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Convergence Analysis of a Frequency-Domain 
Adaptive Filter with Exponential Power 

Averaging and Generalized 
Window Function 

PIET c. W. SOMMEN, PIET J. VAN GERWEN, SENIOR MEMBER, IEEE, 

HENK J. KOTMANS, AND A. J. E. M. JANSSEN 

Abstract-One of the advantages of a Frequency-Domain Adaptive 

Filter (FDAF’) is that one can achieve convergence at a constant rate over 

the whole frequency range by choosing the adaptation constant for each 

frequency bin I equal to the overall adaptation constant divided by an 

estimate of the input power at this frequency bin. A commonly used 

method, applied in this paper, to estimate the input power is to do an 

exponentially weighting with smoothing constant B on the magnitude 

squared of the input values at each frequency bin 1. Furthermore, it is 

known that a correctly imfdemented FDAF, using the overlapsave method, 

contains five 2 N-points Fast Fourier Transforms (FFT). Two of these are 

used to force the last N points of the time-domain augmented impulse 

response to zero by applying a particular window function. In this paper, an 

analysis is given of the’FDAF where the window function is generalized. 

Using these results, the convergence behavior of FDAF’s with various 

window functions is compared. Furthermore, the analysis describes the 

influence of /3 on the convergence behavior of the FDAF over the whole 

convergence range. 

I. INTRODUCTION 

A DAPTIVE DIGITAL filters are extremely useful 
devices in many applications of digital signal 

processing, including channel equalization, sensor array 
processing, and echo and noise interference cancellation. 
In this paper, we will restrict ourselves to an echo cancella- 
tion structure for acoustic applications. Typical examples 
of this kind of applications are the loudspeaking telephone 
[l] and audio teleconferencing [2] of which the basic echo 
cancellation scheme is given in Fig; 1. The speech signal 
x(k) from the “far end” speaker reflects via an acoustic 
echo path as an echo signal e(k). This acoustic path can 
be considered as a multireflection medium with an impulse 
response which may have lengths up to several hundreds of 
milliseconds. Together with the “near end” signal s(k), 
this echo e(k) arrives at a microphone. The adaptive filter 
uses a model of the acoustic echo path and makes a replica 
e^(k:) of the echo signal e(k). Thus, the adaptive filter 
cancels the echoes of speech signal x(k) on the “forward 
path” which appear on the “return path.” Theoretically 
the residual signal r(k) = s(k) + e(k) - E(k) in steady 
state will almost be equal to the signal s(k). 

Manuscript received August 28, 1986; revised March ?,1987. 
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The two main problems. with adaptive transversal filters 
for acoustic echo cancellation configurations are 

l the number of weights &, needed for the adaptive 
filter to model an acoustic path, is very large, viz., 
from 500 up to 2000; 

l the input signal x(k) is a correlated signal. 

These two difficulties can be tackled with a Frequency- 
Domain Adaptive Filter (FDAF). Namely: 

l Using an FDAF results in block processing in which 
one block of input data is processed simultaneously, 
producing one block of output data. This block 
processing can be done by efficient algorithms such 
as Fast Fourier Transforms (FFT). In this way, the 
amount of computational requirements in terms of 
multiply-adds per one block of N output samples can 
be greatly reduced compared with time-domain ap- 
proaches. This is accomplished by replacing convolu- 
tion with a multiplication of transforms which im- 
plies a complexity reduction from 0( N*) to 

O(N l%(W). 
6 The eigenvalues of the input autocorrelation matrix 

are given approximately by uniformly spaced sam- 
ples of the input power spectrum. This implies that 
weights associated with frequencies having little 
power converge more slowly than those associated 
with frequencies having greater power. A large varia- 
tion in the input power spectrum leads to highly 
disparate eigenvalues and therefore highly disparate 
time constants, some of which may be very large. 
Frequency-domain techniques can easily be modified 
to allow more uniform convergence of the weights of 
the adaptive process. The weights are adapted inde- 
pendently from each other and this corresponds ap- 
proximately to one-tap Least Mean Square (LMS) 
adaptive filters. The time constant of the Ith weight, 
assuming stationary inputs, is inversely proportional 
to aP,, where (Y is the adaptation constant and PX, 
is the input power related to that weight. In order to 
make all weights converge at the same rate, the 
adaptation constant can be made different for each 
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overlapping of the input sequence. In [7] and [9], an 
analysis is given of a Time Domain Block LMS algorithm 
while [S] and [9] give an analysis of the Time Domain LMS 
algorithm. In [lo] the influence of the smoothing constant 
p is given for small adaptation constant (Y. 

