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CONVERGENCE ANALYSIS OF STRUCTURE-PRESERVING
DOUBLING ALGORITHMS FOR RICCATI-TYPE MATRIX

EQUATIONS∗
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Abstract. In this paper, we introduce the doubling transformation, a structure-preserving
transformation for symplectic pencils, and present its basic properties. Based on these properties, a
unified convergence theory for the structure-preserving doubling algorithms for a class of Riccati-type
matrix equations is established, using only elementary matrix theory.
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1. Introduction. In this paper, we investigate the convergence of the structure-
preserving doubling algorithms (SDAs) for the symmetric positive (semi)definite so-
lutions to the following Riccati-type matrix equations:

• Continuous-time algebraic Riccati equation (CARE) [22, 27]:

−XGX + ATX + XA + H = 0,(1.1)

where A,H,G ∈ R
n×n with G and H being symmetric positive semidefinite.

• Discrete-time algebraic Riccati equation (DARE) [22, 27]:

X = ATX(I + GX)−1A + H,(1.2)

where A,H,G ∈ R
n×n with G and H being symmetric positive semidefinite.

• Nonlinear matrix equation with the plus sign (NME-P) [3]:

X + ATX−1A = Q,(1.3)

where A,Q ∈ R
n×n with Q being symmetric positive definite.

• Nonlinear matrix equation with the minus sign (NME-M) [12]:

X −ATX−1A = Q,(1.4)

where A,Q ∈ R
n×n with Q being symmetric positive definite.

The Riccati-type matrix equations occur in many important applications (see
[3, 12, 22, 27] and references therein). The nonlinear matrix equations CARE and
DARE have been studied extensively (see [1, 2, 4, 5, 6, 7, 19, 8, 14, 15, 18, 20, 21, 22,
23, 24, 25, 26, 27, 29, 30, 31, 34]). Recently, the nonlinear matrix equations NME-P
and NME-M have been studied in [3, 10, 11, 12, 16, 17, 28, 32, 35].
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A class of methods, referred to as doubling algorithms, attracted much interest
in the 1970s and ’80s (see [2] and references therein). These methods originate from
the fixed-point iteration derived from the DARE:

Xk+1 = ATXk(I + GXk)
−1A + H.

Instead of generating the sequence {Xk}, doubling algorithms generate {X2k}. Dou-
bling algorithms were largely forgotten in the past decade. Recently, doubling al-
gorithms have been revived for DAREs and CAREs because of their nice numerical
behavior—a quadratic convergence rate, low computational cost, and high numerical
reliability, despite the lack of a rigorous error analysis (see [19, 9, 8]). For the NME-Ps
and NME-Ms, Meini [28] and Guo [17] proposed iterative methods with a numerical
behavior similar to that of the SDAs for DAREs and CAREs.

In this paper, by employing techniques similar to those in [8], we derive two
SDAs for solving NME-Ps and NME-Ms, similar to those proposed by Meini in [28].
In general, we discover that our SDAs can be viewed as repeated applications of some
special structure-preserving transformations to the associated symplectic pencils. We
first introduce these doubling transformations, then develop a unified convergence
theory for the SDAs, based on the nice properties of the doubling transformations
using only elementary matrix theory.

Throughout this paper, the symbols ‖ · ‖2 denote the matrix spectral norm. For
a given n × n matrix A we use ρ(A) to denote the spectral radius of A. For real
symmetric matrices X and Y we write X > Y (X ≥ Y ) if X − Y is symmetric
positive definite (semidefinite).

The paper is organized as follows. In section 2, we introduce a structure-preserv-
ing transformation for symplectic pencils and show its basic properties. In section 3,
we analyze the convergence of the SDAs for the DARE and the CARE. In section 4,
we derive the SDAs for solving the NME-P and the NME-M by using the doubling
transformations, and establish the convergence theory of SDAs. Concluding remarks
are given in section 5.

