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Abstract—Markov random fields are designed to represent
structured dependencies among large collections of random vari-
ables, and are well-suited to capture the structure of real-world
signals. Many fundamental tasks in signal processing (e.g.,
smoothing, denoising, segmentation etc.) require efficient methods
for computing (approximate) marginal probabilities over subsets
of nodes in the graph. The marginalization problem, though solv-
able in linear time for graphs without cycles, is computationally
intractable for general graphs with cycles. This intractability
motivates the use of approximate “message-passing” algorithms.
This paper studies the convergence and stability properties of the
family of reweighted sum-product algorithms, a generalization of
the widely used sum-product or belief propagation algorithm, in
which messages are adjusted with graph-dependent weights. For
pairwise Markov random fields, we derive various conditions that
are sufficient to ensure convergence, and also provide bounds on
the geometric convergence rates. When specialized to the ordinary
sum-product algorithm, these results provide strengthening of
previous analyses. We prove that some of our conditions are nec-
essary and sufficient for subclasses of homogeneous models, but
not for general models. The experimental simulations on various
classes of graphs validate our theoretical results.

Index Terms—Approximate marginalization, belief propaga-
tion, convergence analysis, graphical models, Markov random
fields, sum-product algorithm.

I. INTRODUCTION

G
RAPHICAL models provide a powerful framework for

capturing the complex statistical dependencies exhibited

by real-world signals. Accordingly, they play a central role in

many disciplines, including statistical signal and image pro-

cessing [1], [2], statistical machine learning [3], and computa-

tional biology. A core problem common to applications in all of

these domains is the marginalization problem—namely, to com-

pute marginal distributions over local subsets of random vari-

ables. For graphical models without cycles, including Markov

chains and trees [see Fig. 1(b)], the marginalization problem is
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Fig. 1. Examples of graphical models. (a) Marginalization can be performed
in linear time on chain-structured graphs, or more generally any tree (graph
without cycles), such as those used in multi-resolution signal processing [1].
(b) Lattice-based model frequently used in image processing [21], for which
the marginalization problem is intractable in general.

exactly solvable in linear-time via the sum-product algo-

rithm, which operates in a distributed manner by passing

“messages” between nodes in the graph. This sum-product

framework includes many well-known algorithms as special

cases, among them the - or forward–backward algorithm for

Markov chains, the peeling algorithm in bioinformatics, and

the Kalman filter; see the review articles [1], [2], and [4] for

further background on the sum-product algorithm and its uses

in signal processing.

Although Markov chains/trees are tremendously useful,

many classes of real-world signals are best captured by

graphical models with cycles. [For instance, the lattice or

grid-structured model in Fig. 1(b) is widely used in computer

vision and statistical image processing.] At least in principle,

the nodes in any such graph with cycles can be clustered

into “supernodes,” thereby converting the original graph into

junction tree form [5], to which the sum-product algorithm can

be applied to obtain exact results. However, the cluster sizes

required by this junction tree formulation—and hence the com-

putational complexity of the sum-product algorithm—grow
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exponentially in the treewidth of the graph. For many classes of

graphs, among them the lattice model in Fig. 1(b), the treewidth

grows in an unbounded manner with graph size, so that the

junction tree approach rapidly becomes infeasible. Indeed,

the marginalization problem is known to be computationally

intractable for general graphical models.

This difficulty motivates the use of efficient algorithms

for computing approximations to the marginal probabilities.

In fact, one of the most successful approximate methods is

based on applying the sum-product updates to the graphs with

cycles. Convergence and correctness, though guaranteed for

tree-structured graphs, are no longer ensured when the under-

lying graph has cycles. Nonetheless, this “loopy” form of the

sum-product algorithm has proven very successful in many

applications [1], [2], [4]. However, there remain a variety of

theoretical questions concerning the use of sum-product and

related message-passing algorithms for approximate marginal-

ization. It is well known that the standard form of sum-product

message-passing is not guaranteed to converge, and in fact

may have multiple fixed points in certain regimes. Recent

work has shed some light on the fixed points and convergence

properties of the ordinary sum-product algorithm. Yedidia et

al. [6] showed that sum-product fixed points correspond to

local minima of an optimization problem known as the Bethe

variational principle. Tatikonda and Jordan [7] established an

elegant connection between the convergence of the ordinary

sum-product algorithm and the uniqueness of Gibbs measures

on the associated computation tree, and provided several suffi-

cient conditions for convergence. Wainwright et al. [8] showed

that the sum-product algorithm can be understood as seeking

an alternative reparameterization of the distribution, and used

this to characterize the error in the approximation. Heskes [9]

discussed convergence and its relation to stability properties of

the Bethe variational problem. Other researchers [10], [11] have

used contraction arguments to provide sharper sufficient condi-

tions for convergence of the standard sum-product algorithm.

