
1
h′j

∫
σ′j

A · t dσ,
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Figure 1

where n and t denote the unit normal vector to the face κi (or κ′i) and the unit
tangent vector to the edge σj (or σ′j), respectively. Error functions for primal edges
and faces will be denoted by

εA := A−Af ,

ηA := A−Ae,

δA := Af −Ae.

Error functions for dual edges and faces are defined similarly.
As shown in Figure 1, for each tetrahedron τi we will use the normal components

of the magnetic field H to its faces and the tangential components of the electric
field E in the directions of its edges. Now integrate both sides of (2.1) over the
co-face κ′j to obtain

εs′j
d(Ef )j

dt
− (C ′He)κ′j =

∫
κ′j

J(x, t) dx.(4.1)

Here, (Ef )j denotes the average of E · nj over the face κ′j where the nj is the unit
vector in the direction of σj , and (C ′He)κ′j is the discrete circulation around the
face κ′j . Similarly, from (2.2),

µsi
d(Hf )i

dt
+ (CEe)κi = 0,(4.2)

where (Hf )i denotes the average of H · ni where ni is the unit normal to the face
κi and (CEe)κi is the discrete circulation around the face κi.

Let E and H denote vectors of components in RM1 and RF1 , respectively. Then
(4.1) and (4.2) (which are exact) suggest the approximations (where it is implied
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that components of E associated with boundary edges are zero, i.e. E|Γ = 0)

εS′
dE

dt
− C′H = J̃ ,(4.3)

µS
dH

dt
+ CE = 0,(4.4)

where J̃ ∈ RM1 with components given by the right hand of (4.1). Since µS and
εS′ are invertible, (4.3)–(4.4) is a system of linear ordinary differential equations,
and the existence and uniqueness of a solution follow from well-known results.

From (4.4) and (3.7) in Lemma 2 we obtain

µ
d

dt
(DH) = µ

d

dt
(BT

1 SH) = −BT
1 CE = 0.

This shows the sense in which divH = 0 is satisfied at the discrete level in the
covolume scheme.

By subtracting (4.3) from (4.1) we have

εS′
d

d t
(E − E′

f )− C′(H −H ′
e) = 0.(4.5)

Similarly, from (4.2) and (4.4)

µS
d

d t
(H −Hf ) + C(E − Ee) = 0,(4.6)

where (E,H) denotes the exact solution of (2.1)–(2.5) and where, by the boundary
condition (2.4),

ηE|Γ = 0.(4.7)

Note that the error in the magnetic field H satisfies the discrete solenoidal condition

Dε̇H = 0.(4.8)

Multiplying (4.5) by DηE and (4.6) by D′ηH, and adding we obtain

ε(ε̇′E, ηE)W ′ + µ(ε̇H, η′H)W = (C ′η′H, DηE)− (CηE, D′η′H),(4.9)

where the dots denote time differentiations.
The main result in this section is the following theorem.

Theorem 1. Denote by (E, H) the solution of (4.3) and (4.4) and by

(E,H) ∈ W 1,1(0, T ; (W 1,p(Ω))3)2

the solution of (2.1)–(2.5) with p > 2. Then we have the estimate

max
0≤t≤T

(||(E − Ee)(t)||W ′ + ||(H −He)(t)||W ) ≤ Kh(||Ė||L1(0,T ;(W 1,p(Ω))3)

+ ||Ḣ||L1(0,T ;(W 1,p(Ω))3)).

To prove this theorem we use (4.9) to get

ε(η̇E, ηE)W ′ + µ(η̇′H, η′H)W = ε

(
(ηE − ε′E)•, ηE

)
W

+ µ

(
(η′H − εH)•, η′H

)
W

+(C ′η′H, DηE)− (CηE, D′η′H).

