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Convergence Analysis of the Fixed-Point Method with the Hybrid

Analytical Modeling for 2-D Nonlinear Magnetostatic Problems

D. Ceylan, L. A. J. Friedrich, K. O. Boynov, and E. A. Lomonova

Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

This paper presents the convergence analysis of the fixed-point method (FPM) to model the nonlinear magnetic characteristics
of a 2-D magnetostatic problem. In this study, FPM is used as the iterative nonlinear solver of the hybrid analytical modeling
(HAM) technique for the accurate computation of the magnetic field distribution. The benchmark consists of a stator with excitation
windings, an airgap, and a slotless mover. The relative errors between two successive iterations are calculated using different error
estimators: the attraction force on the mover, the Fourier coefficients defined in the airgap, the magnetic flux density, and the magnetic
scalar potential distributions. The effect of the number of mesh elements and harmonics on the accuracy and computational cost of
the model is investigated for different levels of magnetic saturation. It is observed that the maximum rate of change in the relative
difference of attraction force during the iterations is found to be 0.52 under the magnetic saturation. In addition, the absolute error
of the attraction force between the developed hybrid model with FPM and the finite element method (FEM) is achieved to be 0.18%,
while HAM has approximately three times less number of degrees-of-freedom compared to FEM.

Index Terms—Hybrid analytical modeling, fixed-point method, nonlinear magnetic characteristics, convergence analysis.

I. INTRODUCTION

THE fast and accurate computation of magnetostatic prob-

lems with nonlinear magnetic characteristics requires the

coupling of the electromagnetic modeling with a nonlinear

solver. The most popular approach to these problems is

using the combination of the finite element method (FEM)

and the Newton-Raphson method (NRM). There exist many

commercial software packages with the capability of taking

the nonlinear magnetic characteristic into account using these

methods [1], [2]. However, since the derivation of the Jacobian

matrix in NRM is challenging, the fixed-point method (FPM)

can be considered as an alternative to model the nonlinear

magnetic properties. FPM is a very strong candidate especially

for the magnetic hysteresis and eddy current problems because

of its robust algorithm and stable convergence [3], [4]. Since

FPM does not use the Jacobian matrix of the nonlinear

equations, it does not suffer from the instability caused by

the derivative [5]. In addition, FEM suffers from its large

computational cost due to a large number of mesh elements

in the airgap. As an alternative to FEM, a relatively new and

less time-consuming modeling method called hybrid analytical

modeling (HAM) is proposed in [6]. HAM uses the magnetic

equivalent circuit (MEC) theory in the stator and rotor, while

the airgap is modeled using Fourier analysis (FA). MEC and

FA are coupled by interface conditions at the interface. The

main advantage of HAM compared to the classical FEM is its

low computational cost because of its mesh-free airgap.

In [7], HAM is applied to a flux switching permanent

magnet machine with a nonlinear solver developed using a

golden section search (GSS) algorithm, where the implemen-

tation of neither HAM nor GSS are explained in details.

The modeling formulation of HAM is discussed in detail in

[8] and [9], assuming that the soft-magnetic materials have

constant permeability. A nonlinear hybrid analytical model is

developed in [10] to investigate the cogging force of linear

permanent magnet machines. However, the consideration of

Fig. 1. Analyzed E-core benchmark.

magnetic saturation is not explained in detail. Moreover, the

recent improvements on HAM are discussed in [11] with a

focus on increasing the accuracy and computational speed.

Lastly, Bao et al. present a nonlinear HAM with FPM includ-

ing the general modeling formulation in [12]. However, the

convergence analysis of FPM used in HAM has never been

discussed in the literature.

In this paper, an E-core benchmark is modeled using HAM

coupled with FPM in a 2-D Cartesian coordinate system. The

convergence of FPM is investigated regarding the aforemen-

tioned error estimators considering the number of harmonics,

mesh refinements, and saturation levels.