II. OVERLAP-SAVE IMPLEMENTATION OF AN FDAF 

Fig. 1. Basic echo caucgllation scheme for acoustic applications. 
It is well known that linear convolution/correlation in 

the time domain may be performed by multiplication in 

frequency bin according to pr = a/fix,, where ix, is 
the frequency domain. This can very easily be imple- 
mented with the aid of FFT’s by using the overlap-save 

an estimate of the input power at the Zth weight. method. Fig. 2 shows for the echo cancellation problem 

A disadvantage of an FDAF is that the linear convolu- 
tion must be accomplished by a circular one. This can be 
done by using the overlap-save method which implies that 
FFT’s are needed of length 2N. An overlap-save imple- 
mented FDAF as described by Clark et al. [3] requires five 
FFT’s. Two of them are used to force the last N points of 
the time-domain augmented weights to zero. This zero 
forcing has been done by using a particular window func- 
tion in the time domain. Mansour [4] proposes an FDAF 
without a window function. This configuration is less 
complex (three FFT’s), but the convergence behavior is 
worse than the FDAF as proposed by Clark [3]. 

In this paper, an analysis is given of the FDAF where 
the window function is generalized. Using these results, the 
convergence behavior of FDAF’s with different window 
functions is compared. From this it can be shown that 
there are efficient window functions with complexity al- 
most equal to the FDAF as proposed by Mansour [4], 
while the convergence behavior is comparable to the con- 
figuration proposed by Clark [3]. 

Since in practical applications we do not .know the 
power spectrum of the input signal x(k), this is normally 
calculated by some averaging process. .For this reason, the 
analysis given in this paper will furthermore describe the 
convergence behavior of the FDAF when the estimation of 
the input power P+ is done by using an exponentially 
weighted average, with smoothing constant /3, of the mag- 
nitude squared of the input values at frequency bin 1. 
From this part, it appears that for a small final misadjust- 
ment, which implies a small adaptation constant (Y as used 
in data transmission, we can vary the rate of convergence 
over a very large range by choosing different fi. On the 
other hand, when dealing with a large final misadjustment, 
and thus with large (Y, the influence of /3 on the rate of 
convergence is very small. In all cases, however, the best 
choice for p is as large as possible, which is in contrast to 
the choice SLY = 1 - p as suggested in [5, p. 1741. 

To support the theory, some graphs will give theoretical 
and simulation results describing the convergence behavior 
of the FDAF. As references to work done in the same 
field, we mention [6] which gives an analysis of the FDAF 
where the power estimation is done by uniformly averag- 
ing over the last K measurements. The paper [6] does not 
describe the influence of the window function and the 

the overlap-save implemented FDAF as described by Clark 
et al. [3]. In this figure, the FFT’s are denoted by F’s, while 
signal paths with double lines in the figures refer to paths 
in the frequency domain, and single lines refer to time- 
domain signal paths. In the text, we will use lower case 
characters for the time-domain signals, while upper case 
characters are used for frequency-domain signals. The 
unknown echo path impulse response is given by h’, while 
the length of this echo path equals N. Denoting the 
time-domain ,adaptive weights by wi (m), the adaptive filter 
has to perform a linear convolution between the input 
signal x(k) and these weights. To do this, the input signal 
is segmented into blocks of length 2N. These blocks are 
transformed to the frequency domain by a 2 N points FFT. 
The Ith frequency bin X,(m) in the mth data block is 
multiplied by the weight W,(m), which is the Fourier 
transform of the N adaptive weights w,(m) augmented 
with N zeros, to obtain the filter output g/(m). The 
overlap-save procedure is now executed by overlapping the 
input segments over a length of N (segml), discarding the 
first N points of the circular convolution output (segm2) 
and choosing a window function g as 

fori=O;..,N-1 
for i=N;.e,2N-1 (1) 

to force the last N points of the weight function w to zero. 
The principle of the frequency-domain LMS algorithm is 
to update the weights as long as there is correlation 
between the signals x(k) and r(k). The overlap-save pro- 
cedure to determine this correlation is now executed by 
overlapping the input segments over a length of N (segml), 
discarding the last N points of the circular output, which 
is implicitly done by the time-domain windowing function 
g, as defined in (l), and augmenting with N zeros in front 
of the segment of r(k) (segm3). 

Denoting matrices by bold-face characters and vectors 
by underlined bold-face characters, the frequency-domain 
algorithm in vector-matrix notation becomes 

IV(mf1) =_W(m)+2cYl;g~-i&+)X*(m)R_‘(m) 

Fv(0) = (0; yo)’ with m=O,l;.. (2) 
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Fig. 2. Overlap-save implementation of FDAF. 

where 

B!(m) = (w&4,*. *> W2N-l(m))T weight vector; T denotes transpose, 

a adaptation constant, 

F 2N-point FFT matrix, 

g=diag(l;+~,l,O;~~,O) diagonal window matrix defined in (1)) 

fx(m> = diag( px,,(m),-. -, px2,-,(m)) estimate of diagonal input power matrix, 

X(m) =diag(X,(m);*., X,(m);*., XzN-r( m)) input signal matrix in frequency domain, 

x*(m) 
2N-1 

X,(m) = C x((m -l)N+ i)e-jei’ 
iL0 

From (2), it follows that the weights W,(m) are updated 
as long as there is correlation between the signals x(k) and 
r(k). This correlation is calculated by the product 
X*(y)&(m). By decorrelating the input signal, the con- 
vergence speed can be accelerated [4]. This can be accom- 
plished by normalizing the input power spectrum which is 
done by the inverse of the estimate of the input power 
matrix k;‘(m), The factor FgF-’ achieves the window- 
ing. 

