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Abstract

The forward–backward splitting algorithm is a popular operator-splitting method for

solving monotone inclusion of the sum of a maximal monotone operator and an

inverse strongly monotone operator. In this paper, we present a new convergence

analysis of a variable metric forward–backward splitting algorithm with extended

relaxation parameters in real Hilbert spaces. We prove that this algorithm is weakly

convergent when certain weak conditions are imposed upon the relaxation

parameters. Consequently, we recover the forward–backward splitting algorithm with

variable step sizes. As an application, we obtain a variable metric forward–backward

splitting algorithm for solving the minimization problem of the sum of two convex

functions, where one of them is differentiable with a Lipschitz continuous gradient.

Furthermore, we discuss the applications of this algorithm to the fundamental of the

variational inequalities problem, constrained convex minimization problem, and split

feasibility problem. Numerical experimental results on LASSO problem in statistical

learning demonstrate the effectiveness of the proposed iterative algorithm.
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1 Introduction

LetH be a realHilbert spacewith inner product 〈·, ·〉 and induced norm ‖·‖. The forward–
backward splitting algorithm is a classical operator-splitting algorithm, which solves the

monotone inclusion problem

find x ∈H such that 0 ∈ Ax + Bx, (1.1)

where A :H → 2H is a maximal monotone operator and B :H →H is a β-inverse strongly

monotone operator (see Sect. 2 for the precise definition) for some β > 0. The forward–

backward splitting algorithm, which dates back to the original work of Lions and Mercier

[1], has been studied and reported extensively in the literature; see, for example, [2–6].

The emergence of compressive sensing theory and large-scale optimization problems as-

sociated with signal and image processing has resulted in the forward–backward splitting
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algorithm receiving much attention in recent years. A forward–backward splitting algo-

rithm with relaxation and errors in Hilbert spaces was proposed by Combettes [4]. More

precisely, let x0 ∈H , set

xk+1 = xk + λk

(
JγkA

(
xk – γk(Bxk + bk)

)
+ ak – xk

)
, k ≥ 0, (1.2)

where {γk} ⊂ (0, 2β), {λk} ⊂ (0, 1], {ak} and {bk} are absolutely summable sequences in H .

In addition, JγkA := (I +γkA)
–1 denotes the resolvent of operator Awith index γk > 0. Com-

bettes [4] proved the convergence of the iterative scheme (1.2) when certain conditions

are imposed upon the parameters. Jiao and Wang [7] proved the convergence of (1.2) by

requiring the parameters {λk} such that {λk} ⊂ (0, 4β
2β+γk

) when bk = 0. It is easy to see that
4β

2β+γk
is strictly larger than one when {γk} ⊂ (0, 2β). Further, Combettes and Yamada [8]

improved the range of the relaxation parameters {λk} in (1.2) to (0,
4β–γk
2β

). After a sim-

ple calculation, we know that
4β–γk
2β

> 4β
2β+γk

. Therefore, the range of {λk} in the work of

Combettes and Yamada [8] is larger than that of Jiao and Wang [7].

In the case when γk = γ and ak = bk = 0, the iterative scheme (1.2) is reduced to the

forward–backward splitting algorithm with a constant step size [9]:

xk+1 = xk + λk

(
JγA(xk – γBxk) – xk

)
, k ≥ 0, (1.3)

where γ ∈ (0, 2β) and {λk} ⊂ (0, 4β–γ

2β
). Bauschke and Combettes [9] obtained the conver-

gence of the iterative algorithm (1.3) by adopting the Krasnosekii–Mann (KM) iteration

for computing the fixed points of nonexpansive operators. Some recent progress on the

KM iteration for solving fixed point problem and split inclusion problem can be found in

[10–12]. The forward–backward splitting algorithm with constant step size (1.3) is usu-

ally considered to be stationary, whereas the forward–backward splitting algorithm with

variable step sizes (1.2) is referred to as non-stationary.

It is worth mentioning that by letting λk = 1, then (1.3) reduces to the classical forward–

backward splitting algorithm. More precisely, the iterative sequence {xk} is defined by

xk+1 = JγA(xk – γBxk), k ≥ 0. (1.4)

In the context of convex optimization, the forward–backward splitting algorithm is equiv-

alent to the so-called proximal gradient algorithm (PGA) applied to solve the following

convex minimization problem:

min
x∈H

f (x) + g(x), (1.5)

where f : H → R is convex, differentiable with an L-Lipschitz continuous gradient for

some L > 0 and g : H → (–∞, +∞] is a proper, lower semicontinuous, convex function.

The convex optimization problem (1.5) has found widespread application in signal and

image processing, for example, [13–17]. As a consequence of [4], Combettes and Wajs

[18] employed the forward–backward splitting algorithm (1.2) to solve the minimization

problem (1.5). The obtained iterative algorithm is defined as

xk+1 = xk + λk

(
proxγkg

(
xk – γk

(
∇f (xk) + bk

))
+ ak – xk

)
, k ≥ 0, (1.6)
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where {γk} ⊂ (0, 2/L), {λk} ⊂ (0, 1], and {ak}, {bk} are absolutely summable sequences inH .

proxγ g denotes the proximity operator of g with index γ > 0. In addition, Combettes and

Wajs [18] presented applications of this algorithm to many concrete convex optimization

problems. This iterative algorithm (1.6) was subsequently improved by Combettes and

Yamada [8] who extended the range of the relaxation parameters {λk}.
Inspired by solving large-scale convex optimization problems arising in image process-

ing, machine learning, and economic management, many efficient primal–dual splitting

algorithms have been proposed for structured monotone inclusions involving maximal

monotone operators and single-valued Lipschitz or inverse strongly monotone opera-

tors; see, for example, [19, 20]. Although these monotone inclusions are more compli-

cated than the monotone inclusion problem (1.1), they can be transformed into the form

of this problem in a suitable product space. Therefore, it is natural to consider using the

forward–backward splitting algorithm (e.g., (1.2) or (1.3)) to solve the equivalent mono-

tone inclusion problem. Because the backward steps cannot be decomposed, direct use

of the forward–backward splitting algorithm often fails to obtain a completely splitting

algorithm. Many researchers attempted to overcome this difficulty by investigating vari-

able metric operator splitting algorithms. The use of a suitable variable metric enables

the implicit step of backward splitting to be easily decomposed. For example, the primal–

dual hybrid gradient algorithm [21] (also known as the primal–dual of the Chambolle–

Pock algorithm [22]) is equivalent to the variable metric proximal point algorithm [23,

24]. We refer the readers to a subsequent paper [25] for more details. Vũ [26] proposed

a variable metric extension of the forward–backward–forward splitting algorithm [3] for

solving monotone inclusion of the sum of a maximal monotone operator and a monotone

Lipschitzian operator in Hilbert spaces. Liang [27] proposed a variable metric multi-step

inertial operator-splitting algorithm for solving the monotone inclusion problem (1.1).

Bonettini et al. [28] developed a scaled inertial forward–backward splitting algorithm for

solving (1.1) in the context of convex minimization. Neither of the respective algorithms

in the work by Liang [27] and Bonettini et al. [28] was compatible with the relaxation strat-

egy. The variable metric forward–backward splitting algorithm was originally studied in

finite-dimensional Hilbert spaces [2, 29]; however, themethods in these studies either had

to be strongly monotone to study the convergence rate or they did not make use of the in-

verse strongly monotone property of B in (1.1). For infinite-dimensional Hilbert spaces,

Combettes and Vũ [30] proposed a variable metric forward–backward splitting algorithm

to solve (1.1) and analyzed its weak and strong convergence. This algorithm is defined as

follows. Let x0 ∈H , and set

⎧
⎨
⎩
yk = xk – γkUk(Bxk + bk),

xk+1 = xk + λk(JγkUkA(yk) + ak – xk),
(1.7)

where {Uk} ⊂ Pα(H), {λk} ⊂ (0, 1], {γk} ⊂ (0, 2β), {ak} and {bk} are absolutely summable

sequences in H . This algorithm (1.7) includes a variable metric, variable step sizes, relax-

ation parameter, and errors. It includes nearly all of the forward–backward type of split-

ting algorithms mentioned above. For example, by letting Uk = I in (1.7), it is reduced to

(1.2). The relaxation parameters {λk} in (1.2) are observed to be strictly larger than those

based on the work of Combettes and Yamada [8]. While preparing this manuscript, we

discovered that in Chap. 5 of the dissertation [31], Simões generalized the variable metric
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forward–backward splitting algorithm by replacing the relaxation parameters {λk} in (1.7)
with self-adjoint, strong positive linear operators. However, this approach still requires the

maximum eigenvalue of the operators to be smaller than one.