II. BENCHMARK

The analyzed benchmark is shown in Fig. 1 where

hb, ht, hg, hm, wt and ws are 1, 3, 0.5, 1, 2 and 4 mm,

respectively. This benchmark is a simplified version of a

reluctance machine structure. The soft-magnetic material of

the iron regions is selected as µ-metal. While Dirichlet bound-

ary conditions are imposed on the top and bottom, periodic

boundary conditions are applied to the left and right edges of

the geometry.
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Fig. 2. Single mesh element in a MEC region.

III. MODELING METHOD

In this section, the electromagnetic modeling of the bench-

mark using HAM and the development of a nonlinear solver

using FPM for HAM are discussed.

A. Hybrid Analytical Modeling (HAM)

HAM uses the strong coupling between the magnetic equiv-

alent circuit (MEC) theory and Fourier analysis (FA). While

the mover and stator are modeled using MEC, FA is used to

calculate the magnetic field distribution in the airgap.

1) MEC Region

MEC regions are divided into mesh elements to create a

reluctance network as implemented in [13]. The schematics of

a single mesh element that is not located on a special boundary

is given in Fig. 2 with its neighbor nodes. In Fig. 2, ψ, φ, R,

and F represent the magnetic scalar potential, the magnetic

flux, the magnetic reluctance, and the magneto-motive force

(MMF), respectively. In HAM, the flux conservation equation

is used for each mesh element

φ
i,j
x− + φ

i,j
y− − φ

i,j
x+ − φ

i,j
y+ = 0, (1)

where φ
i,j
x− is expressed by

φ
i,j
x− =

ψi,j−1 − ψi,j + F i,j−1
x+ + F i,j

x−

R
i,j−1
x+ + R

i,j
x−

. (2)

The other three flux terms, φ
i,j
x+, φ

i,j
y−, and φ

i,j
y+, of (1) are

expressed in the same way. R values in (2) are calculated using

the dimensions of the mesh element, its relative permeability

(µr), the permeability of free space (µ0), and the stack length

of the benchmark (l)

R
i,j
x+ = R

i,j
x− =

(xi,j+ − x
i,j
− )

2µi,j
r µ0 (y

i,j
+ − y

i,j
− ) l

. (3)

In [14], it is explained that current related MMF distribution

in Cartesian coordinate system can be defined either in x-

direction (F i,j
y± = 0) or y-direction (F i,j

x± = 0). In this study, x-

direction is selected as the MMF distribution direction. While

F i,j
x± is imposed to be zero on the interface between stator

slots and airgap, it is linearly increased starting from zero

in the stator slots in y-direction until the boundary between

stator slot and stator back iron. In the stator back iron F i,j
x± is

constant and equal to the value on the boundary between slot

and back iron, which is defined as

F i,j
x+ = F i,j

x− =
(xi,j+ − x

i,j
− ) Js hs

2
. (4)

In addition, for the mesh elements located on the Dirichlet

boundary condition, (1) is modified. While φ
i,j
x+ is forced to

zero for the ones on the upper Dirichlet boundary, φ
i,j
x− is

zero for the ones on the lower Dirichlet boundary. Moreover,

for the ones located on the periodic boundary condition, (1)

is still valid. To apply the periodic boundary condition, the

last element, N , of each row, (i, N ), is connected to the first

element of the row, (i, 1).

2) FA Region

Unlike the stator and rotor, the airgap is modeled using

Fourier analysis (FA). In [15], the magnetic flux density is

expressed in x- and y-direction as follows

BFA
x (x, y) =

Nh
∑

n=1

[

(ane
wny + bne

−wny)sin(wnx)+

(−cne
wny − dne

−wny)cos(wnx)
]

,

(5)

BFA
y (x, y) =

Nh
∑

n=1

[

(cne
wny − dne

−wny)sin(wnx)+

(ane
wny − bne

−wny)cos(wnx)
]

.

(6)

In (5) and (6), Nh is the number of harmonics while an, bn, cn,

and dn are the Fourier coefficients. Moreover, wn is the spatial

frequency which is a function of the width of the periodical

section, τp, and harmonic index, n

wn =
2πn

τp
. (7)

3) Interface between MEC and FA Regions

The equations for the coupling MEC and FA regions are

derived in [9]. A brief summary of the equations used in

this study for the interface is presented in this section. The

coupling between MEC and FA models is obtained by two

boundary conditions

• Continuity of the magnetic flux density normal to the

interface,

• Continuity of the magnetic scalar potential at the inter-

face.