Since E× n|Γ = 0, the components of ηE restricted to the boundary are 0. So
Lemma 1 is applied to yield

(C ′η′H, DηE)− (CηE, D′η′H) = 0.
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By

ηE − ε′E = Ef − Ee,

η′H − εH = Hf −He,

we obtain from (4.9)

1
2

d

dt
(||(µ)

1
2 η′H||2W + ||(ε) 1

2 ηE||2W ′) = µ((Hf −He)•, η′H)W + ε((Ef − Ee)•, ηE)W ′ ,

(4.10)

where ()• denotes time differentiations. Integrating (4.10) from 0 to T and using
Cauchy’s inequality we obtain

(||(µ)
1
2 η′H(T )||2W + ||(ε) 1

2 ηE(T )||2W ′)

≤ 2
∫ T

0

(||(µ)
1
2 (He −Hf )•||W ||(µ)

1
2 η′H(s)||W

+ ||(ε) 1
2 (Ee − Ef )•||W ′ ||(ε) 1

2 ηE(s)||W ′ ) ds.

Let t∗ be such that

(||(µ)
1
2 η′H(t∗)||W + ||(ε) 1

2 ηE(t∗)||W ′) = max
0≤t≤T

(||(µ)
1
2 ηH(t)||W + ||(ε) 1

2 ηE(t)||W ′).

Then

(||µ 1
2 η′H(t∗)||W + ||ε 1

2 ηE(t∗)||W ′)2 ≤ 2(||µ 1
2 η′H(T )||2W + ||ε 1

2 ηE(T )||2W ′)

≤ 4
∫ t∗

0

(||µ 1
2 (He −Hf )•||W ||µ 1

2 η′H(s)||W

+ ||ε 1
2 (Ee − Ef )•||W ′ ||ε 1

2 ηE(s)||W ′) ds

≤ 4
∫ T

0

(||µ 1
2 (He −Hf )•||W ||µ 1

2 η′H(s)||W
+ ||ε 1

2 (Ee − Ef )•||W ′ ||(ε) 1
2 ηE(s)||W ′ ) ds.

So it follows that

max
0≤t≤T

(||(µ)
1
2 η′H(t)||W + ||(ε) 1

2 ηE(t)||W ′)

≤ 4
∫ T

0

(||(µ)
1
2 (He −Hf )•||W + ||(ε) 1

2 (Ee − Ef )•||W ′) ds.
(4.11)

Theorem 1 will follow from Lemma 3:

Lemma 3. Assume that Ė, Ḣ ∈ (W 1,p(Ω))3, p > 2. Then there exists a generic
constant K, such that

||(He −Hf )•||W ≤ Kh|Ḣ|(W 1,p(Ω))3 ,

||(Ee − Ef )•||W ′ ≤ Kh|Ė|(W 1,p(Ω))3 ,

where

K ≤ K ′max
(

max
i

(
si

h′2i
), max

i
(
s′i
h2

i

)
)

and K ′ is a constant.
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Proof. For the primal face κi,

(He −Hf )• =
1
h′i

∫
σ′i

Ḣ · n d l − 1
si

∫
κi

Ḣ · n dx.

By the Sobolev embedding theorem, V : H → (Ḣe − Ḣf ) defines a bounded linear
functional on (W 1,p(κj))3. For constant Ḣ this linear functional vanishes in the
union of two tetrahedra that share the same face κi and consequently

|(He −Hf )•| ≤ K(τi ∪ τl)|Ḣ|W 1,p(τi∪τl)3 ,

where K(τi ∪ τl) is a constant. In order to estimate K(τi ∪ τl), we use a standard
scale change argument as follows.

Let the primal face κi = τi ∩ τl be in the xy plane so that σ′i is parallel to the z
axis, changing the coordinates by(

x
y

)
= A

(
x′

y′

)
, z = h1z

′

where A is a 2× 2 matrix, it results that K(τi ∪ τl) depends on the quantity

max(||A−1||−1
2 (| detA|h1)−

1
p ,

h
1
p′
1

(detA)
1
p

)

where
1
p

+
1
p′

= 1. Let h′i denote the length of the co-edge and si the area of the

primal face. A further calculation then shows that | det A| = c1si, h1 = c2h
′
i so

that

||A−1||−1
2 (| det A|h1)−

1
p = c3

√
λmin(AT A)

(sih′i)
1
p

≤ c3

4
√

det(AT A)

(sih′i)
1
p

= c4
s

1
2− 1

p

i

h′
1
p

i

,

where ci, i = 1, · · · , 4, are independent of h′i and si, and λmin is the least eigenvalue
of the positive definite matrix AT A.

