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I. Introduction 
Wavelets theory is a relatively new and an emerging area in mathematical research. Wavelets Permit 

the accurate representation of a variety of functions and operators, and establish a connection with fast 

numerical algorithms. 

There are several advantages of  using  Chebyshev wavelets approximation, therefore Chebyshev 

wavelets have become increasingly crucial in numerical analysis. It is well known that there are four kinds of 

Chebyshev wavelets. In the literature, there is a great concentration on the first and second kinds of Chebyshev 

wavelets   
 ( ) and   

 ( ) respectively and their various use sapplications. A numerical method for one-

dimensional Bratu's problem based on Chebyshev wavelets of the first kind was presented in [1], 

FariborziAraghi [2] proposed a method to approximate the solution of a linear Fredholm integro-differential 

equation via Chebyshev wavelets of the first kind. Ali [3] applied Chebyshev wavelets method for delay 

differential equations. See [4-8] for other works. 

Usually Chebyshev wavelets of third and fourth kinds are known less than first and second kinds in the 

literature. Third kind Chebyshev wavelets were studied [9-11] . We therefore intend in this work to introduce 

shifted Chebyshev wavelets of fourth kind together with convergence analysis and its error estimation. 

 

II. Fourth Kind Chebyshev Polynomials: 
Chebyshev polynomials of forth kind   ( ) are polynomials of degree n in x, and defined by [12,13] 

  ( )  
   (  (  ⁄ ) )

   (  ⁄ )
 

where                                                                                                                                                                                (1)  

         The polynomials   ( )  are orthogonal on (    ) , that is  

∫  ( )  ( )  ( )   ,
    
    

 

  

 

where  ( )  √
   

   
 

and they may be generated by using the recurrence relation  

  ( )        ( )      ( )                      n=2,3,….                                                                                    (2) 

with the initial values   ( )      ( )       

on the other hand, since the zeros of the sequences are as [15] 

  ( )          
   

    
            

      The polynomials are decomposed in the form 
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The shifted Chebyshev polynomials of the forth kind one defined on [   ],as  

                                           
 ( )    (    )                                                                                                                    (3) 

The orthogonality relation of   
 ( ) is given by 

∫   ( )  
 ( )  

 ( )   ,
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where    √
   

 
 

and                                              
   (    )  

 ( )      
 ( ) 

with  
      

       

 

III. Fourth Kind Chebyshev Wavelets 
Wavelets constitute a family of functions constructed from dilation and translation of single function 

called the mother wavelets when the dilation parameter a and the we have the following family of continuous 

wavelets  

    ( )  | |
   ⁄  (

   

 
)                

Chebyshev wavelets of the fourth kind     
 ( )   (       )have four arguments n argument, k can 

assume any positive integer, m is the order for Chebyshev polynomials   ( ) and t is the normalized time, they 

are defined on are interval [   ] by  

            
 ( )  ,

     ⁄   ( 
       )

   

    
   

 

         

          
                                                                         (4) 

 

where    ( )
 

√ 
  ( )          and m=0,1,….,M     n=1,2,…,     

we should note that in dealing with Chebyshev wavelets the weight function  ( ) have to be dilated and 

translated as 

  ( )   ( 
       ). 

 

IV. Convergene Analysis for Chebyshev Wavelets of Fourth Kind. 
A function  ( ) defined over [   ] may be expanded as:  

                                      ( )  ∑ ∑       
 ( )                                                                                                          

   
 
   (5) 

 

where 

                                         ( ( )    
 ( ))                                                                                                                        (6) 

In eq.(6).(   ) denotes the inner product with weight function   ( ). 
If the infinite series in eq.(5) is trancated then eq.(5) can be written as: 

 ( ) ̃      ( )  ∑∑       
 

   

   

  

   

 

                                                                             =   ( ) 
where F and  ( ) are       matrices given by 

                       [                                         ]
 
                                                                       (7) 
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 ( )        
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 ( )         
 ( )]

 
                                           (8) 

 

Theorem(1): (Convergence Analysis theorem) 

         Assume that a function f(t)     
 [   ]    √

   

 
 with |  ( )|     can be expanded as infinite series of 

fourth kind chebyshev wavelets, then the series converges uniformly to f(t). 

Proof: since     ( ( )    
 ( )) 

then 

                               ∫  ( )
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                               =∫
 
   
 

√ 
 ( )  ( 

       ) (        )                                                    
 
    ⁄

   
    
⁄

(10) 

If we make use of the substitution               in (10), yields 
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                                                                           (11) 

By using the integration by parts, 

Then eq.(11) becomes 
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After performing integration by parts again yields, 
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Consider: 
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Thus, we get 
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Similarly, 
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Using eqs.(14)and(15), one can get 
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Finally, since       , then 
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V. Accuracy Estimation of    
 ( ) 

 If the function f(x) is expanded in terms of fourth kind Chebyshev wavelets, 

                                   ( )  ∑ ∑       
 ( ) 

   
 
                                                                                                       (17) 

         It is not possible to perform computation an infinite number of terms, therefore we must truncate the series 

in (17). In place of (17), we take 
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so that  
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where r(x) is the residual function  
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we must select coefficients in eqs.(18) and (19) such that the norm of the residual function ‖ ( )‖ is less than 

some convergence criterion  ,that is 

(∫ ( ( )    )
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for all M greater than some value   . 

 

Theorem (2) 

       Let f(x) be a continuous function defined on [0,1), and |   ( )|   , then we have the following accuracy 

estimation 
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Proof  

       Since                   (∫ ( ( ))
  

 
  ( )   )

 

 
 

Then  

 

   
  ∫ ( ( ))

 
 

 

  ( )    ∫ ∑ ∑    
 (   

 ( ))
 
  ( )  

 

   

 

        

 

 

 

        =∑ ∑    
 ∫ (   

 ( ))
 
  ( )

 

 
   

   
 
         

 ∑ ∑    
 ( 

 

 )
 

∫   ( 
       ) (

  (        )

  (        )
)

 

 
 

    

   

    

  

 

   

 

        

 

Let            then          

Therefor 

   
  ∑ ∑    

      ∫   
 (
   

   
)

 

  

  

  

 

   

 

        

 



Convergence Analysis of shifted Fourth kind Chebyshev Wavelets 

www.iosrjournals.org                                                    58 | Page 

we have   
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Using eq.(16) to get 
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VI. Discussion 
Chebyshev wavelets of the fourth kind was presented and studied associated with some important 

properties. It was proved that the fourth kind Chebyshev wavelets expansion of afunction f(x), with bounded 

second derivative, converge uniformly to f(x). An error estimation criterion formula was also introduced in this 

work. 
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