Finally, several groups [12]–[15] have proposed modified al-

gorithms for solving versions of the Bethe variational problem

with convergence guarantees, albeit at the price of increased

complexity.

In this paper, we study the broader class of reweighted

sum-product algorithms [16]–[19], including the ordinary

sum-product algorithm as a special case, in which messages

are adjusted by edge-based weights determined by the graph

structure. For suitable choices of these weights, the reweighted

sum-product algorithm is known to have a unique fixed point

for any graph and any interaction potentials [16]. An addi-

tional desirable property of reweighted sum-product is that

the message-passing updates tend to be more stable, as con-

firmed by experimental investigation [16], [18], [19]. This

algorithmic stability should be contrasted with the ordinary

sum-product algorithm, which can be highly unstable due to

phase transitions in the Bethe variational problem [6], [7].

Despite these encouraging empirical results, current theoretical

understanding of the stability and convergence properties of

reweighted message-passing remains incomplete.

The main contributions of this paper are a number of the-

oretical results characterizing the convergence properties of

reweighted sum-product algorithms, including the ordinary

sum-product updates as a special case. Beginning with the

simple case of homogeneous binary models, we provide sharp

guarantees for convergence, and prove that there always exists

a choice of edge weights for which the associated reweighted

sum-product algorithm converges. We then analyze more gen-

eral inhomogeneous models, both for binary variables and the

general multinomial model, and provide sufficient conditions

for convergence of reweighted algorithms. Relative to the

bulk of past work, a notable feature of our analysis is that

it incorporates the benefits of making observations, whether

partial or noisy, of the underlying random variables in the

Markov random field to which message-passing is applied.

Intuitively, the convergence of message-passing algorithms

should be function of both the strength of the interactions

between random variables, as well as the local observations,

which tend to counteract the interaction terms. Indeed, when

specialized to the ordinary sum-product algorithm, our results

provide a strengthening of the best previously known conver-

gence guarantees for sum-product [7], [9]–[11]. As pointed

out after initial submission of this paper, independent work by

Mooij and Kappen [20] yields a similar refinement for the case

of the ordinary sum-product, and binary variables; the result

given here applies more generally to reweighted sum-product,

as well as higher-order state spaces. As we show empirically,

the benefits of incorporating observations into convergence

analysis can be substantial, particularly in the regimes most

relevant to applications.

The remainder of this paper is organized as follows. In

Section II, we provide basic background on graphical models

(with cycles), and the class of reweighted sum-product al-

gorithms that we study. Section III provides convergence

analysis for binary models, which we then extend to general

discrete models in Section IV. In Section V, we describe ex-

perimental results that illustrate our findings, and we conclude

in Section VI.

II. BACKGROUND

In this section, we provide some background on Markov

random fields, and message-passing algorithms, including the

reweighted sum-product that is the focus of this paper.

A. Graphical Models

Undirected graphical models, also known as Markov random

fields, are based on associating a collection of random variables

with the vertices of a graph. More pre-

cisely, an undirected graph consists of , where

are vertices, and are edges joining pairs

of vertices. Each random variable is associated with node

, and the edges in the graph (or more precisely, the ab-

sences of edges) encode Markov properties of the random vector

. These Markov properties are captured by a particular factor-

ization of the probability distribution of the random vector ,

which is guaranteed to break into a product of local functions

on the cliques of the graph. (A graph clique is a subset of ver-

tices that are all joined by edges.)
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In this paper, we focus on discrete (multinomial) random vari-

ables with distribution specified

according to a pairwise Markov random field. Any such model

has a probability distribution of the form

(1)

Here the quantities and are potential functions that depend

only on the value , and the pair values

respectively. Otherwise stated, each singleton potential

is a real-valued function of , whose values

can be represented as an -vector, whereas each edge potential

is a real-valued mapping on the Cartesian product ,

whose values can be represented as a matrix. With this

setup, the marginalization problem is to compute the singleton

marginal distributions , and possibly

higher-order marginal distributions (e.g., ) as well.

Note that if viewed naively, the summation defining

involves an exponentially growing number of terms ( to

be precise).