Collecting these results, K(τi ∪ τl) is bounded by

K(τi ∪ τl) ≤ max
i

(
s

1
2− 1

p

i

h′
1
p

i

,
h′

1
p′
i

s
1
p

i

)
.

Now we have

||(He −Hf )•||2W =
F∑

i=1

sih
′
i|(He −Hf )•|2

≤ K1

F∑
i=1

sih
′
i max

i

(
s
1− 2

p

i

h′
2
p

i

,
h′

2
p′
i

s
2
p

i

)
|Ḣ|2(W 1,p(τi∪τl))3

≤ K2

F∑
i=1

h5− 6
p |Ḣ|2(W 1,p(τi∪τl))3

,
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where K2 depends only on max(
si

h′2i
). By Holder’s inequality and since h3F ≤

K ′measure(Ω) we obtain

||(He −Hf )•||2W ≤ K2h
5− 6

p

( F∑
i=1

|Ḣ|p(W 1,p(τi∪τl))3

) 2
p
( F∑

i=1

1
) p−2

p

= K3h
5− 6

p F
p−2

p |Ḣ|2(W 1,p(Ω))3

≤ Kh2|Ḣ|2(W 1,p(Ω))3 .

The proof of the estimate for ||(Ee − Ef )•||W ′ is similar.
From the estimate above we know the constant K depends on the quantity

max(max
i

(
si

h′2i
), max

i
(
s′i
h2

i

)).

Theorem 1 now follows from (4.11) and Lemma 3.

5. The fully discrete problem

There are many possible time stepping methods that can be applied to (4.3) and
(4.4). We will discuss a leapfrog scheme which is very popular in computational
electromagnetics (see [18]). In this scheme we approximate E(t) at times tn =
n 4 t, 0 ≤ n < ∞ with a vector {En}∞n=0, and H(t) at time tn+ 1

2
with a vector

{Hn+ 1
2 }∞n=0. The initial value H 1

2 can be computed using, for example, a Taylor
expansion and the given equations (2.1)–(2.2). Given (En,Hn+ 1

2 )n≥0, the next
approximation (En+1,Hn+ 3

2 ) is obtained by solving the equations

εS′(En+1 − En)−4tC ′Hn+ 1
2 = J̃n+ 1

2(5.1)

µS(Hn+ 3
2 −Hn+ 1

2 ) +4tCEn+1 = 0(5.2)

where

J̃n+ 1
2 =

∫ (n+1)4t

n4t

J̃ dt.

(5.1), (5.2) is an explicit scheme, so the existence and uniqueness of a solution
are apparent. Using the error functions defined in the last section, we can rewrite
(5.1)–(5.2) as

εS′(εn+1
E − εn

E) = (4t)C ′ηn+ 1
2

H + Gn,(5.3)

µS(εn+ 3
2

H − ε
n+ 1

2
H ) = −(4t)Cηn+1

E + Ḡn.(5.4)

By a direct computation, Gn and Ḡn are given by

Gn = J̃n+ 1
2 − εS′(En+1

f − En
f ) +4tC ′Hn+ 1

2
e ,(5.5)

Ḡn = µS(Hn+ 3
2

f −H
n+ 1

2
f )−4tCEn+1

e .(5.6)

Our main estimate for the fully discrete scheme is then given in the following
theorem:
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Theorem 2. Let (En,Hn+ 1
2 )N−1

n≥0 denote the solution of (5.1)–(5.2), and let

(E,H) ∈ (H1(0, T ; (W 1,p(Ω))3))2

denote the solution of (2.1)–(2.4), p > 2. Under the stability condition

c4 t <
min(hij)√
M3M2

3
2
,(5.7)

where c = (εµ)−
1
2 is the speed of the light in the medium, M2 is the maximum of

the ratios of the maximum to minimum side-lengths over the union of adjacent
tetrahedra, and M3 is the maximum number of edges over all co-faces, we have the
following error estimate for the fully discrete scheme (5.1)–(5.2)

max
0≤i≤N−1

(ε||E i − Ei
e||W ′ + µ||Hi+ 1

2 −H
i+ 1

2
e ||W )

≤ Kh(||E||H1(0,T ;(W 1,p(Ω))3) + ||H||H1(0,T ;(W 1,p(Ω))3)).
(5.8)