2. Doubling transformation. In this section, we introduce a structure-pre-
serving transformation for symplectic pencils and investigate its basic properties.
Based on the swapping and collapsing techniques in [4, 7, 6, 5], we begin with the
definition of the transformation.

For M,L ∈ R
2n×2n, let M − λL be a symplectic pencil, i.e.,

MJMT = LJLT , J =

[
0 I

−I 0

]
.(2.1)

Define

N (M,L) =

{
[M∗, L∗] : M∗, L∗ ∈ R

2n×2n, rank[M∗, L∗] = 2n, [M∗, L∗]

[
L

−M

]
= 0

}
.

(2.2)

Since rank
[

L
−M

]
≤ 2n, it follows that N (M,L) �= ∅. For any given [M∗, L∗] ∈

N (M,L), define

M̂ = M∗M, L̂ = L∗L.(2.3)

The transformation

M − λL −→ M̂ − λL̂

is called a doubling transformation.
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An important feature of this kind of transformation is that it is structure-preserving,
eigenspace-preserving, and eigenvalue-squaring, which has been shown in [4, 5, 33].
We quote the basic properties in the following theorem.

Theorem 2.1. Assume that the pencil M̂ − λL̂ is the result of a doubling trans-
formation of the symplectic pencil M − λL. Then we have the following:

(a) The pencil M̂ − λL̂ is symplectic.

(b) If M [ UV ] = L [ UV ]S, where U, V ∈ R
n×m and S ∈ R

m×m, then M̂ [ UV ] =

L̂ [ UV ]S2.
(c) If the pencil M − λL has the Kronecker canonical form

WMZ =

[
Jr 0
0 I2n−r

]
, WLZ =

[
Ir 0
0 N2n−r

]
,(2.4)

where W,Z are nonsingular, Jr is a Jordan matrix, and N2n−r is a nilpotent matrix,

then there exists a nonsingular matrix Ŵ such that

ŴM̂Z =

[
J2
r 0
0 I2n−r

]
, Ŵ L̂Z =

[
Ir 0
0 N2

2n−r

]
.(2.5)

Remark 2.1. (i) A subspace W of R
2n is called a generalized eigenspace of a pencil

M −λL if W is spanned by the columns of W = [ UV ], where U, V ∈ R
n×m, and W has

full column rank and satisfies MW = LWS with S ∈ R
m×m. Therefore, part (b)

of Theorem 2.1 tells us that if W is a generalized eigenspace of a symplectic pencil
M −λL, then it is still a generalized eigenspace after a doubling transformation. This
is a cornerstone for the convergence theory of the SDAs for the Riccati-type matrix
equations in the next two sections.

(ii) A pencil M − λL is called regular if det(M − λL) does not vanish identically.
It is well known that a pencil is regular if and only if it has a Kronecker canonical form
as in (2.4). Thus, part (c) of Theorem 2.1 says that doubling transformations preserve
regularity and that λ is a eigenvalue of M − λL if and only if λ2 is an eigenvalue of
M̂ − λL̂.

A symplectic pencil M−λL is said to be in first standard symplectic form (SSF-1)
if it has the form

M =

[
A 0

−H I

]
, L =

[
I G
0 AT

]
,(2.6)

with H,G ≥ 0; it is said to be in second standard symplectic form (SSF-2) if

M =

[
A 0
Q −I

]
, L =

[
−P I
AT 0

]
,(2.7)

with P,Q ≥ 0.
Note that one standard symplective form cannot be transformed to another by

left nonsingular and right symplectic equivalence transformations unless G in (2.6) or
P in (2.7) is positive definite. The following theorem shows that the two standard
symplectic forms are preserved by an appropriate choice of doubling transformations.