B. Sum-Product Algorithms

The sum-product algorithm is an iterative algorithm for

computing either exact marginals (on trees), or approximate

marginals (for graphs with cycles). It operates in a distributed

manner, with nodes in the graph exchanging statistical in-

formation via a sequence of “message-passing” updates. For

tree-structured graphical models, the updates can be derived as

a form of non-serial dynamic programming, and are guaranteed

to converge and compute the correct marginal distributions

at each node. However, the updates are routinely applied to

more general graphs with cycles, which is the application

of interest in this paper. Here we describe the more general

family of reweighted sum-product algorithms, which include

the ordinary sum-product updates as a particular case.

In any sum-product algorithm, one message is passed in

each direction of every edge in the graph. The message

from node to node , denoted by , is a function of the

possible states at node . Consequently,

in the discrete case, the message can be represented by an

-vector of possible function values. The family of reweighted

sum-product algorithms is parameterized by a set of edge

weights, with associated with edge . Various

choices of these edge weights have been proposed [16], [18],

[19], and have different theoretical properties. The simplest

case of all—namely, setting for all edges—recovers

the ordinary sum-product algorithm. Given some fixed set of

edge weights , the reweighted sum-product updates

are given by the recursion

(2)

where denotes the

neighbors of node in the graph. Typically, the message

vector is normalized to unity after each iteration (i.e.,

). Once the updates converge to some

message fixed point , then the fixed point can be used to

compute (approximate) marginal probabilities at each node

via .

When the ordinary updates are applied to a tree-

structured graph, it can be shown by induction that the algorithm

converges after a finite number of steps. Moreover, a calcula-

tion using Bayes’ rule shows that is equal to the desired

marginal probability . However, the sum-product algo-

rithm is routinely applied to graphs with cycles, in which case

the message updates (2) are not guaranteed to converge, and the

quantities represent approximations to the true marginal

distributions. Our focus in this paper is to determine conditions

under which the reweighted sum-product message updates (2)

are guaranteed to converge.

III. CONVERGENCE ANALYSIS

In this section, we describe and provide proofs of our main

results on the convergence properties of the reweighted sum-

product updates (2) when the messages belong to a binary state

space, which we represent as . In this special case,

the general MRF distribution (1) can be simplified into the Ising

model form

(3)

so that the model is parameterized by a single real number

for each node, and a single real number for each edge.

A. Convergence for Binary Homogeneous Models

We begin by stating and proving some convergence condi-

tions for a particularly simple class of models: homogeneous

models on -regular graphs. A graph is -regular if each vertex

has exactly neighbors. Examples include single cycles

, and lattice models with toroidal boundary conditions

. In a homogeneous model, the edge weights are all equal

to a common value , and similarly the node parameters

are all equal to a common value .

In order to state our convergence result, we first define, for

any real numbers and , the function

(4)

For any fixed , the mapping is sym-

metric about zero, and . Moreover, the

function is bounded in absolute value by

.

Proposition 1: Consider the reweighted sum-product algo-

rithm with uniform weights applied to a homoge-

neous binary model on a -regular graph with arbitrary choice

of .
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Fig. 2. Plots of the contraction coefficient R (� ; � ; �) versus the edge strength � . Each curve corresponds to a different choice of the observation potential
� . (a) For � = 1, the updates reduces to the standard sum-product algorithm; note that the transition from convergence to nonconvergence occurs at � � 0:3466
in the case of no observations (� = 0). (b) Corresponding plots for reweighted sum-product with � = 0:50. Since �d = (0:50)4 = 2, the contraction coefficient
is always less than one in this case, as predicted by Proposition 1.

a) The reweighted updates (2) have a unique fixed point and

converge as long as , where

if

otherwise
(5)

with .

b) As a consequence, if , the reweighted updates (2)

converge for all finite .

c) Conversely, if , then there exist finite edge poten-

tials for which the reweighted updates (2) have mul-

tiple fixed points.

Remarks: Consider the choice of edge weight , corre-

sponding to the standard sum-product algorithm. If the graph is

a single cycle , Proposition 1(b) implies that the stan-

dard sum-product algorithm always converges, consistent with

previous work on the single cycle case [7], [22]. For more gen-

eral graphs with , convergence depends on the relation

between the observation strength and the edge strengths

. For the case , corresponding for instance to a lattice

model with toroidal boundary as in Fig. 1(c), Fig. 2(a) provides

a plot of the coefficient as a function of the edge

strength , for different choices of the observation potential

. The curve marked with circles corresponds to . Ob-

serve that it crosses the threshold from convergence to

non-convergence at the critical value ,

corresponding with the classical result due to Bethe [23], and

also confirmed in other analyses of standard sum-product [7],

[10], [11]. The other curves correspond to non-zero observa-

tion potentials , respectively. Here, it is in-

teresting to note with , Proposition 1 reveals that the

standard sum-product algorithm continues to converge well be-

yond the classical breakdown point without observations

.