The purpose of this paper is to introduce a new convergence analysis for the variable

metric forward–backward splitting algorithm (1.7) with an extended range of relaxation

parameters. We prove the weak convergence of the variable metric forward–backward

splitting algorithm by setting the relaxation parameter {λk} larger than one in real Hilbert

spaces. To achieve this goal, we make full use of the averaged and firmly nonexpansive

property of operators JγkUkA(I – γkUkB) and JγkUkA, where λk > 0 and Uk ∈Pα(H). In con-

trast, existing solutions mainly rely on JγkUkA being firmly nonexpansive. Consequently,

we obtain the convergence of the forward–backward splitting algorithm with variable

step sizes. Moreover, we impose a slightly weak condition on the relaxation parameters

to ensure the convergence of this algorithm. The results we obtained complement and

extend those of Combettes and Yamada [8]. As an application, we obtain the variable met-

ric forward–backward splitting algorithm for solving the minimization problem (1.5). We

also present the application of this algorithm to the variational inequalities problem, con-

strained convex minimization problem, and split feasibility problem. To the best of our

knowledge, the iterative algorithms we obtained are the most general ones for solving

these problems. Finally, we conduct numerical experiments on LASSO problem to vali-

date the effectiveness of the proposed iterative algorithm.

The remainder of this paper is organized as follows. Section 2 reviews selected nota-

tions and lemmas on monotone operator theory and presents some technical lemmas. In

Sect. 3, we prove the main convergence results of the variable metric forward–backward

splitting algorithm with relaxation in real Hilbert spaces. Consequently, we obtain sev-

eral corollaries of some special cases. Section 4 presents our use of the proposed iterative

algorithm to solve three typical optimization problems including the variational inequal-

ities problem, constrained convex minimization problem, and split feasibility problem.

In Sect. 5, we present preliminary numerical results on LASSO problem to illustrate the

performance of the proposed iterative algorithm. Finally, we provide our conclusions.

2 Preliminaries

In this section, we recall selected concepts and lemmas that are commonly used in the

context of convex analysis and monotone operator theory. Throughout this paper, let H

be a real Hilbert space. The inner product and the associated norm of Hilbert spaceH are

denoted by 〈·, ·〉 and ‖ · ‖, respectively. I denotes the identity operator and the symbols ⇀

and → denote weak and strong convergence.

Let A :H → 2H be a set-valued operator. We denote its domain, range, graph, and zeros

by domA = {x ∈ H|Ax �= ∅}, ranA = {u ∈ H|(∃x ∈ H)u ∈ Ax}, graA = {(x,u) ∈ H × H|u ∈
Ax}, and zerA = {x ∈H|0 ∈ Ax}, respectively.

Definition 2.1 ([9]) Let A :H → 2H be a set-valued operator. A is said to be monotone if

〈x – y,u – v〉 ≥ 0, ∀(x,u), (y, v) ∈ graA.

Moreover, A is said to be maximal monotone if its graph is not strictly contained in the

graph of any other monotone operator on H .
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A well-known example of a maximal monotone operator is the subgradient mapping of

a proper, lower semicontinuous convex function f :H → (–∞, +∞] defined by

∂f :H → 2H : x �→
{
u ∈ H|f (y) ≥ f (x) + 〈u, y – x〉,∀y ∈H

}
.

Definition 2.2 ([9]) Let A :H → 2H be a maximal monotone operator. The resolvent op-

erator of A with index λ > 0 is defined as

JλA = (I + λA)–1.

According to the Minty theorem, the resolvent operator JλA is defined everywhere on

Hilbert space H , and JλA is firmly nonexpansive.

Let us recall the definition of the proximity operator, which was first introduced by

Moreau [32]. Let f ∈ Γ0(H), where Γ0(H) denotes the set of all proper lower semicontin-

uous convex functions f :H → (–∞, +∞]. The proximity operator of f with index λ > 0 is

defined by

proxλf :H →H : x �→ arg min
y∈H

{
1

2
‖y – x‖2 + λf (y)

}
.

In fact, the resolvent operator of the subdifferential operator of any f ∈ Γ0(H) with index

λ > 0 is the proximal operator of f with index λ > 0, that is,

proxλf = (I + λ∂f )–1.

In fact, let x ∈H . Set p = proxλf (x). By the famous Fermat lemma, we have 0 ∈ λ∂f (p) +p–

x ⇔ x ∈ λ∂f (p)+p. Then p = (I +λ∂f )–1(x). In other words, (I +λ∂f )–1 = proxλf . Therefore,

the proximity operators have the same property as the resolvent operators.

Definition 2.3 ([9]) Let B : H → H be a single-valued operator. Let β > 0, then B is said

to be β-inverse strongly monotone if

〈x – y,Bx – By〉 ≥ β‖Bx – By‖2, ∀x, y ∈H .

The β-inverse strongly monotone operator is also known as a β-cocoercive operator.

It is easy to see from the above definition that a β-inverse strongly monotone operator is
1
β
-Lipschitz continuous, i.e., ‖Bx – By‖ ≤ 1

β
‖x – y‖.

Next, we recall the definitions of nonexpansive and related mappings. These mappings

often appear in the convergence analysis of optimization algorithms.

Definition 2.4 ([9]) Let C be a nonempty subset of H . Let T : C →H , then

(i) T is considered to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

(ii) T is considered to be firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2
, ∀x, y ∈ C.
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(iii) T is referred to as α-averaged, where α ∈ (0, 1), if there exists a nonexpansive

mapping S such that T = (1 – α)I + αS.

It follows immediately that a firmly nonexpansive mapping is a nonexpansive mapping

and an α-averaged mapping is also nonexpansive.

We denote by Fix(T) the set of fixed points of a mapping T , that is, Fix(T) = {x ∈H|x =
Tx}.

Lemma 2.1 (Demiclosedness principle [9]) Let C be a nonempty subset of H . Let T : C →
H be a nonexpansive mapping with Fix(T) �= ∅. If {xk} is a sequence in C that converges

weakly to x and if {(I –T)xk} converges strongly to y, then (I –T)x = y; in particular, if y = 0,

then x ∈ Fix(T).

The following proposition provides some equivalent definitions of the firmly nonexpan-

sive mappings. This proposition can be found in Proposition 4.4 of [9].

Proposition 2.1 ([9]) Let C be a nonempty subset of H . Let T : C →H , then the following

are equivalent:

(i) T is firmly nonexpansive;

(ii) I – T is firmly nonexpansive;

(iii) 2T – I is nonexpansive;

(iv) 〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖2, ∀x, y ∈ C.

From Proposition 2.1(iii) and (iv), we know that if T is firmly nonexpansive, then T is
1
2
-averaged, and a 1-inverse strongly monotone operator is firmly nonexpansive.

The following proposition is taken from Proposition 4.35 of [9].

Proposition 2.2 Let C be a nonempty subset of H . Let T : C →H , then T is α-averaged if

and only if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
1 – α

α

∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C.

The following lemma provides a relation between an operator T with its complement

I – T .

Lemma 2.2 ([9]) Let C be a nonempty subset of H . Let T : C →H , then

(i) T is nonexpansive if and only if the complement I –T is 1
2
-inverse strongly monotone;

(ii) T is α-averaged if and only if the complement I – T is 1
2α
-inverse strongly monotone.

We refer interested readers to [9] for further properties of nonexpansive, firmly nonex-

pansive, and α-averaged nonlinear mappings.

We recall the results of the composition of two averaged operators. The following lemma

first appeared in [33] after which it was extended to a finite family of composition averaged

operators [8].
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Lemma 2.3 Let C be a nonempty subset of H . Let T1 : C → H be α1-averaged and T2 :

C →H be α2-averaged. Then

T := T1T2 is
α1 + α2 – 2α1α2

1 – α1α2

-averaged.

Remark 2.1

(i) It is worth mentioning that two other results of the combination of averaged

operators were reported. From Proposition 4.32 of [34], T := T1T2 is

α = 2

1+ 1
max(α1,α2)

-averaged. From Byrne [35], T := T1T2 is α̂ = α1 + α2 – α1α2-averaged.

It is not difficult to verify that α1+α2–2α1α2
1–α1α2

is smaller than the other two constants α

and α̂.

(ii) The constant α̂ is used in [7] to show the upper bound of the relaxation parameter

λk such that λk <
1
α̂
.