Theorem 2.2. (a) Let M − λL be in SSF-1. Then [M∗, L∗] ∈ N (M,L) can be

constructed such that after the corresponding doubling transformation, M̂ −λL̂ is still
in SSF-1.
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(b) Let M − λL be in SSF-2. If Q − P > 0 and Q − AT (Q − P )−1A ≥ 0, then
[M∗, L∗] ∈ N (M,L) can be constructed such that after the corresponding doubling

transformation, M̂ − λL̂ is still in SSF-2.
Proof. (a) Applying block Gaussian elimination and row permutation to

[
L

−M

]
,

we get

M∗ =

[
A(I + GH)−1 0

−AT (I + HG)−1H I

]
, L∗ =

[
I AG(I + HG)−1

0 AT (I + HG)−1

]
(2.8)

such that

M∗L = L∗M,(2.9)

i.e., [M∗, L∗] ∈ N (M,L). Here the Sherman–Morrison–Woodbury formula (see, e.g.,
[13, p. 50]) is used. For more details, see [8]. We then compute L∗L and M∗M to
produce

M̂ = M∗M =

[
Â 0

−Ĥ I

]
, L̂ = L∗L =

[
I Ĝ

0 ÂT

]
,(2.10)

where

Â = A(I + GH)−1A,(2.11)

Ĝ = G + AG(I + HG)−1AT ,(2.12)

Ĥ = H + AT (I + HG)−1HA.(2.13)

It is clear that the resulting pencil is still in SSF-1.
(b) Similarly, under the condition Q−P > 0, we can compute [M∗, L∗] ∈ N (M,L)

with

M∗ =

[
A(Q− P )−1 0

−AT (Q− P )−1 I

]
, L∗ =

[
I −A(Q− P )−1

0 AT (Q− P )−1

]
.(2.14)

Direct calculation gives rise to

M̂ = M∗M =

[
Â 0

Q̂ −I

]
, L̂ = L∗L =

[
−P̂ I

ÂT 0

]
,(2.15)

where

Â = A(Q− P )−1A,(2.16)

Q̂ = Q−AT (Q− P )−1A,(2.17)

P̂ = P + A(Q− P )−1AT .(2.18)

The assumption Q − AT (Q − P )−1A ≥ 0 implies that the resulting pencil is still in
SSF-2.

Remark 2.2. The proof of Theorem 2.2 provided us with the well-defined compu-
tation formulae for the special structure-preserving doubling transformations, which
is the basis for the SDAs for solving the Riccati-type matrix equations.
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3. SDAs for preserving SSF-1. In this section, we first state the SDAs pro-
posed in [8] and [9], respectively, for solving DAREs and CAREs. Then we use the
technique established in the last section to develop the convergence theory of the
SDAs.

3.1. SDA for solving DAREs. It is well known [27] that the DARE (1.2) has
a symmetric positive semidefinite solution X (i.e., X ≥ 0) if and only if X satisfies
that

M

[
I
X

]
= L

[
I
X

]
S(3.1)

for some stable matrix S ∈ R
n×n, where

M =

[
A 0

−H I

]
, L =

[
I G
0 AT

]
.(3.2)

Notice that the pencil M − λL is in SSF-1. Therefore, repeated applications of the
special doubling transformation defined in (2.11)–(2.13) gives rise to the following
structure-preserving doubling algorithm.

Algorithm SDA-1.

A0 = A, G0 = G, H0 = H,

Ak+1 = Ak(I + GkHk)
−1Ak,

Gk+1 = Gk + AkGk(I + HkGk)
−1AT

k ,

Hk+1 = Hk + AT
k (I + HkGk)

−1HkAk.

This is the SDA described in [8], in which extensive numerical experiments show
that this algorithm is efficient and competitive.

3.2. SDA for solving CAREs. Assume that X ≥ 0 solves the CARE (1.1). It
is well known that the CARE (1.1) can be rewritten as

H
[
I
X

]
=

[
I
X

]
R,(3.3)

where

H =

[
A −G

−H −AT

]
, R = A−GX.