Fig. 2(b) shows the corresponding curves of

, corresponding to the reweighted

sum-product algorithm with . Note that

, so that as predicted by Proposition 1(b),

the contraction coefficient remains below one for all values

of and , meaning that the reweighted sum-product

algorithm with always converges for these graphs.

Proof of Proposition 1: Given the edge and node homo-

geneity of the model and the -regularity of the graph, the

message-passing updates can be completely characterized by a

single log message , and the update

(6)

a) In order to prove the sufficiency of condition (5), we

begin by observing that for any choice of ,

we have , so that

the message must belong to the admissible in-

terval . Next we compute

and bound the derivative of over this set of admis-

sible messages. A straightforward calculation yields

that ,

where the function was defined previously in (4).

Note that for any fixed , the function

achieves its maximum at . Consequently, the un-

constrained maximum of is achieved at the point

satisfying ,

with . Oth-

erwise, if , then the constrained

maximum is obtained at the boundary point of the

admissible region closest to 0—namely, at the point
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. Overall, we con-

clude that for all admissible messages , we have

if

otherwise

so that as defined in the statement. Note that

if , the update is an iterated contraction, and hence

converges [24].

b) Since for all finite , we have

the condition —or equivalently

—implies that , showing that the up-

dates are strictly contractive, which implies convergence

and uniqueness of the fixed point [24].

c) In our discussion below (following statement of Theorem

2), we establish that the condition (5) is actually necessary

for the special case of zero observations . Given

and , we can always find a finite such

that the condition (5) is violated, so that the algorithm

does not converge.

B. Extension to Binary Inhomogeneous Models

We now turn to the generalization of the previous result to the

case of inhomogeneous models, in which the node parameters

and edge parameters may differ across nodes and edges,

respectively. For each directed edge , define the quantity

(7)

and the weight

if .

otherwise

(8)

where the function was previously defined (4). Finally, define

a matrix , with entries indexed by

directed edges , and of the form

if and

if and

otherwise.

(9)

Theorem 2: For an arbitrary pairwise Markov random field

over binary variables, if the spectral radius of is less

than one, then the reweighted sum-product algorithm converges,

and the associated fixed point is unique.

When specialized to the case of uniform edge weights

, then Theorem 2 strengthens previous results, due

independently to Ihler et al. [10] and Mooij and Kappen [11],

on the ordinary sum-product algorithm. This earlier work

provided conditions based on matrices that involved only terms

of the form , as opposed to the smaller and observa-

tion-dependent weights that our analysis

yields once . As a consequence, Theorem 2 can

yield sharper estimates of convergence by incorporating the

benefits of having observations. For the ordinary sum-product

algorithm and binary Markov random fields, independent

work by Mooij and Kappen [20] has also made similar re-

finements of earlier results. In addition to these consequences

for the ordinary sum-product algorithm, our Theorem 2 also

provides sufficient conditions for convergence of reweighted

sum-product algorithms.

In order to illustrate the benefits of including observations in

the convergence analysis, we conducted experiments on grid-

structured graphical models in which a binary random vector,

with a prior distribution of the form (3), is observed in Gaussian

noise (see Section V-A for the complete details of the exper-

imental setup). Fig. 3 provides summary illustrations of our

findings, for the ordinary sum-product in panel (a),

and reweighted sum-product in panel (b). Each

plot shows the contraction coefficient predicted by Theorem 2

as a function of an edge strength parameter. Different curves

show the effect of varying the noise variance specifying the

signal-to-noise ratio in the observation model (see Section V for

the complete details). The extreme case corresponds

to the case of no observations. Notice how the contraction coef-

ficient steadily decreases as the observations become more in-

formative, both for the ordinary and reweighted sum-product

algorithms.