III. ANALYSIS OF AN FDAF WITH EXPONENTIAL 

POWER AVERAGING AND GENERALFZED 

WINDOW FUNCTION 

To analyze the FDAF, we first give some definitions, 
notations, and assumptions in Section III-A, while in 
Section III-B, the most important characteristics are given 
to describe the dynamic behavior of the adaptive filter. In 
Section III-C, the analysis is given of the dynamic behav- 
ior of the FDAF (2), where the window function g is 
generalized, while the power estimation is done with an 
exponential averaging network. Namely 

B,(m) 5p?,,(m-1)+(1-/j)]X1(m)]2 

with0 <fi <l (3) 

complex conjugate transpose of X(m), 

FFT of x(k), 0 = V/N, x(k) = 0 for k < 0, 

residual signal vector in frequency domain. 

where p is the smoothing constant of the power averaging 
network. 

Since all processing is done with block processing tech- 
niques, the description of the FDAF is carried out in 
vector-matrix notation, For this reason, we refer to Fig. 3 
for the analysis, which is an equivalent of Fig. 2, where all 
signals are in vector-matrix notation. 

A. Definitions, Notations, and Assumptions 

We assume the frequency bins of the input signal to 
consist of independent complex Gaussian stationary ran- 
dom variables with zero mean. This implies that 

E[X,*(m)X,(m)l = ( Fx, E:iZZ:. (4) 
where E [ -1 is the mathematical expectation. This inde- 
pendency assumption implies that we assume the input 
signal to have’ an autocorrelation function over maximal N 
points. All signals are segmented into blocks and these 
blocks are described !by vectors. The input signal in the 
frequency domain, however, is represented in a diagonal 
matrix since this notation’allows the adaptive algorithm (2) 
to be described with well-known vector-matrix arithme- 
tics. Furthermore, we assume that each frequency bin 
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X (ml 

fl’ (m) 

Fig. 3. Vector-matrix diagram of FDAF. 

X,(O), X,(l),* . -3 is jointly Gaussian distributed with co- talk problem is beyond the scope of this paper, we will 
variance matrix 

*p/Y,* 

assume that a double-talk detector is incorporated to pre- 
vent misadjustment of the echo canceller. For this reasonj 
the signal s(k) may be represented by a white-noise signal 
which includes all imperfections. This implies that the 
power spectrum of the signal s(k) is flat, i.e., 

(5) 

When the input signal is a white-noise signal, this covari- 
ante matrix is exact because of the 50-percent overlapping 

of the input sequence by N samples (segml from Fig. 2). 
From experiments, it appears that input signals which can 
be modeled by an all-pole filter have almost the same 
covariance matrix. 

The power matrix of the input signal is diagonal and is 
defined by 

P,=E[X*(m)A$m)] =diag(P,~,...,PXZN-l). (6) 

Using the same approximations as given in [ll], where the 
circular autocorrelation matrix C, is constructed from the 
Toeplitz autocorrelation matrix R, in such a way that 
their eigenvalues are approximately the same, we have 

Px=F.C;F*. (7) 

The frequency bins S,(m) of the signal s(k) are also 
assumed to be complex Gaussian stationary random vari- 
ables with zero mean. These frequency bins are defined as 

2N-1 

S,(m) = c s((m -l)N+i)e-jeir 
i=O 

withs(k)=Ofork<O. (8) 

Furthermore, it is assumed that X,(m) and S,(m) are 
independent. The purpose of the acoustic canceller is to 
cancel the echoes of speech on the “forward path” which 
appear on the “return path.” Conversations always will 
contain periods during which speech is present in both 
directions at the same time (double talk). Since this double 

and 

Ps=diag(PsO;.., Psl,l) = P,.I (9) 

where 1 is the 2 N x 2 N identity matrix. From Parseval’s 
relation, it follows that the average power of one block in 
the frequency domain is equal to the total power of one 
block in the time domain. This implies for signal s(k) 

1 2N-1 1 

fi F Ps,=$2N.Ps=Ps 
I-O 

2N-1 

= 1 E[s2((m-l)N+i)]. (10) 
i=O 

The window matrix g is generalized as 

g = diag(g,,*. a, g2N-1) withO,<g,<l. (11) . 