The matrix H is a Hamiltonian matrix, i.e., (HJ)T = HJ . Using a Cayley transfor-
mation with some appropriate γ > 0, we can transform (3.3) into the form

M

[
I
X

]
= L

[
I
X

]
S,(3.4)

where

M = H + γI, L = H− γI, S = (R− γI)−1(R + γI).

Now assume that we have chosen a γ > 0 such that the matrices

Aγ = A− γI and Wγ = AT
γ + HA−1

γ G(3.5)
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are nonsingular. Chu, Fan, and Lin [9] proposed a method for computing γ such that
both Aγ and Wγ are well conditioned. Let

T1 =

[
A−1

γ 0
HA−1

γ I

]
, T2 =

[
I −A−1

γ GW−1
γ

0 −W−1
γ

]
,(3.6)

which are obtained by alternately applying block Gaussian elimination to the matrices
L and M (see [9] for more details). Then, direct calculations give rise to

M̂ = T2T1M =

[
Â 0

−Ĥ I

]
, L̂ = T2T1L =

[
I Ĝ

0 ÂT

]
,

where

Â = I + 2γW−T
γ , Ĝ = 2γA−1

γ GW−1
γ , Ĥ = 2γW−1

γ HA−1
γ .

Here the Sherman–Morrison–Woodbury formula is used. Since γ > 0 and H,G ≥ 0
implies that Ĝ, Ĥ ≥ 0, it follows that the resulting pencil M̂ − λL̂ is in SSF-1. In
addition, it follows from (3.4) that

M̂

[
I
X

]
= L̂

[
I
X

]
S.(3.7)

Thus, beginning with (3.7), following the same lines as SDA-1 for solving the
DARE, we can construct a matrix sequence to approximate the unique symmetric
positive semidefinite solution X to the CARE (1.1). For more details, see [9].

3.3. Convergence analysis of SDA-1. Now we establish the convergence the-
ory of SDA-1 using Theorem 2.1. The main results are listed in the following theorem.

Theorem 3.1. Assume that X,Y ≥ 0 satisfies that

X = ATX(I + GX)−1A + H,(3.8)

Y = AY (I + HY )−1AT + G,(3.9)

where G,H ≥ 0, and let

S = (I + GX)−1A, T = (I + HY )−1AT .(3.10)

Then the matrix sequences {Ak}, {Gk}, and {Hk} generated by SDA-1 satisfy

(a) Ak = (I + GkX)S2k

;
(b) H ≤ Hk ≤ Hk+1 ≤ X and

X −Hk = (ST )2
k

(X + XGkX)S2k ≤ (ST )2
k

(X + XYX)S2k

;(3.11)

(c) G ≤ Gk ≤ Gk+1 ≤ Y and

Y −Gk = (TT )2
k

(Y + Y HkY )T 2k ≤ (TT )2
k

(Y + Y XY )T 2k

.(3.12)

Proof. Notice that U, V ≥ 0 implies that I + UV is nonsingular and V (I +
UV )−1, (I + UV )−1U ≥ 0. It follows that SDA-1 is well defined and

H = H0 ≤ Hk ≤ Hk+1 and G = G0 ≤ Gk ≤ Gk+1.(3.13)
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Define

Mk =

[
Ak 0

−Hk I

]
, Lk =

[
I Gk

0 AT
k

]
.

Then the pencil Mk+1−λLk+1 is the result of doubling-transforming the pencil Mk−
λLk. Since (3.8) implies

M0

[
I
X

]
= L0

[
I
X

]
S,(3.14)

where S is defined by (3.10), repeated applications of part (b) of Theorem 2.1 produce

Mk

[
I
X

]
= Lk

[
I
X

]
S2k

.(3.15)

Equating the blocks of (3.15) then yields

Ak = (I + GkX)S2k

,(3.16)

X −Hk = AT
kXS2k

.(3.17)

Combining (3.16) with (3.17) gives rise to

X −Hk = (ST )2
k

(X + XGkX)S2k

.(3.18)