From past work, one sufficient (but not necessary) condition

for uniqueness of the reweighted sum-product fixed point is con-

vexity of the associated free energy [9], [16]. The contraction

condition of Theorem 2 is also sufficient (but not necessary) to

guarantee uniqueness of the fixed point. In general, these two

sufficient conditions are incomparable, in that neither implies

(nor is implied by) the other. For instance, Fig. 3(b) shows that

the condition from Theorem 2 is in some cases weaker than the

convexity argument. In this example, with the edge weights

, the associated free energy is known to be convex [9], [16],

so that the fixed point is always unique. However, the contrac-

tion bound from Theorem 2 guarantees uniqueness only up to

some edge strength. On the other, the advantage of the contrac-

tion coefficient approach is illustrated by Figs. 2(a) and 3(a): for

the grid graph, the Bethe free energy is not convex for any edge

strength, yet the contraction coefficient still yields uniqueness

for suitably small couplings. An intriguing possibility raised

by Heskes [9] is whether uniqueness of the fixed point implies

convergence of the updates. It turns out that this implication

does not hold for the reweighted sum-product algorithm: in par-

ticular, there are weights for which the optimization is

strictly convex (and so has a unique global optimum), but the

reweighted sum-product updates do not converge.

A related question raised by a referee concerns the tightness

of the sufficient conditions in Proposition 1 and Theorem 2: that

is, to what extent are they also necessary conditions? Focusing

on the conditions of Proposition 1, we can analyze this issue by

studying the function defined in the message update (6), and
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Fig. 3. Illustration of the benefits of observations. Plots of the contraction coefficient versus the edge strength. Each curve corresponds to a different setting of
the noise variance � as indicated. (a) Ordinary sum-product algorithm � = 1. Upper-most curve labeled � = +1 corresponds to bounds taken from previous
work [7], [10], [11]. (b) Corresponding curves for the reweighted sum-product algorithm � = 0:50.

determining for what pairs it has multiple fixed points.

For clarity, we state the following.
Corollary 3: Regarding uniqueness of fixed points, the con-

ditions of Proposition 1 are necessary and sufficient for ,
but only sufficient for general .

Proof: For (or respectively ), the func-

tion has (for any ) the following general properties: it

is monotonically increasing (decreasing) in , and converges to

as , as shown in the curves marked with cir-

cles in Fig. 4. Its fixed point structure is most easily visualized

by plotting the difference function , as shown by the

curves marked with -symbols. Note that the -curve in panel

(a) crosses the horizontal three times, corresponding to

three fixed points, whereas the curve in panel (b) crosses only

once, showing that the fixed point is unique. In contrast, the suf-

ficient conditions of Proposition 1 and Theorem 2 are based on

whether the magnitude of the derivative exceeds one,

or equivalently whether the quantity ever be-

comes zero. Since the -curves (corresponding to ) in

both panels (a) and (b) have flat portions, we see that the suffi-

cient conditions do not hold in either case. In particular, panel

(b) is an instance where the fixed point is unique, yet the condi-

tions of Proposition 1 fail to hold, showing that they are not nec-

essary in general. Whereas panel (b) involves ,

panel (a) has zero observation potentials . In this case,

the conditions of Proposition 1 are actually necessary and suffi-

cient. To establish this claim rigorously, note that for ,

the point is always a fixed point, and the maximum of

is achieved at . If (so that the con-

dition in Proposition 1) is violated, then continuity implies that

for all , for some suitably small .

But since , the curve must eventu-

ally cross the identity line again, implying that there is a second

fixed point . By symmetry, there must also exist a third

fixed point , as illustrated in Fig. 4(a). Therefore, the con-

dition of Proposition 1 is actually necessary and sufficient for

the case .

C. Proof of Theorem 2

We begin by establishing a useful auxiliary result that plays

a key role in this proof, as well as other proofs in the sequel:

Lemma 4: For real numbers and , define the function

(10)

For each fixed , we have .

Proof: Computing the derivative of with respect to ,

we have

where the function was previously defined (4). Therefore, the

function is strictly increasing if and strictly decreasing

if . Consequently, the supremum is obtained by taking

, and is equal to as claimed.

With this lemma in hand, we begin by rewriting the mes-

sage update (2) in a form more amenable to analysis. For each

directed edge , define the log message ratio

. From the standard form of the up-

dates, a few lines of algebra show that it is equivalent to update

these log ratios via

(11)

where

(12)
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Fig. 4. Illustration of the conditions in Proposition 1. (a) For zero observation potentials � = 0, the conditions are necessary and sufficient: here there are three
fixed points, and Proposition 1 is not satisfied. (b) For nonzero observation potentials � > 0, Proposition 1 is sufficient but not necessary: in this case, the fixed
point is still unique, yet the conditions of Proposition 1 are not satisfied.

A key property of the message update function is that

it can be written as a function of the form (10), with

and . Consequently, if we apply

Lemma 4, we may conclude that for

all , and consequently that for all

iterations . Consequently, we may assume that message

vector for all iterations belongs to the box of admis-

sible messages defined by

(13)

We now bound the derivative of the message-update equation

over this set of admissible messages.