Proof. Multiplying (5.3) by D(ηn
E + ηn+1

E ) and (5.4) by D′(ηn+ 3
2

H + η
n+ 1

2
H ), respec-

tively, and adding all these equations from n = 0, 1, · · · , N − 1 gives

ε||ηN
E ||2W ′ + µ||ηN− 1

2
H ||2W = 4t(C ′ηN− 1

2
H , DηN

E )

+
N−1∑
i=0

ε(δi+1
E − δi

E, ηi
E)W ′ +

N−2∑
i=0

µ(δi+ 3
2

H − δ
i+ 1

2
H , η

i+ 1
2

H )W

+
N−1∑
i=0

((Gi, D(ηi
E + ηi+1

E )) +
N−2∑
i=0

(Ḡi, D′(ηi+ 3
2

H + η
i+ 1

2
H ))).

The proof has three steps:
(i) First,

4t(C ′ηN− 1
2

H , DηN
E ) = 4t(C ′(SD′)−

1
2 ((SD′)

1
2 η

N− 1
2

H ), (DS′−1)
1
2 ((DS′)

1
2 ηN

E ))

≤ 4t||(SD′)−
1
2 C′(DS′−1)

1
2 ||2||ηN− 1

2
H ||W ||ηN

E ||W ′ .

From algebra, ||(SD′)−
1
2 C′(DS′−1)

1
2 ||2 is the largest singular value of the matrix

and by Gershgorin’s theorem

||(SD′)−
1
2 C′(DS′−1)

1
2 ||2 ≤ max(

maxij(hij)
3
2

minij(hij)
5
2

)(2
√

M3),

where maximum above is taken over all of the union of adjacent tetrahedra. Com-
bining the results gives

4t(C ′ηN− 1
2

H , DηN
E ) ≤ 4t

2
√

M3M
3
2
2

min(hij)
||ηN− 1

2
H ||W ||ηN

E ||W ′

≤ 4t

√
M3M

3
2
2

min(hij)
c(ε||ηN

E ||2W ′ + µ||ηN− 1
2

H ||2W )

< (ε||ηN
E ||2W ′ + µ||ηN− 1

2
H ||2W ).
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(ii) δi+1
E − δi

E can be estimated in the following way. We have, by integrating in
time

|δi+1
E − δi

E| ≤ ||δ̇E||L1(i4t≤t≤(i+1)4t).

So

||δi+1
E − δi

E||2W ′ =
M1∑
k=1

s′khk|(δi+1
E )k − (δi

E)k|2

≤
M1∑
k=1

s′khk(
∫ (i+1)4t

i4t

|(δ̇E)k| ds)2

≤ 4t

∫ (i+1)4t

i4t

M1∑
k=1

s′khk|( ˙δE)k|2 ds

= 4t

∫ (i+1)4t

i4t

||δ̇E||2W ′ ds.

By Lemma 3

||δi+1
E − δi

E||W ′ ≤ K1h
√
4t||Ė||L2((i4t,(i+1)4t);(W 1,p(Ω))3).

Similarly,

||δi+ 3
2

H − δ
i+ 1

2
H ||W ≤ K1h

√
4t||Ḣ||L2((i4t,(i+1)4t);(W 1,p(Ω))3).

(iii) We have from the definition of || · ||W ′

(Gi, D(ηi
E + ηi+1

E )) ≤ 2||(S′−1)Gi||W ′(||ηi
E||W ′ + ||ηi+1

E ||W ′ ).

From (5.5)

Gi
l = −

∫ (i+1)4t

i4t

((C′He)l +4t(C ′Hi+ 1
2

e )l) ds,

where the subscript corresponds the lth dual edge. By the quadrature rule, Gi
l

vanishes for constant (C′He)l in time, so

|Gi
l | ≤ K2||(C ′Ḣe)||L1(i4t≤t≤(i+1)4t),

where, by a scale change, K2 varies as 4t. By the Bramble-Hilbert lemma

|C ′Ḣe| ≤ K3|Ḣ|(W 1,p(τl))3 ,

where, by scaling, K3 varies as h2− 3
p . So

|Gi
l | ≤ K4h

2− 3
p 4 t

∫ (i+1)4t

i4t

|Ḣ|(W 1,p(τl))3 ds.