This, together with (I + XGk)X ≥ 0, implies that X −Hk ≥ 0, i.e., X ≥ Hk.
Similarly, (3.9) can be rewritten as

M0

[
−Y
I

]
T = L0

[
−Y
I

]
,(3.19)

where T is defined by (3.10), and from (3.19) we can derive that

Y −Gk = (TT )2
k

(Y + Y HkY )T 2k

,

implying that Y ≥ Gk. Thus, the theorem is proved.
Let

W =

[
L

[
I
X

]
,M

[
−Y
I

]]
, Z =

[
I −Y
X I

]
.

Noting that M0 = M , L0 = L, and X,Y ≥ 0, it follows from (3.14) and (3.19) that
W and Z are nonsingular and satisfy

W−1MZ =

[
S 0
0 I

]
, W−1LZ =

[
I 0
0 T

]
.

Thus, by the spectral properties of symplectic pencils, it follows that if ρ(S) < 1,
then we must have ρ(T ) = ρ(S) < 1. In addition, it is well known that 0 ≤ U ≤ V
implies that ‖U‖2 ≤ ‖V ‖2. Consequently from Theorem 3.1, we immediately get the
following convergence result for SDA-1.

Corollary 3.2. Under the hypothesis of Theorem 3.1, if ρ(S) < 1, then we
have
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(a) ‖Ak‖2 ≤ (1 + ‖X‖2‖Y ‖2)‖S2k‖2 −→ 0 as k → ∞;

(b) ‖X −Hk‖2 ≤ ‖X + XYX‖2‖S2k‖2
2 −→ 0 as k → ∞;

(c) ‖Y −Gk‖2 ≤ ‖Y + Y XY ‖2‖T 2k‖2
2 −→ 0 as k → ∞.

Remark 3.1. (i) Convergence results similar to those in Corollary 3.2 were ob-
tained in [8]. In contrast to the work of [8], however, our analysis is simpler and our
convergence results are stronger. In Theorem 3.1, we show explicit expressions of Ak,
X −Hk, and Y −Gk, respectively. Furthermore, Corollary 3.2 contains simple upper
bounds of ‖Ak‖2, ‖X −Hk‖2, and ‖Y −Gk‖2 in terms of only S, X, and Y .

(ii) Again from parts (b) and (c) of Theorem 3.1, the matrix sequences {Hk}
and {Gk} are monotonically increasing and bounded above, and hence there exist
symmetric positive semidefinite matrices H̄ and Ḡ such that

lim
k→∞

Hk = H̄, lim
k→∞

Gk = Ḡ.

Corollary 3.2 tells us that if ρ(S) < 1, then X = H̄ and Y = Ḡ.
Remark 3.2. Let G = BR−1BT ≥ 0, with R > 0, let H = CTC ≥ 0 in the DARE

(3.8), and assume that (A,B) is stabilizable and (A,C) is detectable. Then it is well
known that the DARE (3.8) and its dual (3.9), respectively, have symmetric positive
semidefinite solutions X and Y , and that ρ(S) < 1 (see, e.g., [25, 29] for details).
Thus the conditions in Corollary 3.2 are satisfied. In fact, it is easy to verify that if
the DARE (3.8) and its dual (3.9), respectively, have symmetric positive semidefinite
solutions X and Y , with S = (I + GX)−1A and ρ(S) < 1, then (A,B) is stabilizable
and (A,C) is detectable. A similar argument also holds for the CARE (1.1) (see [9]
for details).

4. SDAs for preserving SSF-2. In this section, we shall use the doubling
transformations defined in the last section to derive two SDAs for solving the NME-Ps
and NME-Ms. Then, we use the technique established in the last section to develop
the convergence theory of these SDAs.