Lemma 5: For all , the elements of are

bounded as

where the directed weights were defined previously in (8).

All other gradient elements are zero.

See Appendix A for the proof. In order to exploit Lemma 5,

for any iteration , let us use the mean-value theorem to

write

(14)

where for some . Since

and both belong to the convex set , so does the

convex combination , and we can apply Lemma 5. Starting

from (14), we have

which is, in turn, upper bounded by

(15)

Since this bound holds for each directed edge, we have estab-

lished that the vector of message differences obeys

, where the non-negative matrix

was defined previously in (9). By results on

non-negative matrix recursions [25], if the spectral radius of

is less than 1, then the sequence converges to zero.

Thus, the sequence is a Cauchy sequence, and so must

converge.

D. Explicit Conditions for Convergence

A drawback of Theorem 2 is that it requires computing the

spectral radius of the matrix , which can be

a nontrivial computation for large problems. Accordingly, we

now specify some corollaries that are sufficient to ensure con-

vergence of the reweighted sum-product algorithm. As in the

work of Mooij and Kappen [11], the first two conditions follow

by upper bounding the spectral norm by standard matrix norms.

Conditions (c) and (d) are refinements that require further work.

Corollary 6: Convergence of reweighted sum-product is

guaranteed by any of the following conditions.

a) Row sum condition:

(16)

b) Column sum condition:

(17)
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c) Reweighted norm condition:

(18)

d) Pairwise neighborhood condition: the quantity

(19)

where

Remarks: To put these results in perspective, if we specialize

to for all edges and use the weaker version of the

weights that ignore the effects of observations, then

the -norm condition (17) is equivalent to earlier results on

the ordinary sum-product algorithm [10], [11]. In addition,

one may observe that for the ordinary sum-product algorithm

(where for all edges), condition (18) is equivalent to

the -condition (17). However, for the general reweighted

algorithm, these two conditions are distinct.

Proof: Conditions (a) and (b) follows immediately from

the fact that the spectral norm of is upper bounded by any

other matrix norm [25]. It remains to prove conditions (c) and

(d) in the corollary statement.

(c) Defining the vector of successive

changes, from (15), we have

(20)

The previous step of the updates yields a similar equa-

tion—namely

(21)

Now let us define a norm on by

.

With this notation, the bound (21) implies that

. Substituting this bound

into (20) yields that

For any edge , summing weighted versions of this equa-

tion over all neighbors of yields that

is upper bounded by

Finally, since the edge was arbitrary, we can maximize

over it, which proves that . There-

fore, if , the updates are an iterated contraction in the

norm, and hence converge by standard contraction results

[24].
(d) Given a non-negative matrix , let denote the

column sum indexed by some element . In general, it is known
[25] that for any , the spectral radius of is upper
bounded by the quantity , where

and range over all column indices. A more refined result
due to Kolotilina [26] asserts that if is a sparse matrix, then
one need only optimize over column index pairs , such that

. For our problem, the matrix is indexed by di-
rected edges , and is non-zero only if

. Consequently, we can reduce the maximization over
column sums to maximizing over directed edge pairs
with , which yields the stated claim.

IV. CONVERGENCE FOR GENERAL DISCRETE MODELS

In this section, we describe how our results generalize
to multinomial random variables, with the variable at
each node taking a total of states in the space

. Given our Markov assumptions, the
distribution takes the factorized form

(22)

where each is a vector of numbers, and each is
an matrix of numbers.

In our analysis, it will be convenient to work with an alterna-

tive parameter vector that represents the same Markov random
field as , given by

This set of functions is a different parameterization of the dis-
tribution ; indeed, it can be verified that

where is a constant independent of . Moreover, note that

for all nodes , and
for all .

A. Convergence Result and Some Consequences

In order to state a result about convergence for multi-
nomial Markov random fields, we require some pre-
liminary definitions. For each directed edge
and states , define functions

and of the
vector

(23a)
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(23b)

where

(24a)

(24b)

With these definitions, define for each directed edge
the non-negative weight

(25)

where the function was defined previously (4), and the box
of admissible vectors is given by

(26)

Finally, using the choice of weights in (25), we define the
matrix as before (see (9)).

Theorem 7: If the spectral radius of is less than one, then
the reweighted sum-product algorithm converges, and the asso-
ciated fixed point is unique.