We employ the following previously used notation [30]. Let B(H ,G) be the spaces of

bounded linear operators from Hilbert space H to Hilbert space G. The norm of L ∈
B(H ,G) is defined as ‖L‖ = supx∈H

‖Lx‖
‖x‖ . We set B(H) = B(H ,H) and S(H) = {L ∈ B(H)|L =

L∗}, where L∗ denotes the adjoint of L. The Loewner partial ordering on S(H) is defined

by, for any U ,V ∈ S(H),

U � V ⇔ 〈Ux,x〉 ≥ 〈Vx,x〉, ∀x ∈H .

Let α ∈ [0, +∞), set

Pα(H) =
{
U ∈ S(H)|U � αI

}
.

We denote by
√
U the square root of U ∈ Pα(H). Moreover, for every U ∈ Pα(H), we

define a semi-scalar product and a semi-norm (a scalar product and a norm if α > 0) by

(∀x ∈H) (∀y ∈H) 〈x, y〉U = 〈Ux, y〉 and ‖x‖U =
√

〈Ux,x〉.

We borrow the following results on monotone operators in a variable metric setting

from Combettes [30].

Lemma 2.4 ([30]) Let A :H → 2H be maximal monotone, let α ∈ (0, +∞), let U ∈Pα(H),

and let HU–1 be the real Hilbert space with the scalar product 〈x, y〉U–1 = 〈U–1x, y〉, ∀x, y ∈
H . Then the following hold:

(i) UA :H → 2H is maximal monotone;

(ii) JUA :H → 2H is 1-inverse strongly monotone, i.e., firmly nonexpansive.More

precisely,

‖JUAx– JUAy‖2U–1 ≤ ‖x– y‖2
U–1 –

∥∥(I – JUA)x– (I – JUA)y
∥∥2

U–1 , ∀x, y ∈H . (2.1)

(iii) JUA = (U–1 +A)–1 ◦U–1.
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LetU ∈Pα(H) for some α > 0. The proximity operator of f ∈ Γ0(H) relative to themetric

induced by U is defined by

proxUf :H →H : x �→ arg min
y∈H

(
1

2
‖x – y‖2U + f (y)

)
.

We have proxUf = JU–f ∂f and we can write proxI
f = proxf .

We make full use of the following lemmas to obtain the weak convergence of the con-

sidered iterative sequence. Both of the two lemmas were previously reported [36]. In the

following, we denote by ℓ1+(N) the set of summable sequences in [0,+∞), where N is a set

of nonnegative integer numbers.

Lemma 2.5 ([36]) Let α ∈ (0, +∞), and let {Wk} be in Pα(H), let C be a nonempty subset

of H , and let {xk} be a sequence in H such that

‖xk+1 – z‖Wk+1
≤ (1 + ηk)‖xk – z‖Wk

+ ǫk , ∀z ∈ C, (2.2)

where {ηn} ⊂ ℓ1+(N) and {ǫk} ⊂ ℓ1+(N). Then {xk} is bounded and, for every z ∈ C, (‖xk –
z‖Wk

) converges.

Lemma 2.6 ([36]) Let α ∈ (0, +∞), and let {Wk} and W be in Pα(H) such that Wk → W

pointwise as k → +∞, as is the case when

sup
k∈N

‖Wk‖ < +∞ and
(
∃{ηk} ⊂ ℓ1+(N)

)
(1 + ηk)Wk � Wk+1.

Let C be a nonempty subset of H , and let {xk} be a sequence in H such that (2.2) is satisfied.

Then {xk} converges weakly to a point in C if and only if every weak sequential cluster point

of {xk} is in C.

The following lemma can be found in Corollary 2.15 of Bauschke and Combettes [9].

Lemma 2.7 ([9]) Let x ∈H , y ∈H , and α ∈ R. Then

∥∥αx + (1 – α)y
∥∥2

= α‖x‖2 + (1 – α)‖x‖2 – α(1 – α)‖x – y‖2. (2.3)

3 Variable metric forward–backward splitting algorithm

In this section, we study the convergence of the variable metric forward–backward split-

ting algorithm. First, we prove the following useful lemmas.

Lemma 3.1 Let B : H → H be a β-inverse strongly monotone operator. Let α > 0, and let

U ∈ Pα(H). Let HU–1 be a real Hilbert space with the scalar product 〈x, y〉U–1 = 〈U–1x, y〉,
∀x, y ∈H . Then I – γUB is a γ ‖U‖

2β
-averaged operator on HU–1 for any γ ∈ (0, 2β

‖U‖ ).

Proof Let x, y ∈H . Because B is β-inverse strongly monotone, we have

〈UBx –UBy,x – y〉U–1 = 〈Bx – By,x – y〉

≥ β‖Bx – By‖2. (3.1)
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On the other hand, we obtain

‖UBx –UBy‖2
U–1 ≤ ‖U‖ · ‖Bx – By‖2. (3.2)

From (3.1) and (3.2), we obtain

〈UBx –UBy,x – y〉U–1 ≥
β

‖U‖
· ‖UBx –UBy‖2

U–1 , (3.3)

which means that UB is β

‖U‖ -inverse strongly monotone on HU–1 . Then γUBx is β

γ ‖U‖ -

inverse strongly monotone. By Lemma 2.2(ii), I – γUB is a γ ‖U‖
2β

-averaged operator on

HU–1 . �

Lemma 3.2 Let A : H → 2H be maximal monotone. Let α ∈ (0, +∞), and let U ∈ Pα(H).

Let HU–1 be a real Hilbert space with the scalar product 〈x, y〉U–1 = 〈U–1x, y〉, ∀x, y ∈H . Let

B :H → H be a β-inverse strongly monotone operator. Then, for any γ ∈ (0, 2β
‖U‖ ), JγUA(I –

γUB) is 2β
4β–γ ‖U‖ -averaged on HU–1 .

Proof Because A is maximal monotone, then for any γ > 0, γUA is maximal monotone.

According to Lemma 2.4(ii), JγUA is 1-inverse strongly monotone on HU–1 . Then JγUA is
1
2
-averaged. Lemma 3.1 determines that I – γUB is γ ‖U‖

2β
-averaged. Therefore, we apply

Lemma 2.3, from which we know that JγUA(I – γUB) is

α1 + α2 – 2α1α2

1 – α1α2

=

1
2
+ γ ‖U‖

2β
– γ ‖U‖

2β

1 – 1
2

· γ ‖U‖
2β

=
2β

4β – γ ‖U‖
, (3.4)

which is the averaged operator. �

Lemma 3.3 Let H be a real Hilbert space. Let A :H → 2H be a maximal monotone opera-

tor. Let B :H →H be a β-inverse strongly monotone operator for some β > 0. Suppose that

Ω := zer(A+B) �= ∅. Let γk > 0, α > 0, and {Uk} ⊂Pα(H).Then the following are equivalent:

(i) x∗ ∈ zer(A + B).

(ii) x∗ = JγkUkA(I – γkUkB)(x
∗) for any γk > 0.

(iii) x∗ = (
U–1
k

+γkA

α
)–1 ◦ (U

–1
k

–γkB

α
)x∗.

Proof (i) ⇔ (ii) Let x∗ ∈ zer(A + B), then we have

0 ∈ γkAx
∗ + γkBx

∗

⇔ 0 ∈ γkUkAx
∗ + γkUkBx

∗

⇔ x∗ – γkUkBx
∗ ∈ x∗ + γkUkAx

∗

⇔ x∗ = (I + γkUkA)
–1

(
x∗ – γkUkBx

∗)

⇔ x∗ = JγkUkA(I – γkUkB)
(
x∗).
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(ii) ⇔ (iii) Let x∗ = JγkUkA(I – γkUkB)x
∗, then

x∗ – γkUkBx
∗ ∈ x∗ + γkUkAx

∗

⇔ U–1
k x∗ – γkBx

∗ ∈U–1
k x∗ + γkAx

∗

⇔
(
U–1

k – γkB

α

)
x∗ ∈

(
U–1

k + γkA

α

)
x∗

⇔ x∗ =

(
U–1

k + γkA

α

)–1

◦
(
U–1

k – γkB

α

)
x∗. �

Lemma 3.4 Let H be a real Hilbert space. Let A :H → 2H be a maximal monotone oper-

ator. Let B : H → H be a β-inverse strongly monotone operator for some β > 0. Let r > 0

and s > 0, and let U ,V ∈ Pα(H). Define a variable metric forward–backward operator

TrU := JrUA(I – rUB). Then, for any x ∈H , we have

‖TrUx – TsVx‖ ≤
1

λmin(U–1)

∥∥∥∥
(
U–1 –

r

s
V–1

)
(x – TsVx)

∥∥∥∥,

where λmin(U
–1) represents the minimum eigenvalue of U–1.

Proof Let x ∈H , in which case we have

U–1x –U–1TrUx

r
– Bx ∈ ATrUx,

V–1x –V–1TsVx

s
– Bx ∈ ATsVx.