4.1. SDA for solving NME-Ps. It is easy to verify that the NME-P (1.3) has
a symmetric positive definite X (i.e., X > 0) if and only if X satisfies

M

[
I
X

]
= L

[
I
X

]
S(4.1)

for some matrix S ∈ R
n×n, where

M =

[
A 0
Q −I

]
, L =

[
0 I
AT 0

]
.(4.2)

Notice that the pencil M − λL is in SSF-2. Therefore, applying the special doubling
transformation defined in (2.16)–(2.18) repeatedly gives rise to the following SDA.

Algorithm SDA-2.

A0 = A, Q0 = Q, P0 = 0,

Ak+1 = Ak(Qk − Pk)
−1Ak,

Qk+1 = Qk −AT
k (Qk − Pk)

−1Ak,

Pk+1 = Pk + Ak(Qk − Pk)
−1AT

k .

Remark 4.1. To ensure that the iterations in SDA-2 are well defined, the matrix
Qk − Pk must be symmetric positive definite for all k. This can be guaranteed if the
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NME-P (1.3) has a symmetric positive solution (see Theorem 4.1), as we shall prove
below.

Remark 4.2. It is interesting to note that SDA-2 is essentially the same as
Algorithm 3.1 proposed in [28] with Qk − Pk and Qk in SDA-2 replaced by Qk and
Xk, respectively. In other words, Algorithm 3.1 in [28] is an SDA. It was pointed out
that this algorithm has very nice numerical behavior, with quadratical convergence
rate, low computational cost, and good numerical stability. For more details, see
[28, 17].

4.2. SDA for solving NEM-Ms. It is proved in [12] that there always exists
a unique positive definite solution X to the NME-M

X −ATX−1A = Q(4.3)

and, moreover, that the spectral radius of X−1A is strictly less than 1. The solution
X is closely related to the generalized eigenspace of the pencil

M − λL =

[
A 0

−Q I

]
− λ

[
0 I
AT 0

]
.(4.4)

In fact, it is easy to verify that a symmetric positive definite matrix X is a solution
to the NME-M (4.3) if and only if X satisfies that

M

[
I
X

]
= L

[
I
X

]
S(4.5)

for some matrix S ∈ R
n×n.

Although the pencil (4.4) is not symplectic, we can use the same technique as
described in section 2 to transform it into a symplectic pencil. Take

M∗ =

[
AQ−1 0
ATQ−1 −I

]
, L∗ =

[
I AQ−1

0 ATQ−1

]
;

then we have

M∗L = L∗M.(4.6)

Direct calculations lead to

M̂0 = M∗M =

[
Â 0

Q̂ −I

]
, L̂0 = L∗L =

[
P̂ I

ÂT 0

]
,

where

Â = AQ−1A, Q̂ = Q + ATQ−1A, P̂ = AQ−1AT .(4.7)

The pencil M̂0 − λL̂0 is symplectic but neither an SSF-1 nor an SSF-2.
Assume that X > 0 is the unique symmetric positive solution to the NME-M

(4.3). Then it satisfies (4.5) with S = X−1A. From part (b) of Theorem 2.1, we have

M̂0

[
I
X

]
= L̂0

[
I
X

]
S2.(4.8)
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Now let[
I

X̂

]
=

[
I 0

P̂ I

] [
I
X

]
, M̂ =

[
Â 0

Q̂ + P̂ −I

]
, L̂ =

[
0 I

ÂT 0

]
.

Then it follows from (4.8) that

M̂

[
I

X̂

]
= L̂

[
I

X̂

]
S2.(4.9)

Clearly, the pencil M̂ − λL̂ is in SSF-2. Thus, beginning with (4.9), following the
same lines as SDA-2 for solving the NME-P (1.3), we can construct an approximating

matrix sequence with limit X̂. Then the unique symmetric positive definite solution
X to the NME-M (4.3) can be obtained by computing X = X̂ − P̂ .

4.3. Convergence analysis of SDA-2. Now we establish the convergence the-
ory of SDA-2 based on Theorem 2.1. The main results are listed in the following
theorem.