The segmentation blocks (segm2) and (segm3) of Fig. 2 
may be combined as a segmentation window v, which is 
defined as 

0 vi = 
( 

for i=O;..,N-1 
1 for i= N;..,2N-1. 02) 

In Fig. 3, this function is generalized as the segmentation 
matrix 

u=diag(v,;~~,v,,~,) withO<uidl. (13) 

Since g and u are diagonal, the matrices 

G=FgF-’ and V=FuF-’ (14) 

are circulant [12]. In Appendix I, we use the fact that most 
-of the energy of the matrix C, = V. V* is concentrated at 
the diagonals (C,), ,+i, (C,) ,,,, and (C,) ,,,- i which are the 
main and first codiagonals of C,. This implies that the 
generalization (13) must be within this scope. 
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The Fourier transforms are carried out with the 2 N-point Stability: The largest value (~a of the adaptation con- 
FFT matrix F from which the (k, Z)th element is given by stant LY that yields a stable algorithm. This implies 

(F) k, = e-jekr 

and with the property 

with 0 = r/N 

F-‘-&F*, 

05) lim Pz(m) = Pg 
m+cc 

(16) 

exists if and only if 0 < (Y < (Y,,. 

(22) 

The variance of the difference signal e”(k) = e(k) - e^(k) 
appears to be an important quantity to describe the 

thfi~~~d~~~~~~fs~ 
The fractional amount by which 
exceeds the minimum attainable 

dynamic behavior of the adaptive filter. The frequency- BMSE is called the final misadjustment and is defined by 

domain transformation from the mth block of this dif- 
ference signal is P&4 PE 

M=lim ___ 

g=E(m)-g(m)=X(m)._H-X(m)._W(m) 
m--rm ( i Pe =p,. (23) 

=X(m)*@(m) (17) The Rate of Convergence: The rate of convergence of the 
where BMSE to’its steady state can be measured by the sum of 

_H=F.& frequency-domain impulse response vector, 
b = ((h_y,o; * .,oy augmented time-domain impulse response vector, 
h_‘= (h,,. .*, hN-,)T original impulse response vector of length N, 
_W(m) = F.&m) frequency-domain weight vector, 

drn) = (we(m),‘. ‘? W2N-l(m>)T time-domain weight vector, 
@(m)=H-_W(m)=F*~(m) frequency-domain difference vector, 

d(m) = II - Mm> time-domain difference vector. 

The Block Mean Square Error (BMSE), which is equal to 
the average power of one block of the difference signal in 
the frequency domain, is given by 

PE(m) = &E[{ x(m)~o(m))*~(x(m)~O(m))l 

= & trace(P,-A(m)) (18) 

where the assumption is made that X(m) and D(m) are 
independent while A(m) is the covariance matrix of the 
difference vector defined by 

A(m) = E [J!(m)&!*(m)] 09) 

while trace (e) is the trace of a matrix. This covariance 
matrix is related to the time-domain covariance matrix as 

A(m) = Fa(m)F* 

with 

a(m) = E[d(m)d’(m)]. (20) 

Another quantity we will need is the minimum attainable 
BMSE, which is equal to the average power of one block of 
the echo signal in the frequency domain. This is defined as 

PE= &E[{ X(m)H}*-{ X(m>H>] 

=*2ii1E[e2((m-l)N+i)]. (21) 

B. Convergence Behavior Characteristics 

The characteristics of interest which describe the conver- 
gence behavior of the FDAF are as follows. 

the following series [7], 181: 

J= f [PE(m)-PE] 
m=O 

_ (24) 

with small J indicating fast convergence. From (24) it is 
clear that J is the “total area” under the function 
Pi - PE. Fitting through Pz(m) an exponential func- 
tion, with time constant IY, defined as 

Pg(m) = (PE(O)- Pi)e-2m/‘+ Pz (2% 

and expressing J as 

J=f(d)+‘&)-Pi) (26) 

-2 

‘= ln[l-(l/f(~,P))l (27) 

is evident. 
Another well-known quantity characterizing the rate of 

convergence is v2,, [13], which gives the number of itera- 
tions which are required to reduce the residual signal r(k) 
by 20 dB. The relations between vzO and r is 

10 
v - 
2o - lOlog 

-7~2.3 r. (28) 

C. Analysis 

With the notations as introduced in Section III-A, the 
update algorithm (2) becomes 

_W(m+l) =_W(m)+2arG&1(m)X*(m)V&(m). (29) 

By using (see Fig. 3) 

R(m) =X(m)*D(m)+Stm) (30) 
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ET,, (P) 

0 0.5 1.0 

P- 

Fig. 4. The factors E,,(p) = E[~Xk(m)~2i~;,‘(m)] as a function of 8. 

the update algorithm (29) becomes 

_O(m +l) = { I-2cuG~~‘(m)X*(m)YX(m)}._D(m) 

-2aGfi;‘(m)X*(m)V$(m). (31) 

We will first set up the difference equation for A(m). By 
using the independency assumption between the matrix 
X(m) and the (zero mean) vector S(m), this difference 
equation follows from (31) and is given by 

are given in Appendix II, while plots of E,,( /3), Ezz(P), 
and E,,E,,(p) are given in Fig. 4. Furthermore, E,(p) in 
(33) is composed from the functions E,,(p) according to 

E,(P) = {E,,(P)-E:,(P)-E,,E,o(P)}.~,Z 

+ E,,&,(P)% (36) 

Using (20), the time-domain transformation of (33) is 
given by 

8(m+1) = 6(m)-2~E,,(P)X,g.8(m) 

-2~E,,(P)%(mh 

+4&p { E:#)E:%)+ E,(P) 

.[F-‘diag(A(m))(lo-‘)*]}*g 

+4a2Z’sE,2E,o(~)~.*g* [F-‘P,-‘(F-l)*] *g. 