It follows from the monotonicity of operator A that

〈
TrUx – TsVx,

U–1x –U–1TrUx

r
–
V–1x –V–1TsVx

s

〉
≥ 0.

Then

‖TrUx – TsVx‖2U–1 ≤ r

〈
TrUx – TsVx,

(
U–1

r
–
V–1

s

)
(x – TsVx)

〉
.

Because of the Cauchy–Schwarz inequality and the fact that λmin(U
–1)‖x‖2 ≤ ‖x‖2

U–1 , for

any x ∈ H , we obtain

‖TrUx – TsVx‖ ≤
1

λmin(U–1)

∥∥∥∥
(
U–1 –

r

s
V–1

)
(x – TsVx)

∥∥∥∥. �

We are ready to state our main theorems and present their convergence analysis.

Theorem 3.1 Let H be a real Hilbert space. Let A : H → 2H be maximal monotone. Let

B :H →H be β-inverse stronglymonotone for some β > 0. Suppose thatΩ := zer(A+B) �= ∅.
Let α > 0, {ηk} ∈ ℓ1+(N), and {Uk} ⊂Pα(H) such that

μ = sup
k∈N

‖Uk‖ < +∞ and (1 + ηk)Uk+1 � Uk , ∀k ∈N. (3.5)
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Let {γk} ⊂ (0, 2β
‖Uk‖

) and {λk} ⊂ (0, 1
αk
), where αk =

2β
4β–γk‖Uk‖

. Let {ak} and {bk} be two se-

quences in H such that
∑+∞

k=0 λk‖ak‖ < +∞ and
∑+∞

k=0 λk‖bk‖ < +∞. Let x0 ∈H , and set

⎧
⎨
⎩
yk = xk – γkUk(Bxk + bk),

xk+1 = xk + λk(JγkUkA(yk) + ak – xk).
(3.6)

Then we have:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists.

Suppose that 0 < λ ≤ λk ≤ 1
αk

– τ , where τ ∈ (0, 1
αk

– λ), then

(ii) limk→+∞ ‖xk – JγkUkA(xk – γkUkBxk)‖ = 0.

Suppose that 0 < γ ≤ γk , then

(iii) {xk} converges weakly to a point in Ω .

Further, suppose that γk ≤ 2β–ǫ

μ
, where ǫ ∈ (0, 2β –μγ ), then

(iv) Bxk → Bx∗ as k → +∞, where x∗ ∈ Ω .

Proof According to condition (3.5), we have

∥∥U–1
k

∥∥ ≤
1

α
, U–1

k ∈P 1
μ
(H), and (1 + ηk)U

–1
k � U–1

k+1. (3.7)

Hence,

(1 + ηk)‖x‖2U–1
k

≥ ‖x‖2
U–1
k+1

, ∀x ∈H . (3.8)

For the sake of convenience, let

xk+1 = xk + λk

(
JγkUkA(xk – γkUkBxk) – xk

)
. (3.9)

Then iterative scheme (3.6) can be rewritten as

xk+1 = xk+1 + λkek , (3.10)

where ek = JγkUkA(yk) – JγkUkA(xk – γkUkBxk) + ak such that
∑+∞

k=0 λk‖ek‖ < +∞. In fact,

because JγkUkA is nonexpansive on HU–1
k
, we have

λk‖ek‖ ≤ √
μλk‖ek‖U–1

k

≤ √
μλk

∥∥yk – (xk – γkUkBxk)
∥∥
U–1
k

+
√

μλk‖ak‖U–1
k

≤ μγkλk‖bk‖ +
√

1

α
λk‖ak‖

≤ μ
2β

α
λk‖bk‖ +

√
1

α
λk‖ak‖. (3.11)

Notice that
∑+∞

k=0 λk‖ak‖ < +∞ and
∑+∞

k=0 λk‖bk‖ < +∞, (3.11) implies that
∑+∞

k=0 λk‖ek‖ <

+∞.
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From Lemma 3.2, we know that JγkUkA(I – γkUkB) is 2β
4β–γk‖Uk‖

-averaged. Let αk =
2β

4β–γk‖Uk‖
, then there exist nonexpansive mappings Rk such that JγkUkA(I – γkUkB) = (1 –

αk)I + αkRk . Consequently, the iterative sequence {xk+1} in (3.9) is equivalent to

xk+1 = (1 – λk)xk + λk

(
(1 – αk)xk + αkRkxk

)

= (1 – λkαk)xk + λkαkRkxk . (3.12)

(i) Let x∗ ∈ zer(A + B), according to Lemma 3.3, x∗ = JγkUkA(I – γkUkB)(x
∗). Then x∗ =

Rkx
∗. From (3.8), (3.10), and (3.12), we obtain

∥∥xk+1 – x∗∥∥
U–1
k+1

≤
√
(1 + ηk)

∥∥xk+1 – x∗∥∥
U–1
k

≤
√
(1 + ηk)

(∥∥xk+1 – x∗∥∥
U–1
k

+ λk‖ek‖U–1
k

)

≤
√
(1 + ηk)

∥∥(1 – λkαk)
(
xk – x∗) + λkαk

(
Rkxk – x∗)∥∥

U–1
k

+
√
(1 + ηk)

√
1

α
λk‖ek‖

≤ (1 + ηk)
∥∥xk – x∗∥∥

U–1
k

+ ǫk , (3.13)

where ǫk =
√
(1 + ηk)

√
1
α
λk‖ek‖. Because

∑+∞
k=0 λk‖ek‖ < +∞ and

∑+∞
k=0 ‖ηk‖ < +∞, then∑∞

k=0 ‖ǫk‖ < +∞. On the basis of Lemma2.5, we conclude that limk→+∞ ‖xk–x∗‖U–1
k
exists.

Moreover, {‖xk – x∗‖} is bounded. LetM > 0 such that supk≥0 ‖xk – x∗‖ ≤ M.

(ii) With the help of the inequality ‖x + y‖2 ≤ ‖x‖2 + 2〈y,x + y〉, ∀x, y ∈H . We obtain

∥∥xk+1 – x∗∥∥2

U–1
k+1

≤ (1 + ηk)
∥∥xk+1 – x∗∥∥2

U–1
k

= (1 + ηk)
∥∥xk+1 – x∗ + λkek

∥∥2

U–1
k

= (1 + ηk)
(∥∥xk+1 – x∗∥∥2

U–1
k

+ 2λk

〈
ek ,xk+1 – x∗〉

U–1
k

)

≤ (1 + ηk)
∥∥xk+1 – x∗∥∥2

U–1
k

+ 2(1 + ηk)M
∥∥U–1

k

∥∥λk‖ek‖. (3.14)

From Lemma 2.7 and (3.9) we derive that

∥∥xk+1 – x∗∥∥2

U–1
k

=
∥∥(1 – λk)

(
xk – x∗) + λk

(
JγkUkA(xk – γkUkBxk) – x∗)∥∥2

U–1
k

= (1 – λk)
∥∥xk – x∗∥∥2

U–1
k

+ λk

∥∥(
JγkUkA(xk – γkUkBxk) – x∗)∥∥2

U–1
k

– λk(1 – λk)
∥∥xk – JγkUkA(xk – γkUkBxk)

∥∥2

U–1
k
. (3.15)

Because JγkUkA(I – γkUkB) is αk-averaged, it follows from Proposition 2.2 that

∥∥JγkUkA(xk – γkUkBxk) – x∗∥∥2

U–1
k

≤
∥∥xk – x∗∥∥2

U–1
k

–
1 – αk

αk

∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k
. (3.16)
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Substituting (3.16) into (3.15) yields

∥∥x̄k+1 – x∗∥∥2

U–1
k

≤
∥∥xk – x∗∥∥2

U–1
k

– λk

(
1

αk

– λk

)∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k
. (3.17)

Combining (3.17) with (3.14), we obtain

∥∥xk+1 – x∗∥∥2

U–1
k+1

≤ (1 + ηk)
∥∥xk – x∗∥∥2

U–1
k

+ 2(1 + ηk)M
∥∥U–1

k

∥∥λk‖ek‖

– (1 + ηk)λk

(
1

αk

– λk

)∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k
, (3.18)

which implies that

λk

(
1

αk

– λk

)∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k

≤ (1 + ηk)
∥∥xk – x∗∥∥2

U–1
k

–
∥∥xk+1 – x∗∥∥2

U–1
k+1

+ 2(1 + ηk)M
∥∥U–1

k

∥∥λk‖ek‖. (3.19)

Observe that limk→+∞ ‖xk –x∗‖U–1
k
exists and

∑+∞
k=0 λk‖ek‖ < +∞. Then by letting k → +∞

in the above inequality and considering the condition on {λk}, we obtain

lim
k→+∞

∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥
U–1
k

= 0. (3.20)

Because the two norms ‖ · ‖U–1
k

and ‖ · ‖ defined on the Hilbert spaces H are equivalent,

it follows from (3.20) that

lim
k→+∞

∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥ = 0. (3.21)

(iii) In this part, we prove that the sequence {xk} converges weakly to a point in Ω .