Theorem 4.1. Assume that X > 0 satisfies that

X + ATX−1A = Q,(4.10)

where Q > 0, and let S = X−1A. Then the matrix sequences {Ak}, {Qk}, and {Pk}
generated by SDA-2 satisfy

(a) Ak = (X − Pk)S
2k

;
(b) 0 ≤ Pk ≤ Pk+1 < X and

Qk − Pk = (X − Pk) + AT
k (X − Pk)

−1Ak > 0;(4.11)

(c) X ≤ Qk+1 ≤ Qk ≤ Q and

Qk −X = (ST )2
k

(X − Pk)S
2k ≤ (ST )2

k

XS2k

.(4.12)

Proof. Using mathematical induction, denote

Mk =

[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
AT

k 0

]
,

where P0 = 0.
For k = 1, since Q0 − P0 = Q > 0, it follows that A1, Q1, P1 are all well defined.

Using (4.10), we have[
X A
AT Q

]
=

[
I 0

ATX−1 I

] [
X 0
0 X

] [
I X−1A
0 I

]
> 0.(4.13)

Further computations yield[
I −AQ−1

0 I

] [
X A
AT Q

] [
I 0

−Q−1AT I

]
=

[
X −AQ−1AT 0

0 Q

]
.(4.14)

Combining (4.14) and (4.13), we obtain

X − P1 = X −AQ−1AT > 0.(4.15)
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From (4.10), it is easy to verify that X satisfies

M0

[
I
X

]
= L0

[
I
X

]
S

with S = X−1A. Since M1 − λL1 is the result of doubling-transforming M0 − λL0,
part (b) of Theorem 2.1 leads to

M1

[
I
X

]
= L1

[
I
X

]
S2.(4.16)

Equating the blocks of (4.16) gives rise to

A1 = (X − P1)S
2, Q1 −X = AT

1 S
2.

This, together with (4.15), implies that

Q1 − P1 = (X − P1) + AT
1 (X − P1)

−1A1 > 0,(4.17)

Q1 −X = (ST )2(X − P1)S
2 ≥ 0.(4.18)

Obviously, the inequalities Q = Q0 ≥ Q1 and 0 = P0 ≤ P1 hold. Thus, we have
proved that the theorem is true for k = 1.

Next, considering the k+1 case, we assume that the theorem is true for all positive
integers less than or equal to k. Since Qk −Pk > 0, it follows that Ak+1, Qk+1, Pk+1

are all well defined. Similar to the proof of (4.15), (4.11) implies

X − Pk+1 = (X − Pk) −Ak(Qk − Pk)
−1AT

k > 0.

Recall that Mj+1 − λLj+1 is the result of doubling-transforming Mj − λLj for
j = 0, 1, . . . , k. Applying part (b) of Theorem 2.1 k + 1 times, we get

Mk+1

[
I
X

]
= Lk+1

[
I
X

]
S2k+1

.(4.19)

From (4.19), following the same lines as the proof of (4.17) and (4.18), it can be
proved that

Qk+1 − Pk+1 = (X − Pk+1) + AT
k+1(X − Pk+1)

−1Ak+1 > 0,

Qk+1 −X = (ST )2
k+1

(X − Pk+1)S
2k+1 ≥ 0.

Clearly, Pk ≤ Pk+1 and Qk ≥ Qk+1. This shows that the theorem is also true for inte-
gers k+1. By induction principle, the theorem is true for all positive integers k.

Remark 4.3. Similar results were obtained in [28] by using properties of cyclic
reduction and spectral properties of block Toeplitz matrices with nonnegative definite
matrix-valued generating functions. In contrast, our analysis is simpler and the results
are stronger. In Theorem 4.1, we show the explicit expressions of Ak and Qk − X,
as well as the monotonicity properties of {Pk} and {Qk}. Furthermore, in part (b)
we prove that Qk − Pk is symmetric positive definite for all k, which guarantees that
SDA-2 is well defined.