(37) 

Since (8(m)):, < (6(m)),k.(6(m)),,, the convergence to 
zero of the diagonal elements of 6(m) ensures the conver- 
gence of the off-diagonal elements. We shall therefore 
concentrate on the dynamic behavior of the diagonal ele- 
ments of the matrix 6(m). Some time after the conver- 

Using the results of Appendix I, we get 

A(m +l) = A(m)-2aEll(j3)z,G.A(m) 

-2cxE11(P)EoA(m).G* 

+4a*G.{ Efl(P)%ZA(m) 

+ E,(b)diag(A(m))} .G* 

+4a2PsE12E,o(~)~0~Gd”-1~G*. (33) 

The vector A(m) contains the diagonal elements of the 
matrix A(m), while the “average area” functions E, and 
2,~ are given by 

1 2N-1 1 2N-1 

‘“=& ,C vi and E,, = --& ,g $. (34) 
I-0 l-0 

The function Eij(/?) is defined as the mathematical expec- 
tation 

Eij(/3) =E[IX,(m)12i*~j$(m)] (35) 

where P,(m) is the exponentially weighted power average 
as defined in (3) with smoothing constant p. For our 
analysis, we need among other things E,,(P) and E**(P), 
which are dimensionless quantities and therefore indepen- 
dent of the frequency bin k. Furthermore, the product 
E12(P)E10(/?) is needed, which is also dimensionless and 
thus independent of k. For convenience, this product will 
be abbreviated as E12Elo(/3). Explicit formulas for Eij(p) 

gence process has started, the matrix 6(m) may be ap- 
proximated by a diagonal matrix. This implies that A(m), 
which is related to 6(m) by (20), is a circulant matrix [12]. 

By defining o(m) as the vector containing the diagonal 
elements of the matrix S(m) and using (7) we can rewrite 
(37) as 

B(m+l) =A.6_(m)+bPsF$g2.1_, m=O,l;.. (38) 

where 

{ I-2aE,,(~)~,g}*+4 ~2~E,(P)g2~I~LT) 

b = 4a*&E,,E,,( /I$$ 

LlV I 

I) Stability: The largest value of the adaptation con- 
stant a0 that yields a stable algorithm depends on the 
behavior of the vector B(m). The convergence of this 
vector depends on the eigenvalues of matrix A. Conver- 
gence occurs if and only if the eigenvalues of A are all 
within the unit circle. Similar to the derivation given in [8], 
we get 

CUB0 
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and 

which implies that 

a,>0 and a0 
E,(P) E 

E,,(P)& g,ao<l 
(40) 

where 2 g, a is a “weighted area” function defined as 

1 2N-1 

zg,a=- c 

gi 

2~7 i=o l-aEll(P)x,gi’ 
(41) 

2) Final Misadjustment: Since 6(m) is diagonal in final 
state, we can rewrite Pi from (18) using (7) as 

PE(m) = FX trace (s(m)) =p,l’.fi(m) (42) 

with the average power pX defined as 

&= 2N(R,),. (43) 
The final misadjustment is now given by 

M = PS,E .&bl’.(I - A)-‘.g*.l 

= f&-E (44) 
with 

P S,E= P,/P, and PX= (R,),.(R,‘),. (45) 

For an input signal with a flat spectrum, the factor PX 
equals one. When the input signal is taken to be a highly 
correlated signal for which the spectrum is given by l- 
cos(+), this factor is two. In general, this factor will be 
close to one. For this reason, we will assume for simplicity 
that PX= 1. Using the Bartlett formula as given in [8], we 
can write 

~T-(I-A)-1-g2= ( -,fi(a,P),-) (46) 

with 

htayp) = ( 4,E11(B)E,(lp’ “Ell(fi)X”gi) 1:’ 

( 
E,(P) 1 - l- aE,,(p) $%.a . I (47) 

With this, the expression for the final misadjustment 
becomes 

E&o(P) %- 
E,,(P) xxg+ 

E,(P) 1 - 
‘- aEll(@) ++’ (48) 