In fact, let x̄ be a weak sequential cluster point of {xk}, then there exists a subsequence

{xkn} ⊂ {xk} such that xkn ⇀ x̄. Because {γk} ⊂ (γ , 2β
‖Uk‖

) ⊂ (γ , 2β
α
) is bounded, there ex-

ists a subsequence of {γk} converging to γ ∈ (γ , 2β
α
). Without loss of generality, we may

assume that γkn → γ . According to condition (3.5), it follows from Lemma 2.6 that there

exists U–1 ∈P 1
μ
(H) such that U–1

k →U–1 pointwise.

With the help of Lemma 3.4, we make the following estimation:

∥∥xkn – JγUA(xkn – γUBxkn )
∥∥

≤
∥∥xkn – JγknUknA

(xkn – γknUknBxkn )
∥∥

+
∥∥JγknUknA

(xkn – γknUknBxkn ) – JγUA(xkn – γUBxkn )
∥∥

≤
∥∥xkn – JγknUknA

(xkn – γknUknBxkn )
∥∥

+
1

λmin(U
–1
k )

∥∥∥∥
(
U–1

kn
–

γkn

γ
U–1

)(
xkn – JγUA(xkn – γUBxkn )

)∥∥∥∥

≤
∥∥xkn – JγknUknA

(xkn – γknUknBxkn )
∥∥
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+
μ

γ

∥∥(
U–1

kn
γ –U–1

kn
γkn

)(
xkn – JγUA(xkn – γUBxkn )

)∥∥

+
μ

γ

∥∥(
U–1

kn
γkn –U–1γkn

)(
xkn – JγUA(xkn – γUBxkn )

)∥∥

≤
∥∥xkn – JγknUknA

(xkn – γknUknBxkn )
∥∥

+
μ

γα
|γ – γkn |

∥∥xkn – JγUA(xkn – γUBxkn )
∥∥

+
μ

γ

2β

α

∥∥(
U–1

kn
–U–1

)(
xkn – JγUA(xkn – γUBxkn )

)∥∥. (3.22)

Because {‖xkn – JγUA(xkn – γUBxkn )‖} is bounded, it follows from the conditions above,

and we can conclude from (3.22) that

∥∥xkn – JγUA(xkn – γUBxkn )
∥∥ → 0 as kn → +∞. (3.23)

As JγUA(I –γUB) is nonexpansive, based on the demiclosedness property of nonexpansive

mapping, we deduce that x̄ = JγUA(x̄ – γUBx̄), which means that x̄ ∈ zer(A + B). Because

x̄ is arbitrary, together with conclusion (i), we can conclude from Lemma 2.6 that {xk}
converges weakly to a point in zer(A + B).

(iv) On the other hand, as JγkUkA is firmly nonexpansive, it follows that we have

∥∥JγkUkA(xk – γkUkBxk) – x∗∥∥2

U–1
k

≤
∥∥xk – γkUkBxk –

(
x∗ – γkUkBx

∗)∥∥2

U–1
k

–
∥∥(I – JγkUkA)(xk – γkUkBxk) – (I – JγkUkA)

(
x∗ – γkUkBx

∗)∥∥2

U–1
k

=
∥∥xk – x∗ –

(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k

–
∥∥xk – JγkUkA(xk – γkUkBxk) –

(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k

=
∥∥xk – x∗∥∥2

U–1
k

– 2
〈
xk – x∗,γkUkBxk – γkUkBx

∗〉
U–1
k

+
∥∥γkUkBxk – γkUkBx

∗∥∥2

U–1
k

–
∥∥xk – JγkUkA(xk – γkUkBxk) –

(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k
. (3.24)

Because B is β-inverse strongly monotone, we have that

〈
xk – x∗,γkUkBxk – γkUkBx

∗〉
U–1
k

≥ γkβ
∥∥Bxk – Bx∗∥∥2

. (3.25)

In addition, we have

∥∥γkUkBxk – γkUkBx
∗∥∥2

U–1
k

≤ γ 2
k ‖Uk‖

∥∥Bxk – Bx∗∥∥2

≤ μγ 2
k

∥∥Bxk – Bx∗∥∥2
. (3.26)



Cui et al. Journal of Inequalities and Applications        ( 2019)  2019:141 Page 15 of 27

Substituting (3.25) and (3.26) into (3.24), we obtain

∥∥JγkUkA(xk – γkUkBxk) – x∗∥∥2

U–1
k

≤
∥∥xk – x∗∥∥2

U–1
k

– γk(2β – γkμ)
∥∥Bxk – Bx∗∥∥2

–
∥∥(
xk – JγkUkA(xk – γkUkBxk)

)
–

(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k
. (3.27)

The combination of (3.27) with (3.15) yields

∥∥xk+1 – x∗∥∥2

U–1
k

≤
∥∥xk – x∗∥∥2

U–1
k

– λkγk(2β – γkμ)
∥∥Bxk – Bx∗∥∥2

– λk

∥∥xk – JγkUkA(xk – γkUkBxk) –
(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k

– λk(1 – λk)
∥∥xk – JγkUkA(xk – γkUkBxk)

∥∥2

U–1
k
. (3.28)

Further, on the basis of (3.28) and (3.14), we obtain

∥∥xk+1 – x∗∥∥2

U–1
k+1

≤ (1 + ηk)
∥∥xk – x∗∥∥2

U–1
k

– (1 + ηk)λkγk(2β – γkμ)
∥∥Bxk – Bx∗∥∥2

– (1 + ηk)λk

∥∥xk – JγkUkA(xk – γkUkBxk) –
(
γkUkBxk – γkUkBx

∗)∥∥2

U–1
k

– (1 + ηk)λk(1 – λk)
∥∥xk – JγkUkA(xk – γkUkBxk)

∥∥2

U–1
k

+ 2λk(1 + ηk)M
∥∥U–1

k

∥∥‖ek‖, (3.29)

which implies that

λkγk(2β – γkμ)
∥∥Bxk – Bx∗∥∥2

≤ (1 + ηk)
∥∥xk – x∗∥∥2

U–1
k

–
∥∥xk+1 – x∗∥∥2

U–1
k+1

– (1 + ηk)λk(1 – λk)
∥∥xk – JγkUkA(xk – γkUkBxk)

∥∥2

U–1
k

+ 2λk(1 + ηk)M
∥∥U–1

k

∥∥‖ek‖. (3.30)

By the conditions on {γk} and {λk}, and together with conclusions (i), (ii) and the fact

that
∑+∞

k=0 λk‖ek‖ < +∞, letting k → +∞ in the above inequality, we obtain

Bxk → Bx∗ as k → +∞. (3.31)

This completes the proof. �

Remark 3.1 Because the upper bound of the relaxation parameter {λk} in Theorem 3.1

is governed by the averaged constant of the variable metric forward–backward operator,

Theorem 3.1 provides a larger selection of the relaxation parameter than Theorem 4.1 of

Combettes and Vũ [30].
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Remark 3.2 If we assume that λk ∈ (λ, 1], thenwe reaffirm the conclusion that
∑+∞

k=0 ‖Bxk –
Bx∗‖2 < +∞ as in Theorem 4.1 of the paper by Combettes and Vũ [30]. In fact, from in-

equality (3.30), we have

λγ ǫ
∥∥Bxk – Bx∗∥∥2 ≤ λkγk(2β – γkμ)

∥∥Bxk – Bx∗∥∥2

≤ (1 + ηk)
∥∥xk – x∗∥∥2

U–1
k

–
∥∥xk+1 – x∗∥∥2

U–1
k+1

+ 2λk(1 + ηk)M
∥∥U–1

k

∥∥‖ek‖.

By summing the above inequality from zero to infinity, we have

λγ ǫ

+∞∑

k=0

∥∥Bxk – Bx∗∥∥2

≤
∥∥x0 – x∗∥∥2

U–1
0

+

+∞∑

k=0

ηk sup
k≥0

∥∥xk – x∗∥∥2

U–1
k

+

+∞∑

k=0

2λk(1 + ηk)M
∥∥U–1

k

∥∥‖ek‖,

which implies that
∑+∞

k=0 ‖Bxk – Bx∗‖2 < +∞.