It was proved in [11] that if the NME-P (1.3) has a symmetric positive definite
solution, then all symmetric solutions are positive definite with the maximal and
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minimal solutions X+ and X−. Since Theorem 4.1 is true for any symmetric positive
definite solution X, the following result follows immediately.

Corollary 4.2. Under the hypothesis of Theorem 4.1, we have

Qk − Pk > X+ −X− ≥ 0

for all k, where X+ and X− are the maximal and minimal solutions of (1.3), respec-
tively.

In addition, from Theorem 4.1, we obtain the following corollary.

Corollary 4.3. Under the hypothesis of Theorem 4.1, if ρ(S) < 1, then we
have

(a) ‖Ak‖2 ≤ ‖X‖2‖S2k‖2 −→ 0 as k → ∞;

(b) ‖X −Qk‖2 ≤ ‖X‖2‖S2k‖2
2 −→ 0 as k → ∞.

Remark 4.4. (i) Here we see that the upper bounds of ‖Ak‖2 and ‖X −Qk‖2 are
in terms of only X and S ≡ X−1A.

(ii) By Theorem 4.1, the matrix sequence {Qk} is monotonically decreasing and

bounded below by X > 0. Hence, there exists Q̄ > 0 such that limk→∞ Qk = Q̄.
Corollary 4.3 tells us that if ρ(S) < 1, then X = Q̄. In fact, X will then be the
maximal solution of (1.3). Moreover, it has been proved that X is the maximal
solution of (1.3) if and only if ρ(S) ≤ 1 (see [17]). Now assuming that X = X+ is the
maximal solution of (1.3), it is natural to ask whether Q̄ = X+ if ρ(S) = 1. In [17],
Guo proved that if ρ(S) = 1 and all eigenvalues of S on the unit circle are semisimple,
then Q̄ = X+ is still true. In this case, the convergence is at least linear with rate 1/2.
When S has nonsemisimple unimodular eigenvalues, it is unclear whether Q̄ = X+.

Remark 4.5. It is proved that the NME-P (1.3) has a symmetric positive definite
solution X if and only if the nonlinear matrix equation

Y + AY −1AT = Q(4.20)

has a symmetric positive solution Y (see, for e.g., [28]). Assume that the maximal
solution of (4.20) is Y+. Then it follows from (4.20) that[

A 0
Q −I

] [
I

Q− Y+

]
T =

[
0 I
AT 0

] [
I

Q− Y+

]
,(4.21)

where T = Y −1
+ AT . Similar to the proof of (4.12), we can show from (4.21) that

0 ≤ Q− Y+ − Pk = (TT )2
k

(Qk −Q + Y+)T 2k ≤ (TT )2
k

Y+T
2k

,

where Pk and Qk are generated by SDA-2. Since ρ(T ) = ρ(Y −1
+ AT ) = ρ(X−1

+ A)
(see, e.g., [28]), where X+ is the maximal solution of the NME-P (1.3), it follows that
limk→∞ Pk = Q− Y+ under the conditions of Corollary 4.3. If A is nonsingular, then
X− = Q− Y+ (see [28]), where X− is the minimal solution of the NME-P (1.3), and
thus in this case we have limk→∞ Pk = X−.

Remark 4.6. Since limk→∞(Qk−Pk) = X+−X− if A is nonsingular and ρ(S) < 1,
the lower bound X+ −X− in Corollary 4.2 is the best one. However, X+ −X− may
be singular and, indeed, it can be the zero matrix. For example, the NME-P with
Q = I and A = 1

2I has X+ = X− = 1
2I.
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5. Conclusions. In this paper, we have introduced a structure-preserving trans-
formation for symplectic pencils, referred to as the doubling transformation, and in-
vestigated its basic properties. Based on these nice properties, a unified convergence
theory for the SDAs for solving a class of Riccati-type matrix equations has been
established, using only elementary matrix theory.
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