3) Rate of Convergence: The rate of convergence J is 
given by 

J=pxlT c (g(m)-4) =~x~T.(I-A)-1.(~(0)-8) 
m=O 

(49) 

where fi = lim 6(m). Using the results of the Bartlett m-roe - 

formula (47) J can be rewritten as 

2N-1 

J=‘, C ~((II,P).((S(O))i-(6)i) (50) 
i=O 

where the functions fi(a, /3) are given by (47). The time 
constant of the ith weight is, similar to (27), given by 

ri= ln[l-(lJI(a,P))1 (51) 

The overall time constant T of the adaptive filter is a 
function of all ri, but is mainly determined by those ri of 
the weights wi which have to converge to the largest value 
hi of the echo path impulse response. In general, we can 
use the a priori knowledge that the absolute value of the 
global envelope of the echo path impulse response is a 
decreasing function with i, while we assume for simplicity 
at this moment that lhi] is maximal at i = 0. For this 
reason, the overall time constant can be approximated by 
727 0’ 

IV. ANALYSIS AND SIMULATION RESULTS FOR 

THREE WINDOW FUNCTIONS 

In this section, we will study the convergence behavior 
of FDAF’s with various window functions and an 
exponential power averaging with smoothing constant /3 
both by using the simulation and analytical results as 
derived in the foregoing section. Window functions of 
interest are as follows. 

l Clark [3] proposes an overlap-save FDAF configura- 
tion which contains five FFT’s with a window function as 
defined in (1). The used window will be referred to as the 
“ Block-N ” window. 

l Mansour [4] proposes an FDAF configuration 
without a window function which contains three FFT’s. In 
Fig. 3, this implies a “shortcut” window function which 
will be referred to as the “Block-2N ” window and is 
defined as g,=l for i=0;..,2N-1. 

l Using the a priori knowledge about the decreasing 
behavior of the global envelope of the echo path impulse 
response, an efficient window function was proposed in 
[14] for an FDAF configuration containing three FFT’s. 
This window function will be referred to as the .“Cosine” 
window and is defined as gi = t + i cos (di) for 
j= 0;. ., 2N-1 withd=?r/N. 

Although the segmentation window v is generalized in 
the analysis, we will assume here that it is defined as in 
(12). This is the segmentation window as it appears in the 
overlap-save configuration of Fig. 2. This implies that 
z u = E,z = + and Ez = :. Furthermore, Table I sum- 
marizes the analytical results, describing the convergence 
behavior of the FDAF’s both as a function of the three 
mentioned window functions and the smoothing con- 
stant p. 

The final ‘misadjustment M is expressed in decibels as 
lOlog =lOlog(Ps,,)+lOlog(e), with f defined as in 
(44). The quantity lOlog (PS,E) =lOlog(P,)- lOlog 
gives the ratio of the power level of (noise) signal s(k) to 
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Fig. 5. Impulse response of loudspeaking intercom system. 

’ TABLE I 
CONVERGENCE BEHAVIOR OF FDAF WITH THREE PARTICULAR 

WINDOW FUNCTIONS 

1 

I II Stability 1, Final Misadjustment ) Rate of Covergence ) 

E, = El,@) Ez = $f$$ Es = w 

the power level of the echo signal e(k) in one block. In 
our simulations, this factor was equal to -30 dB. For the 
echo path, we choose the impulse response of a loudspeak- 
ing intercom system from which the impulse response (Fig. 
5) was sampled at 10 kHz which results in N = 512. The 
FFT’s are thus of length 2N = 1024. To simulate with 
“speech like” signals, a white-noise signal was passed 
through a formant filter (12th-order all-pole filter). 

Both final misadjustment and rate of convergence are 
functions of the adaptation constant CL In this paper, we 
are not interested in the actual value of cx (this value can 
be calculated by the formulas given in Table I), but in the 
convergence properties as a function of both the smooth- 
ing constant p and of various window functions. For this 
reason, we made curves (Figs. 6 and 7) in which (Y was 
eliminated by construction. These curves show the final 
misadjustment on the vertical axis and the rate of conver- 
gence on the horizontal axis with CY varying in the range 
0 < a < ao. The (Y = Q point is at the lower right comer, 
where a very good final misadjustment is reached after a 
very long time, while the (Y = a0 point is in the upper right 
corner, where it takes a long time to reach a very bad final 
misadjustment. Since the upper part of the curve gives the 
same rate of convergence as the lower part, but with a 

Wiindor = Block-N 

Simulation: + @=0.05 

Fig. 6. Convergence behavior of FDAF as a function of p with Block-N 
window function. 