We provide the proof of Theorem 7 in the Appendix. Despite
its notational complexity, Theorem 7 is simply a natural general-
ization of our earlier results for binary variables. When ,
note that the functions and are identically zero (since
there are no states other than and 0), so that the form of
and simplifies substantially. Moreover, as in our earlier devel-
opment on the binary case, when specialized to , The-
orem 7 provides a strengthening of previous results [10], [11].
In particular, we now show how these previous results can be re-
covered from Theorem 7 by ignoring the box constraints (26):

Corollary 8: The reweighted sum-product algorithm con-
verges if

(27)

where the weight is given by

Proof: We begin by proving that . First of
all, ignoring the box constraints (26), then certainly

since for any fixed , the function is maximized at
, and . Due to the monotonicity

of in , it now suffices to maximize the absolute value
of . Since is defined in terms of and , we
first bound the difference .
In one direction, we have

and hence

(28)

In the other direction, we have
, and hence

(29)

Combining (28) and (29), we conclude that
is upper bounded

by , or
equivalently by

(30)
Therefore, we have proved that , where
was defined in the corollary statement. Consequently, if we de-
fine a matrix using the weights , we have

in an elementwise sense, and therefore, the spectral ra-
dius of is an upper bound on the spectral radius of
(see Bertsekas and Tsitsiklis [25]).

A challenge associated with verifying the sufficient condi-
tions in Theorem 7 is that in principle, it requires solving a set
of optimization problems, each involving the
dimensional vector restricted to a box. As pointed out by one
of the referees, in the absence of additional structure (e.g., con-
vexity), one might think of obtaining the global maximum by
discretizing the -cube, albeit with prohibitive complexity
(in particularly, growing as where is the dis-
cretization accuracy). However, there are many natural weaken-
ings of the bound in Theorem 7, still stronger than Corollary 8,
that can be computed efficiently. Below we state one such result.
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Fig. 5. Illustration of the benefits of observations. Plots of the contraction coefficient from Corollary 9 versus the edge strength for a 3-state Potts model. Each
curve corresponds to a different setting of the SNR parameter 
 . (a) Ordinary sum-product algorithm � = 1. Upper-most curve labeled 
 = 0 corresponds to the
best bounds from previous work [10], [11], [20]. (b) Reweighted sum-product algorithm � = 0:50.

Corollary 9: Define the edge weights

(31)
where the weights are defined in Corollary 8.
Then the reweighted sum-product algorithm converges if

.

Proof: The proof of this result is analogous to Corollary 8:
We weaken the bound from Theorem 7 by optimizing sepa-
rately over its arguments

which, in turn, is upper bounded by

where we have used the fact that is increasing in
(for any fixed ), and the bound (28), which can be restated as

.
The advantage of Corollary 9 is that it is relatively straightfor-

ward to compute the weights : in particular, for a fixed , ,

we need to solve the maximization problem over
in (31). Since achieves its unconstrained maximum at

, and decreases as moves away from zero, it is equiva-
lent to minimize the function over the admissible
box. In order to so, it suffices by the definition of to minimize
and maximize the function

over the admissible box, and then take the minimum of the ab-
solute values of these two quantities. Since both and are
convex and differentiable functions of , we see that is a con-
cave and differentiable function of , so that the maximum can
be computed with standard gradient methods. On the other hand,
the minimum of a concave function over a convex set is al-
ways achieved at an extreme point [27], which in this case, are
simply the vertices of the admissible cube. Therefore, the weight

can be computed in time that is at worst , cor-
responding to the number of vertices of the -cube.

If the graphical model has very weak observations (i.e.,
uniformly for all states ), then

the observation-dependent conditions provided in Theorem
7 and Corollary 9 would be expected to provide little to no
benefit over Corollary 8. However, as with the earlier results on
binary models (see Fig. 3), the benefits can be substantial when
the model has stronger observations, as would be common in
applications. To be concrete, let us consider particular type of
multi-state discrete model, known as the Potts model, in which
the edge potentials are of the form

if

otherwise

for some edge strength parameter . We then suppose that
the node potential vector at each node takes the form

, for a signal-to-noise parameter to be chosen.
Fig. 5 illustrates the resulting contraction coefficients predicted
by Corollary 9, for both the ordinary sum-product updates

in panel (a), and the reweighted sum-product algorithm with
in panel (b). As would be expected, the results are

qualitatively similar to those from the binary state models in
Fig. 3.

V. EXPERIMENTAL RESULTS

In this section, we present the results of some additional sim-

ulations to illustrate and support our theoretical findings.
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Fig. 6. Empirical rates of convergence of the reweighted sum-product algorithm as compared to the rate predicted by the symmetric and asymmetric bounds from
Theorem 2.