Remark 3.3 In view of Theorem 3.1(iii), the iterative sequence generated by (3.6) con-

verges weakly to a point in Ω . The strong convergence of {xk} requires xk → x∗, x∗ ∈ Ω .

Similar to Theorem 4.1 of Combettes and Vũ [30], we need to assume that one of the

following conditions holds:

(i) lim infk→+∞ dΩ (xk) = 0;

(ii) A or B is demiregular at every point in Ω ;

(iii) intΩ �= ∅ and there exists {vk} ∈ ℓ1+(N) such that (1 + vk)Uk � Uk+1.

Because the proof is the same as that of Combettes and Vũ [30], we omit it here.

Next, we impose a slightly weaker condition on the iterative parameter {λk} than in The-
orem 3.1 to ensure the weak convergence of the iterative sequence {xk}.

Theorem 3.2 Let H be a real Hilbert space. Let A : H → 2H be maximal monotone. Let

B :H →H be β-inverse stronglymonotone for some β > 0. Suppose thatΩ := zer(A+B) �= ∅.
Let α > 0, {ηk} ∈ ℓ1+(N), and {Uk} ∈Pα(H) such that

μ = sup
k∈N

‖Uk‖ < +∞ and (1 + ηk)Uk+1 � Uk , ∀k ∈N. (3.32)

Let the iterative sequence {xk} be defined by (3.6). Then we have:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists.

Suppose that

(a)
∑+∞

k=0 λk(
1
αk

– λk) = +∞, where αk =
2β

4β–γk‖Uk‖
;

(b) 0 < γ ≤ γk ≤ 2β–ǫ

μ
, where ǫ ∈ (0, 2β –μγ );

(c)
∑+∞

k=0 |γk+1 – γk| < +∞,
∑+∞

k=0 |γk+1‖Uk+1‖ – γk‖Uk‖| < +∞, and∑+∞
k=0 ‖U–1

k x –U–1
k+1x‖ < +∞ for any x ∈ H .
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Then

(ii) limk→+∞ ‖xk – JγkUkA(xk – γkUkBxk)‖ = 0;

(iii) {xk} converges weakly to a point in Ω .

Further, suppose that λk ≥ λ > 0. Then

(iv) Bxk → Bx∗ as k → +∞, where x∗ ∈ Ω .

Proof (i) Let x∗ ∈ Ω , it follows from the same proof of Theorem 3.1(i) and we know that

limk→+∞ ‖xk – x∗‖U–1
k

exists. Then, {‖xk – x∗‖} is bounded. LetM := supk≥0 ‖xk – x∗‖.
(ii) From (3.19), we obtain

+∞∑

k=0

λk

(
1

αk

– λk

)∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k

≤
∥∥x0 – x∗∥∥2

U–1
0

+
1

α
M2

+∞∑

k=0

ηk + 2
1

α

+∞∑

k=0

(1 + ηk)Mλk‖ek‖. (3.33)

Because
∑+∞

k=0 ηk < +∞ and
∑+∞

k=0 λk‖ek‖ < +∞, then

+∞∑

k=0

λk

(
1

αk

– λk

)∥∥xk – JγkUkA(xk – γkUkBxk)
∥∥2

U–1
k

< +∞. (3.34)

Let Tk = JγkUkA(I – γkUkB). By condition (a), (3.34) implies that

lim inf
k→+∞

‖xk – Tkxk‖U–1
k

= 0.

Consequently, lim infk→+∞ ‖xk – Tkxk‖ = 0. Because Tk is αk-averaged, where αk =
2β

4β–γk‖Uk‖
, there exist nonexpansive mappings Rk on HU–1

k
such that Tk = (1 – αk)I + αkRk .

Then, lim infk→+∞ ‖xk – Rkxk‖U–1
k

= 0. Next, we prove that limk→+∞ ‖xk – Rkxk‖ = 0.

Using formulation (3.10) and the fact that Rk+1 is nonexpansive on HU–1
k+1

, we have

‖xk+1 – Rk+1xk+1‖U–1
k+1

(3.10)
= ‖xk+1 – Rk+1xk+1 + λkek‖U–1

k+1

≤ ‖xk+1 – Rk+1xk+1‖U–1
k+1

+ λk‖ek‖U–1
k+1

=
∥∥(1 – λkαk)xk + λkαkRkxk – Rk+1xk+1

∥∥
U–1
k+1

+ λk‖ek‖U–1
k+1

=
∥∥(1 – λkαk)(xk – Rkxk) + Rkxk – Rk+1xk+1

∥∥
U–1
k+1

+ λk‖ek‖U–1
k+1

≤ (1 – λkαk)‖xk – Rkxk‖U–1
k+1

+ ‖Rkxk – Rk+1xk‖U–1
k+1

+ ‖Rk+1xk – Rk+1xk+1‖U–1
k+1

+ λk‖ek‖U–1
k+1

≤ (1 – λkαk)‖xk – Rkxk‖U–1
k+1

+ ‖Rkxk – Rk+1xk‖U–1
k+1

+ ‖xk – xk+1‖U–1
k+1

+ λk‖ek‖U–1
k+1

≤ ‖xk – Rkxk‖U–1
k+1

+ ‖Rkxk – Rk+1xk‖U–1
k+1

+ 2

√
1

α
λk‖ek‖. (3.35)
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On the other hand, using the relation Rk = (1 – 1
αk
)I + 1

αk
Tk and Lemma 3.4, we have

‖Rkxk – Rk+1xk‖U–1
k+1

=

∥∥∥∥
(
1 –

1

αk

)
xk +

1

αk

Tkxk –

(
1 –

1

αk+1

)
xk –

1

αk+1

Tk+1xk

∥∥∥∥
U–1
k+1

≤
∣∣∣∣

1

αk+1

–
1

αk

∣∣∣∣‖xk‖U–1
k+1

+

∥∥∥∥
1

αk

Tkxk –
1

αk+1

Tk+1xk

∥∥∥∥
U–1
k+1

≤
∣∣∣∣

1

αk+1

–
1

αk

∣∣∣∣‖xk‖U–1
k+1

+

∥∥∥∥
1

αk

Tkxk –
1

αk+1

Tkxk

∥∥∥∥
U–1
k+1

+

∥∥∥∥
1

αk+1

Tkxk –
1

αk+1

Tk+1xk

∥∥∥∥
U–1
k+1

≤
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)
+

1

αk+1

‖Tkxk – Tk+1xk‖U–1
k+1

≤
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)
+ 2

√
1

α
‖Tkxk – Tk+1xk‖

≤
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)

+ 2

√
1

α

μ

γk+1

∥∥(
γk+1U

–1
k – γkU

–1
k+1

)
(xk – Tk+1xk)

∥∥

≤
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)

+ 2

√
1

α

μ

γ
|γk+1 – γk|

∥∥U–1
k (xk – Tk+1xk)

∥∥

+ 2

√
1

α

μ

γ

2β

α

∥∥(
U–1

k –U–1
k+1

)
(xk – Tk+1xk)

∥∥. (3.36)

The combination of (3.36) with (3.35) yields

‖xk+1 – Rk+1xk+1‖U–1
k+1

≤ ‖xk – Rkxk‖U–1
k+1

+
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)

+ 2

√
1

α

μ

γ
|γk+1 – γk|

∥∥U–1
k (xk – Tk+1xk)

∥∥

+ 2

√
1

α

μ

γ

2β

α

∥∥(
U–1

k –U–1
k+1

)
(xk – Tk+1xk)

∥∥ + 2

√
1

α
λk‖ek‖

≤ (1 + ηk)‖xk – Rkxk‖U–1
k

+
1

2β

∣∣γk‖Uk‖ – γk+1‖Uk+1‖
∣∣(‖xk‖U–1

k+1
+ ‖Tkxk‖U–1

k+1

)

+ 2

√
1

α

μ

γ
|γk+1 – γk|

∥∥U–1
k (xk – Tk+1xk)

∥∥

+ 2

√
1

α

μ

γ

2β

α

∥∥(
U–1

k –U–1
k+1

)
(xk – Tk+1xk)

∥∥ + 2

√
1

α
λk‖ek‖. (3.37)
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With the help of Lemma 2.5, we can conclude from (3.37) that limk→+∞ ‖xk –Rkxk‖U–1
k

= 0.

Hence, limk→+∞ ‖xk – Rkxk‖ = 0. As a consequence, limk→+∞ ‖xk – Tkxk‖ = 0.

(iii) and (iv) can be proven using the same proof as Theorem 3.1. �

Remark 3.4 In Theorem 3.2, we prove the weak convergence of the iterative sequence

generated by (3.6) with a weaker condition on {λk} than that in Theorem 3.1.