Simulation: . Block-N 

Fig. 7. Convergence behavior of FDAF for three particular window 
functions, with p = 0.9. 

worse final misadjustment, it is clear that only the lower 
part for 0 < (Y < a,/2 is of practical interest. Fig. 6 shows 
a curve which gives the final n&adjustment 10 log(M) as a 
function of the rate of convergence v20 with the smoothing 
factor /3 as a parameter. The bounds for the smoothing 
constant are 0 -C p -C 1, while three different curves for 
/I = 0.05, 0.55, and 0.9 are plotted in Fig. 6. In general, p 
should not be chosen too close to the bounds p = 0 or 
p = 1. For p - 0, the exponential network does not aver- 
age. This implies that, for each Ith frequency bin, the 
adaptation constant (Y is divided by its momentary value 
of the input power spectrum. This value may become very 
small and can cause the algorithm to become unstable. 
Also, we should not take p too close to 1 because then the 
convergence behavior is very much dependent on the ini- 
tial values of pX,(0). For that case, we have pX,( m) - g*,(O) 
V m. Since we did not describe this initialization effect @ 
our analysis (for this we refer to [lo]), we initialized P, 
with the power spectrum of the input signal. 

From simulations and anaiytical results, it appears that 
the influence of the smoothing constant fl on the conver- 
gence behavior of the FDAF for all window functions is 
similar. For that reason, Fig. 6 only gives the results for 
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the Block-N window. Fig. 7 depicts the results of the effect 5) The number of iterations needed to reach a certain 
from the various window functions on the convergence final n&adjustment for the FDAF with the Block-2$/ 
behavior of the FDAF with fi = 0.9. From Fig. 5, we see window, realized with three FFT’s, is about twice as high 
that the echo path impulse response hi is nonzero for i in as for the configuration with. the Block-N or Cosine 
the neighborhood of N - 1. To overcome the problem that window. In practical situations, the echo path impulse 
the Cosine window would have a relatively too small value response may have some delay rd. The Cosine window can 
in comparison to hi for i = N- 1, we have shifted the be shifted, without significant complexity increasement, 
Cosine window over some distance. Namely, g, = $ while still having convergence properties which are com- 
++cos(d(i-40)) for i=0;..,2N-1. parable to the Block-N configuration. In general, we can 

V. CONCLUSIONS 
say that a priori knowledge about the global envelope of 

.%rom Fig. 6, the following conclusions can be reached. 
the echo path impulse response can be used to reduce 
complexity. 

1) For small final misadjustment;and hence a very small As a final remark, we mention that the analysis of the 
adaptation constant (Y, the influence of /I is very large. In FDAF with nonstationary input signals and the analysis of 
that case, we can vary the rate of convergence over a very the tracking capabilities of the FDAF are beyond the 

large range by choosing a different fl. This is in agreement scope of this paper but are subjects for future research. 
with the result of [lo], where the analysis was made for a 
very small CL For (Y near to (~~/2, which are the points in 
the curves with the smallest uzO, the influence of fi is 

APPENDIX I 

negligible. 
ANALYSIS OF THE EXPECTATJQN MAT-RICES IN .(32) 

2) The number of iterations used to reach a final mis- In this appendix, we give the mathematical expectations 

adjustment decreases when /3 increases. This implies that of the matrices which appear in (32). For sim$icity we 

we should take the smoothing constant p as large as define 

possible, taking into account the initialization effect as 
mentioned before. This in contrast to the choice 2a = 1 - /3 E,=E[~,-‘(m)X*(m)VX(m)] (Al) 

as suggested in [5, p. 1741. 
3) The analytical results are systematically a little too E,= E[&-‘(m)X*(m)VX(m).A(m) 

low. The reason for this is the approximation made for the 
factor lOlog =lOlog((R,),.(R;‘),) = 0 dB. For a 
nonflat spectrum, this factor may rise up to 2 or 3 dB. 

~~*(m)V*X(m)~x-l(m)] (A2) 

From Fig. 7, the following conclusions can be reached. 
4) The convergence properties of the FDAF with the Ec=E[i’;‘(m)X*(m)V~E[_S(m)~*(m)] 

Cosine window tire comparable to the configuration with 
the Block-N window. The FDAF with the Cosine window, -V*X(m)~.J’(m)]. (A3) 
however, can be implemented very efficiently in the 
frequency domain, as suggested in [14], and contains only Using the Gaussian assumption and by denoting the 

three FFT’~, whereas the Block-N configuration contains (k, 0th element of matrix by (T )H and using the fact that 
five FFT’s. V is circulant, we get 

(E,)k,=E[~~~(m)X,*(m)X,(~)].(~)kt=Ell(P).~, fork=1 

= 0 for k # 1. 644) 

The (k, I)th element of matrix E, is given by 

We will evaluate (A5) for k = I and for k # 1. For k = I 

(E,),,=CCE[~~~(~)lx,(~)l’x*,(~)x,(m)].(~)kt(~*)qk.(A(m))t, 
t 

=~~[~~~~m)lx,~~~121x,012]~,~~~~t12~~~o)tt 

= ~2l(L3~~i@b4 kk + E[ Fik2xZ(m)~Xk(M)~2] c E[lXt(d12] l(%t12@(m))tt 
t#k 

= ‘%,(@:@b))>kk - ‘%&,(~)%(A(~)),, 

646) 
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For the moment, we will concentrate on the last term of right-hand side of (35). The results we reproduce are for 
this equation. Assuming that \(V)k,]2 is mainly con- the limiting case m + cc, which is realistic since-m in (35) 
centrated on the diagonals (‘)k,k+i, (.)k,k, and (.)k,+i is usually large, but at the end of this appendix we shall 

indicate how to deal with the case of finite m. and making the assumption that 

E[,&+,tm)12] ‘EIID,+dm 1 

we can write this last term as 

E[B;k2(m)lxk(m)!2] CE[IXt(m)12 

==+%~t~),X,t~~,“] 