Using Cauchy’s inequality

|Gi
l |2 ≤ K4h

4− 6
p (4t)3

∫ (i+1)4t

i4t

|Ḣ|2(W 1,p(τl))3
ds
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and
F1∑
l=1

|Gi
l |2 ≤ K4h

4− 6
p (4t)3

∫ (i+1)4t

i4t

F1∑
l=1

|Ḣ|2(W 1,p(τl))3
ds

≤ K4h
4− 6

p (4t)3
( F1∑

l=1

1
)1− 2

p
∫ (i+1)4t

i4t

( F1∑
l=1

|Ḣ|p(W 1,p(τl))3

) 2
p

ds

from Holder’s inequality. Using (5.7) to estimate 4t we obtain

(Gi, Gi) ≤ K4h
3 4 t|Ḣ|2L2((i4t,(i+1)4t);(W 1,p(Ω))3)

and from the definition of || · ||W ′

||(S′−1)Gi||W ′ ≤ K5h
√
4t||H||H1((i4t,(i+1)4t);(W 1,p(Ω))3).

By Cauchy’s inequality
N∑

i=1

ai ≤
√

N(
N∑

i=1

a2
i )

1
2 and N 4 t = T

N∑
i=1

||(S′−1)Gi||W ′ ≤ K7h||H||H1(0,T ;(W 1,p(Ω))3).

Similarly,

||S−1Ḡi||W ≤ K8h
√
4t||E||H1((i4t,(i+1)4t);(W 1,p(Ω))3)

and
N∑

i=1

||(S−1)Ḡi||W ≤ K9h||E||H1(0,T ;(W 1,p(Ω))3).

Collecting the terms from (i)–(iii), we obtain finally

max
0≤i≤N−1

(ε||ηi
E||W ′ + µ||ηi+ 1

2
H ||W )

≤ Kh(||E||H1(0,T ;(W 1,p(Ω))3) + ||H||H1(0,T ;(W 1,p(Ω))3)),

and this proves (5.8).

6. On rectangular meshes

The covolume scheme can be extended to rectangular meshes. In this case both
primal and co-face are rectangles and orthogonal to each other. All the duality
relations discussed in Section 2 are preserved. This method is the standard Yee
scheme [18].

Motivated by [11], we will show in this section that on nonuniform but rectan-
gular grids (a.k.a. graded grids) with maximum size h the covolume approximation
of tangential components of electric field E and normal components of magnetic
field H are second order in space in || · ||W ′ and || · ||W , respectively. Here we only
need (E,H) in (L1(0, T ; (H3(Ω))3))2. This improves the norm used in [11], where
(E,H) in (L1(0, T ; (C3(Ω))3))2 was assumed.

Using Lemma 1 and the error functions introduced in Section 4, we can rewrite
(4.9) as

1
2

d

dt
(||εH||2W + ||ηE||2W ′) = (δ̇E, ηE)W ′ − (ε̇H, δH)W .(6.1)

We need here two technical lemmas to estimate the terms on the right side of (6.1).
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Lemma 4. There exists u(t) ∈ RF1 such that each component of u is a continuous
linear functional of the magnetic field H and

(ε̇H, δH)W = (ε̇H, u)W(6.2)

with

max(||u||W , ||u̇||W ) ≤ Kh2||H||(H3(Ω))3 .(6.3)

Lemma 5. There exists v1(t) ∈ RM1 , v2(t) ∈ RF1 such that each component of v1

and v2 is a continuous linear functional of the electric field E and

(δ̇E, ηE)W ′ = (v̇1, ηE)W ′ + (ε̇H, v̇2)W(6.4)

with

||v̇1||W ′ ≤ Kh2|E|(H3(Ω))3 , max(||v̇2||W , ||v̈2||W ) ≤ Kh2||H||(H3(Ω))3 .(6.5)

Assuming these two lemmas we can prove

Theorem 3. Suppose that (E, H) ∈ L1(0, T ; (H3(Ω))3)2 satisfies (2.1)–(2.5), and
denote by (E, H) the solution of (4.3)–(4.4) on nonuniform grids with maximum
grid size h. Then

max
0≤t≤T

(||(E − Ee)(t)||W ′ + ||(H −Hf )(t)||W ) ≤ Kh2||(E, H)||(L1(0,T ;(H3(Ω))3))2 .