In Theorems 3.1 and 3.2, let Uk = I , in which case we obtain the following corollary,

which shows the convergence of the forward–backward splitting algorithm with variable

step sizes.

Corollary 3.3 Let H be a real Hilbert space. Let A : H → 2H be maximal monotone. Let

B :H →H be β-inverse strongly monotone for some β > 0. Suppose thatΩ = zer(A+B) �= ∅.
Let {γk} ⊂ (0, 2β) and {λk} ⊂ (0, 1

αk
), where αk =

2β
4β–γk

. Let {ak} and {bk} be two sequences
in H such that

∑+∞
k=0 λk‖ak‖ < +∞ and

∑+∞
k=0 λk‖bk‖ < +∞. Let x0 ∈H , and set

⎧
⎨
⎩
yk = xk – γk(Bxk + bk),

xk+1 = xk + λk(JγkA(yk) + ak – xk).
(3.38)

Then we have:

(i) for any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖ exists.

Suppose that

(a1) 0 < λ ≤ λk ;

(a2) λk ≤ 1
αk

– τ , where τ ∈ (0, 1
αk

– λ);

(a3) 0 < γ ≤ γk ;

(a4) γk ≤ 2β – ǫ, where ǫ ∈ (0, 2β – γ );

(a5)
∑+∞

k=0 λk(
1
αk

– λk) = +∞ and
∑+∞

k=0 |γk+1 – γk| < +∞.

If the conditions of (a1)–(a2) or (a3)–(a5) hold, then we have

(ii) limk→+∞ ‖xk – JγkA(xk – γkBxk)‖ = 0.

If the conditions of (a1)–(a3) or (a3)–(a5) hold, then we have

(iii) {xk} converges weakly to a point in Ω .

If the conditions of (a1)–(a3) or (a1), (a3)–(a5) hold, then we have

(iv) Bxk → Bx∗ as k → +∞, where x∗ ∈ Ω .

Remark 3.5 Under conditions (a1)–(a3), Corollary 3.3 reaffirms Proposition 4.4 of Com-

bettes and Yamada [8]. In addition, we obtain the convergence of the iterative scheme

(3.38) under conditions (a3)–(a5), which provide a weaker assumption on the relaxation

parameters λk than conditions (a1) and (a2). Consequently, the obtained results improve

and generalize Proposition 4.4 of Combettes and Yamada [8].

As an application of Theorems 3.1 and 3.2, we have the following convergence results

for solving the convex minimization problem (1.5).

Corollary 3.4 Let H be a real Hilbert space. Let g : H → (–∞, +∞] be a proper, lower

semi-continuous, convex function. Let f :H → R be convex and differentiable with a 1/β-

Lipschitz continuous gradient. Assume that Ω is the set of solutions of problem (1.5) and
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Ω �= ∅. Let x0 ∈H , and set

⎧
⎨
⎩
yk = xk – γkUk(∇f (xk) + bk),

xk+1 = xk + λk(prox
U–1
k

γkg (yk) + ak – xk),
(3.39)

where {Uk}, {γk}, {λk}, {ak}, and {bk} satisfy the same conditions as in Theorem 3.1 or The-

orem 3.2.

Then the following hold:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists;

(ii) limk→+∞ ‖xk – prox
U–1
k

γkg (xk – γkUk∇f (xk))‖ = 0;

(iii) {xk} converges weakly to a point in Ω ;

(iv) ∇f (xk) → ∇f (x∗) as k → +∞, where x∗ ∈ Ω .

Proof Because f is convex differentiable, according to the Baillon–Haddad theorem,∇f is

β-inverse stronglymonotone. From the definition of the proximity operator on theHilbert

space HU–1 , we know that

prox
U–1
k

γkg (u) = JγkUk∂g(u). (3.40)

Set A = ∂g and B = ∇f in Theorem 3.1 and Theorem 3.2 and this enables us to confirm the

conclusions of Corollary 3.4. �

In the following, we employ the variable metric forward–backward splitting algorithm

investigated above for solving several classes of nonlinear optimization problems. First,

we consider the variational inequality problem (VIP):

find x∗ ∈ C, such that
〈
Bx∗, y – x∗〉 ≥ 0, ∀y ∈ C, (3.41)

where C is a nonempty closed convex subset of H , and B :H →H is a nonlinear operator.

Recall the indicator function δC , which is defined as

δC(x) =

⎧
⎨
⎩
0, x ∈ C,

+∞, otherwise.
(3.42)

The proximal operator of δC is well known to be the metric projection on C, which is

defined by

PC(x) = proxδC
(x) = arg min

y∈C
‖x – y‖.

The normal cone operator of C is NC , which is defined by

NC(x) =

⎧
⎨
⎩

{w|〈w, y – x〉 ≤ 0,∀y ∈ C}, x ∈ C,

∅, otherwise.
(3.43)
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Then VIP (3.41) is equivalent to the following monotone inclusion problem:

0 ∈ Bx +NC(x). (3.44)

Assuming that B is β-inverse strongly monotone, (3.44) is a special case of the monotone

inclusion problem (1.1). Let A =NC , then we know that JγUA = PU–1

C for any γ > 0 and U ∈
Pα(H). The operator PU–1

C denotes the projector onto a nonempty closed convex subset C

of H relative to the norm ‖ · ‖U–1 . More precisely,

PU–1

C (x) = arg min
y∈C

‖x – y‖U–1 .

On the basis of Theorems 3.1 and 3.2, we obtain the following convergence theorem to

solve VIP (3.41).

Theorem 3.5 Let H be a real Hilbert space. Let B :H → H be a β-inverse strongly mono-

tone operator. We denote by Ω the solution set of VIP (3.41) and assume that Ω �= ∅. Let
x0 ∈H , set

⎧
⎨
⎩
yk = xk – γkUk(Bxk + bk),

xk+1 = xk + λk(P
U–1
k

C (yk) + ak – xk),
(3.45)

where {Uk}, {γk}, {λk}, {ak}, and {bk} satisfy the same conditions as in Theorem 3.1 or The-

orem 3.2.

Then the following hold:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists;

(ii) limk→+∞ ‖xk – P
U–1
k

C (xk – γkUkAxk)‖ = 0;

(iii) {xk} converges weakly to a point in Ω ;

(iv) Bxk → Bx∗ as k → +∞, where x∗ ∈ Ω .

Second, we consider the following constrained convex minimization problem:

min f (x)

s.t. x ∈ C,
(3.46)

whereC is a nonempty closed convex subset ofH , and f :H → R is a proper closed convex

differentiable function with a Lipschitz continuous gradient.

It follows from the definition of the indicator function that constrained convex mini-

mization problem (3.46) is equivalent to the following unconstrained minimization prob-

lem:

min
x∈H

f (x) + δC(x). (3.47)

It is obvious that problem (3.47) is a special case of (1.5). Therefore, by taking g(x) = δC(x),

we obtain the following convergence theorem for solving constrained convex minimiza-

tion problem (3.46).
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Theorem 3.6 Let H be a real Hilbert space. Let f : H → R be a proper, closed convex

function such that f is differentiable with an L-Lipschitz continuous gradient. We denote

by Ω the solution set of the constrained convex minimization problem (3.41) and assume

that Ω �= ∅. Let x0 ∈ H , and set

⎧
⎨
⎩
yk = xk – γkUk(∇f (xk) + bk),

xk+1 = xk + λk(P
U–1
k

C (yk) + ak – xk),
(3.48)

where {Uk}, {γk}, {λk}, {ak}, and {bk} satisfy the same conditions as in Theorem 3.1 or The-

orem 3.2.

Then the following hold:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists;

(ii) limk→+∞ ‖xk – P
U–1
k

C (xk – γkUk∇f (xk))‖ = 0;

(iii) {xk} converges weakly to a point in Ω ;

(iv) ∇f (xk) → ∇f (x∗) as k → +∞, where x∗ ∈ Ω .

Finally, we consider the split feasibility problem (SFP) as follows:

find x ∈ C such that Lx ∈Q, (3.49)

where C and Q are nonempty, closed convex subsets of Hilbert spaces H and G, respec-

tively. L :H → G is a bounded linear operator. SFP (3.49) was first introduced by Censor

and Elfving [37] in a finite dimensional Hilbert space and has been extensively studied by

many authors; see, for example, [38, 39] and the references therein.

SFP (3.49) is closely related to the constrained convex minimization problem (3.46).

More precisely, the corresponding constrained convex minimization problem of SFP

(3.49) is

min
x

1

2

∥∥x – PQ(Lx)
∥∥2

s.t. x ∈ C.