(A(m)) ttlt v> kt12 
It is slightly more convenient to replace m by m - 1 in 

(35). We have 

1 IZo12ie(-n(Qi’z.z)) 

=- 
I 

dz_ (A15) 
IQ,1 cm ((I - ~)c~;o’p’,z,,~)’ 

6“s) 

This results in 

tEh)kk = cE22!P)- E,2E,otP))z:t+))kk 

’ E,2E,,(P)~“2(A(m))kk. (A9) 

The nondiagonal elements of Eb are 

(E,)k,=E,:(p)~f(A(m))k,. (AlO) 

Combining the equations for k = I and k # 1 gives 

tEdkl = EfltP)%XAtmNk, 

+ E,tP)tAtm)),, for k= 1 

= E~(,&%(A(m))k, fork+ I. (All) 

where we ,have set z = (z,,;.., z,,-JT = (X(m - 1) 

. . . , X(O))? Here, Q, is the leading m X m section of the 
infinite matrix Q, given by 

Q= 

1 
1 -- 

2 
I 1 

-- 1 -- 

2 2 
1 1 

-- 1 -- 
2 2 

b-1 

and IQ,] denotes the determinant of Q,. In [16], it is 
shown that 

Eij(j3) = lim Erj(fi; m) = i=O,l,-.. , j=1,2;.. 
m-cc 

Ei,( /3) = r-‘i!, i=O,l;... 

In this equation, E,(P) is defined as 

E”(P) = (E22(P)-E121(P)-El*E1O(P))Z~ 

+ E,,E,otP)% 6412) 

Here, G(h) = ((I + AU))‘),,,, the left upper corner ele- 
ment of (I + AU))‘, F(X) = ]I + AU], the determinant of 
Z + XU, and U is the infinite matrix 

For the last matrix, we have 

tEi)k, 7 &xE[ ‘~~(m)~~‘(m)x,*(m)x,(m)] 

‘(~)kr(v*~ri 

= J’sW,o(P)%G~’ for k = 1. (AI3) 

’ 1 -1 2P l/7- \ 

-1 

u= 

-1 l/2 

2P P 2P 

3/2 

. 
-1 ZP 312 P2 _ 1 2P 5/2 

\ I 
;Alg) 

APPENDIX II 
ANALYSIS OF THE NUMBERS Eij( /3) IN (35) 

We reproduce in this appendix the results of [15 and 161 
as far as relevant for the present paper. We only need to 
consider 

The functions G(A), F(A), A > 0 can be calculated con- 
veniently according to the formulas 

1 

G(X) = 1 + X - $#G( X/3) and 

E,,(P), E,,(B)> E&o@) = E,,(P)-E,,(P). (AI41 Formula (A19) allows for a very rapidly converging con- 
From the definition in (35) and the assumption in Section tinuous fraction expansion of G(X). Moreover, in [16, sec. 
III-A on the joint probability density of X,(O), X,(l); . ., 51 it is shown that l/F(X) decays rapidly (like ,(s*/2y)) 
it follows that the quantities in (A14) are independent of with s = log(X-/2/31/2), y = log( fi)), especially when p is 

E,,(P) = 5,. It is convenient to choose E,,(P) = l/r. close to 1. Hence, it is feasible to calculate the integrals in 
Note also that we now can drop the index k in the (A17) numerically. Details are presented in [16, sec. 21. 
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Some of the inequalities derived in [16, sec. 4.11 are 

E,,(P) Q E@,,(P) & G E,,(P) gl ’ 

E,,(B) 6 33. 

Furthermore, it is shown in [16, sec. 4.2, sec. 4.31 that 

E,2Elo(P) -, 00 as P 5.0, that E22U3) < E,,(P) for P close 
to 0, and that E,,E,,(/3) < 1 for /3 tilose to 1, and the 
limiting behavior of the quantities in (A14) has been 
determined. Fig. 4 gives the plots of these quantities as a 
function of 0 < p < 1. 

We note that many of the results given here also hold 
for the case of finite m. One just has to replace G(h) and 
F(A) in (A19) by G,,,(X) = ((I + XV);‘),,, and F,(A) = 
I( I + XU),l, respectively, where the index m refers to 
taking the leading m X m section of Z + AU. The relevant 
formulas for this case are given in [15, sec. 21 and [16, eq. 
(2.19)]. 
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