(6.6)

Proof of Theorem 3. Substituting (6.2) and (6.4) into (6.1) and integrating from 0
to t1,

1
2
(||εH||2W + ||ηE||2W ′)(t1) = (εH, u− v̇2)W (t1)

+
∫ t1

0

(v̇1, ηE)W ′ (τ) dτ +
∫ t1

0

(εH, u̇− v̈2)W (τ) dτ.

Applying Lemma 4, Lemma 5 and Cauchy’s inequality proves (6.6).

The method of proving Lemma 4 is to notice that if h1 6= h2, the quadrature rule∫ h2

−h1

f(x) dx ≈ (h1 + h2)f(0)

is exact for constant functions, but after adding the correction term
1
2
(h2

2f(h2)− h2
1f
′(−h1))

it is exact for linear polynomials. In the proof below we will manipulate these first
order correction terms to make them a discrete gradient.

Proof of Lemma 4. For primal face κi, (δH)i, the difference between the average
of H · ni over the face κi and the average of the same quantity along the co-edge
σ′i = OO′ orthogonal to the face κi (see Figure 2), vanishes for the constant field
H. So we write (δH)i as

OO′(δH)i = OO′ui + ũi,(6.7)

where the first order correction term ũi is

ũi :=
1
2
(OP1

2
H3z + h2

xH1x + h2
yH2y)(O) − 1

2
(O′P1

2
H3z + h2

xH1x + h2
yH2y)(O′)
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z

B

P2

A
P4O

H
P1

E
Q

hyhx
κi

O
P3

y

x

κ

Figure 2

and ui from (6.7) vanishes for piecewise linear polynomial functions. We remark
that ũi was formed in the way indicated above since there are three co-edges ema-
nating from the center O. Note also that ũi is a discrete gradient form, i.e., ũ = B1φ
for some φ ∈ RT . Using (3.8) in Lemma 2,

(ε̇H, δH)W = (ε̇H, u)W + (ε̇H, D′−1
ũ)W

= (ε̇H, u)W + (ε̇H,Pφ)W

= (ε̇H, u)W + (Dε̇H, φ)
= (ε̇H, u)W .

The last step follows from (4.8). Lemma 4 follows by a scale change argument for
u as in the estimate (6.3).

Proof of Lemma 5. The proof is similar to that of Lemma 4. We note that the
quadrature rule (see Figure 2)∫

κ′j

f(y, z) dσ ≈ f(Q)s′j

is exact for constant functions f when the point Q is not the center of the rectan-
gle O′OBA. By a Taylor expansion we can show that after adding the following
correction term

1
2
[fy(P2)P2Q

2 − fy(P1)P1Q
2
]P3P4 +

1
2
[fz(P4)P4Q

2 − fz(P3)P3Q
2
]P1P2

the quadrature rule is exact for linear polynomials f(y, z). So on co-face κ′j , we
split (δE)j as

s′j(δE)j = s′jv
1
j + v3

j(6.8)
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where v3
j := (C ′v2

j )κ′j , i.e., v3
j is expressed as a discrete curl. Using Pi, i = 1, · · · , 4,

Figure 2 shows how this discrete curl is formed in terms of v2
j :

v2
j (P1) :=

1
2
(h2

xE2x(P1) + h2
yE1y(P1))(6.9)

and v1
j is computed from (6.8) and vanishes for piecewise linear polynomial fields

E. By summation by parts

(δ̇E, ηE)W ′ = (v̇1, ηE)W ′ + (C′v̇2, DηE) by (3.3)
= (v̇1, ηE)W ′ + (D′v̇2, CηE) by Lemma 1
= (v̇1, ηE)W ′ + µ(D′v̇2, Sε̇H) by (4.6)
= (v̇1, ηE)W ′ + µ(v̇2, ε̇H)W by (3.1),

and the estimate (6.5) follows from (6.9) and the fact that the continuous linear
functional v1

i vanishes for linear polynomials E.
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