A. Dependence on Signal-to-Noise Ratio

We begin by describing the experimental setup used to

generate the plots in Fig. 3, which illustrate the effect of in-

creased signal-to-noise ratio (SNR) on convergence bounds.

In these simulations, the random vector

is posited to have a prior distribution of the form

(3), with the edge parameters set uniformly to some

fixed number , and symmetric node potentials .

Now suppose that the we make a noisy observation of the

random vector , say of the form , where

, so that we have a conditional distribution

of the form . We then

examined the convergence behavior of both ordinary and

reweighted sum-product algorithms for the posterior distribu-

tion .

The results in Fig. 3 were obtained from a grid with

nodes, and by varying the observation noise from

corresponding to , down to . For any

fixed setting of , each curve plots the average of the spectral

radius bound from Theorem 2 over 20 trials versus the edge

strength parameter . Note how the convergence guarantees

are substantially strengthened, relative to the case of zero SNR,

as the benefits of observations are incorporated.

B. Convergence Rates

We now turn to a comparison of the empirical convergence

rates of the reweighted sum-product algorithm to the theoretical

upper bounds provided by the inductive norm (18) in Corollary

8. We have performed a large number of simulations for dif-

ferent values of number of nodes, edge weights , node poten-

tials, edge potentials, and message space sizes. Fig. 6 compares

the convergence rates predicted by Theorem 2 to the empirical

rates in both the symmetric and asymmetric settings. The sym-

metric case corresponds to computing the weights while

ignoring the observation potentials, so that the overall matrix

is symmetric in the edges (i.e., ). The asym-

metric case explicitly incorporates the observation potentials,

and leads to bounds that are as good or better than the sym-

metric case. Fig. 6 illustrates the benefits of including observa-

tions in the convergence analysis. Perhaps most strikingly, panel

(b) both shows a case where the symmetric bound predicts diver-

gence of the algorithm, whereas the asymmetric bound predicts

convergence.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the convergence and stability

properties of the family of reweighted sum-product algorithms

in general pairwise Markov random fields. For homogeneous

models as well as more general inhomogeneous models, we de-

rived a set of sufficient conditions that ensure convergence, and

provide upper bounds on the (geometric) convergence rates. We

demonstrated that these sufficient conditions are necessary for

homogeneous models without observations, but not in general.

We also provided simulation results to complement the theoret-

ical results presented.

There are a number of open questions associated with the

results presented here. Even though we have established the

benefits of including observation potentials, the conditions pro-

vided are still somewhat conservative, since they require that

the message updates be contractive at every update, as opposed

to requiring that they be attractive in some suitably averaged

sense—e.g., when averaged over multiple iterations, or over dif-

ferent updating sequences. An interesting direction would be to

derive sharper “average-case” conditions for message-passing

convergence. Another open direction concerns analysis of the

effect of damped updates, which (from empirical results) can

improve convergence behavior, especially for reweighted sum-

product algorithms.
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APPENDIX

Proof of Lemma 5: Setting

, we compute via chain rule

for

for .

so that it suffices to upper bound . Computing

this partial derivative from the message update (11) yields that

is equal to

which we recognize as , where the

function was previously defined in (4). Since the message

vector must belong to the box (13) of admissible messages,

the vector must satisfy the bound

For any fixed , the function achieves its maximal

value at . Noting that by its defi-

nition (7), we have , we conclude that

if

otherwise.

Proof of Theorem 7: We begin by parameterizing the

reweighted sum-product messages in terms of the log ratios

. For each ,

the message updates (2) can be rewritten, following some

straightforward algebra, in terms of these log messages and the

modified potentials as

(32)

where .

Analogously to the proof of Lemma 4, we have

. Consequently, each vector

must belong the admissible box (26).

As in our earlier proof, we now seek to bound the partial

derivatives of the message update . By chain

rule, we have if ,

and if . Conse-

quently, it suffices to bound . Let us set

.

Computing the partial derivative of component with

respect to message index yields

Isolating the term involving , we have that

is equal to the equation shown at the bottom

of the page. Further simplifying yields that is

equal to

where and were previously de-

fined.

Setting and

, we have

where was previously defined (4). Using the monotonicity

properties of , we have

(33)



ROOSTA et al.: CONVERGENCE ANALYSIS OF REWEIGHTED SUM-PRODUCT ALGORITHMS 4305

The claim follows by noting that as defined, we have
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