(3.50)

Let x∗ be a solution of SFP (3.49), then x∗ is a solution of (3.50). Conversely, let x∗ be a

solution of (3.50) and f (x) := 1
2
‖x–PQ(Lx)‖2 = 0, then x∗ is a solution of SFP (3.49). Under

the assumption that the solution set of SFP (3.49) is nonempty, SFP (3.49) and constrained

convex minimization problem (3.50) are equivalent.

The function f (x) = 1
2
‖x – PQ(Lx)‖2 is convex differentiable and the gradient operator

∇f (x) = L∗(Lx – PQ(Lx)) is
1

‖L‖2 -inverse strongly monotone. Therefore, we obtain the fol-

lowing theorem for solving SFP (3.49).

Theorem 3.7 Let H and G be real Hilbert spaces. Let L : H → G be a bounded linear

operator. Let C and Q be nonempty closed and convex subsets of H and G, respectively.We

denote by Ω the solution set of SFP (3.49) and assume that Ω �= ∅. Let x0 ∈H , and set

⎧
⎨
⎩
yk = xk – γkUk(L

∗(Lxk – PQ(Lxk)) + bk),

xk+1 = xk + λk(P
U–1
k

C (yk) + ak – xk),
(3.51)
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where {Uk}, {γk}, {λk}, {ak}, and {bk} satisfy the same conditions as in Theorem 3.1 or The-

orem 3.2.

Then the following hold:

(i) For any x∗ ∈ Ω , limk→+∞ ‖xk – x∗‖U–1
k

exists;

(ii) limk→+∞ ‖xk – P
U–1
k

C (xk – γkUkL
∗(Lxk – PQ(Lxk)))‖ = 0;

(iii) {xk} converges weakly to a point in Ω ;

(iv) L∗(Lxk – PQ(Lxk)) → L∗(Lx∗ – PQ(Lx
∗)) as k → +∞, where x∗ ∈ Ω .

Remark 3.6 To the best of our knowledge, the proposed iterative algorithms (3.45), (3.48),

and (3.51) are themost general ones for solving variational inequality problem (3.41), con-

strained convex minimization problem (3.46), and split feasibility problem (3.49), respec-

tively. Most of the existing algorithms [7, 35, 39–41] are special cases of ours.

4 Numerical experiments

In this section, we apply the proposed iterative algorithm (3.39) to solve the famous

LASSO problem [42]. All the experiments are performed on a standard Lenovo Laptop

with Intel (R) Core (TM) i7-4712MQ 2.3 GHZ CPU and 4 GB RAM.We run the program

with MATLAB 2014a.

Let us recall the LASSO problem:

min
x∈Rn

1

2
‖Ax – b‖22

s.t. ‖x‖1 ≤ t,

(4.1)

where A ∈ Rm×n, b ∈ Rm, and t > 0. Define C := {x|‖x‖1 ≤ t}, by using the indicator func-
tion, we see that (4.1) is equivalent to the following unconstrained optimization problem:

min
x

1

2
‖Ax – b‖22 + δC(x), (4.2)

which is a special case of the general optimization problem (1.5). Let f (x) = 1
2
‖Ax – b‖22

and g(x) = δC(x), then we can apply iterative algorithm (3.39) to solve (4.2). Notice that

the gradient of f (x) is ∇f (x) = AT (Ax – b) and the Lipschitz constant of ∇f is L := ‖A‖2.
Besides, the proximity operator of indicator function δC(x) is the orthogonal projection

onto the closed convex set C. Although it has no closed-form solution, it can be calculated

in a polynomial time.

In the tests, the true signal x ∈ Rn has k non-zero elements, which is generated from uni-

form distribution in the interval [–2, 2]. The system matrix A ∈ Rm×n is generated from

standard Gaussian distribution. The observed signal b is given by b = Ax. In the experi-

ment, we setm = 240, n = 1024, and k = 40. The stopping criterion is defined as

‖xk+1 – xk‖2
‖xk‖2

≤ ε, (4.3)

where ε > 0 is a small constant. We test the performance of the proposed iterative algo-

rithm with different choices of the step size γk and the relaxation parameter λk . For sim-

plicity, we set them as constant during the iteration process. According to Corollary 3.4,



Cui et al. Journal of Inequalities and Applications        ( 2019)  2019:141 Page 24 of 27

Table 1 Numerical results for different choices of γk and λk for solving the LASSO problem (4.1)

γk λk ε = 10–6 ε = 10–8

Iter Err Obj Iter Err Obj

1
2L

0.2 16,553 0.0246 0.0020 32,336 2.4764e–4 1.9778e–7

0.4 9457 0.0123 4.9063e–4 17,357 1.2383e–4 4.9432e–8

0.6 6765 0.0082 2.1851e–4 12,035 8.2498e–5 2.1935e–8

0.8 5319 0.0062 1.2296e–4 9272 6.1880e–5 1.2339e–8

1 4408 0.0049 7.8535e–5 7570 4.9492e–5 7.8918e–9

1.2 3777 0.0041 5.4500e–5 6412 4.1228e–5 5.4756e–9

1.5 3123 0.0033 3.4835e–5 5231 3.2952e–5 3.4975e–9

1.75 2736 0.0028 2.5671e–5 4543 2.8267e–5 2.5735e–9

1
L

0.2 9455 0.0123 4.9106e–4 17,356 1.2381e–4 4.9417e–8

0.4 5319 0.0062 1.2280e–4 9271 6.1913e–5 1.2352e–8

0.6 3776 0.0041 5.4633e–5 6412 4.1206e–5 5.4698e–9

0.8 2955 0.0031 3.0621e–5 4931 3.0909e–5 3.0772e–9

1 2440 0.0025 1.9556e–5 4021 2.4670e–5 1.9601e–9

1.2 2085 0.0020 1.3549e–5 3402 2.0554e–5 1.3605e–9

1.5 1718 0.0016 8.6760e–6 2771 1.6469e–5 8.7329e–10

1.9
L

0.2 5550 0.0065 1.3624e–4 9711 6.5144e–5 1.3675e–8

0.4 3086 0.0032 3.4008e–5 5167 3.2508e–5 3.4038e–9

0.6 2178 0.0022 1.5100e–5 3565 2.1657e–5 1.5104e–9

0.8 1698 0.0016 8.4390e–6 2737 1.6253e–5 8.5059e–10

1 1398 0.0013 5.3842e–6 2229 1.2973e–5 5.4181e–10

1.05 1340 0.0012 4.8598e–6 2131 1.2350e–5 4.9099e–10

Figure 1 The objective function value against the number of iterations for the LASSO problem. (a) γk =
1
2L
,

(b) γk =
1
L
, and (c) γk =

1.9
L

we know that γk ∈ (0, 2
L
) and λk ∈ (0,

4–γkL

2
). The obtained numerical results are listed in

Table 1, in which we report the number of iterations (“Iter”), the objective function value

(“Obj”), and the error between the recovered signal and the true signal (“Err”). We can see

from Table 1 that when the step size γk is fixed, a large relaxation parameter λk leads to

a faster convergence. At the same time, the larger the step size, the faster the algorithm

converges.

In order to more visualize the effect of iterative parameters on the value of the function,

Fig. 1 shows the objective function value against the number of iterations. Further, we plot

the true signal and the recovered signal in Fig. 2 for the parameters of γk =
1.9
L
, λk = 1.05 and

the stopping criterion ε = 10–8. We can see from Fig. 2 that the true signal is successfully

reconstructed.
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Figure 2 The recovered sparse signal versus the true k-sparse signal

5 Conclusions

In this paper, we proposed a new convergence analysis of the variable metric forward–

backward splitting algorithm (1.7) with extended relaxation parameters. Based on the av-

eraged operator JγkUkA(I–γkUkB) and the firmly nonexpansive JγkUkA on theHilbert spaces

HU–1
k
, we proved the weak convergence of this algorithm. Compared to existing work, we

imposed a slightly weak condition on the relaxation parameters to ensure the convergence

of the forward–backward splitting algorithm when using the variable metric and variable

step sizes. Our results complemented and extended the corresponding results of Com-

bettes and Yamada [8]. Furthermore, we obtained several general iterative algorithms for

solving the variational inequality problem, the constrained convex minimization prob-

lem, and the split feasibility problem, respectively. These results generalized and improved

the known results in the literature. Numerical experimental results on LASSO problem

showed that the step size γk and relaxation parameter λk had much impact on the con-

vergence speed of the proposed iterative algorithm. The larger the step size, the faster the

algorithm converged. The over-relaxation parameter λk (λk > 1) performed better than

the under-relaxation parameter λk (λk ≤ 1).
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