In order to equalize the magnetic flux densities normal to the

stator-airgap interface, the flux conservation equation, (1), is

modified to

φ
i,j
x− + φFA

y (j)− φ
i,j
x+ − φ

i,j
y+ = 0, (8)

where φFA
y (j) is the total magnetic flux entering the related

mesh element from the airgap. It is expressed as

φFA
y (j) = l

∫ x
(i,j)
+

x
(i,j)
−

BFA
y (x, y)dx. (9)
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By combining (8), (9) and (6), the boundary condition for the

continuity of the magnetic flux density normal to the stator-

airgap interface is obtained as

φ
i,j
x− − φ

i,j
x+ − φ

i,j
y+ = −

l

wn

Nh
∑

n=1

{

[

[sin(wn x
i,j
+ )− sin(wn x

i,j
− )][−cn e

wnyb − dn e
−wnyb ]

]

−

[

[cos(wn x
i,j
+ − cos(wn x

i,j
− )][an e

wnyb + bn e
−wnyb ]

]

}

,

(10)

where yb is the y-axis position of the stator-airgap interface

with respect to the coordinate system defined in the FA region.

The same boundary condition is applied to the airgap-rotor

interface. Moreover, since the MMF distribution on the stator-

airgap interface is zero,

~H = −∇ψ (11)

is valid on the interface to implement the continuity of the

magnetic scalar potential. Considering the continuity of ψ

on the stator-airgap interface and (11), another boundary

condition is introduced:

Hi,j
x = HFA

x (x, yb). (12)

In order to have the required number of equations or degrees-

of-freedom (dof = NxNy + 4Nh), (12) is converted into

spatial frequency domain with the same harmonic orders as

in the FA region as proposed in [9]. In dof, Nx, Ny and

Nh are the number of mesh elements in x- and y-direction,

and harmonics, respectively. Then, the magnetic field strength

in x-direction is integrated over the interface for both MEC

and FA expressions. Finally, the sine and cosine terms of

each harmonic of both regions are equalized. The resultant

equations are used in the model

−
2

wnτp

N
∑

j=1

[

( φ
i,j
x− + φ

i,j
x+

2µ0µ
i,j
r l(yi,j+ − y

i,j
− )

)(

cos(wnx
i,j
+ )

− cos(wnx
i,j
− )

)

]

=
cne

wny − dne
−wny

µFA
r µ0

,

(13)

2

wnτp

N
∑

j=1

[

( φ
i,j
x− + φ

i,j
x+

2µ0µ
i,j
r l(yi,j+ − y

i,j
− )

)(

sin(wnx
i,j
+ )

− sin(wnx
(i,j)
− )

)

]

=
ane

wny − bne
−wny

µFA
r µ0

.

(14)

B. Fixed-Point Method (FPM)

In FPM, the relative permeability and remanent flux density

of each mesh element are updated based on a specific strategy.

This strategy uses the modulus of the magnetic flux density at

the mesh node and returns two parameters which are graph-

ically illustrated in [12]: the derivative of the magnetic field

strength with respect to the magnetic flux density modulus

as the incremental permeability, µr, and the intercept as the

remanent flux density, Br, which is an additional MMF term

FBH
x−(i, j) = FBH

x+(i, j) =
y
i,j
+ − y

i,j
−

2µi,j
r µ0

Bi,j
x Bi,j

r

|Bi,j |
, (15)

FBH
y−(i, j) = FBH

y+(i, j) =
x
i,j
+ − x

i,j
−

2µi,j
r µ0

Bi,j
y Bi,j

r

|Bi,j |
. (16)

The additional MMF sources given in (15) and (16) are used

together with the current related MMF sources in the system

of nonlinear equations which is solved iteratively. In each

iteration, Br and µr matrices are updated according to the

magnetic flux density distribution. To estimate the error during

the convergence of the nonlinear solver, different global or

local parameters are used such as magnetic scalar potential,

magnetic flux density, attraction force or flux linkage.

IV. RESULTS

Firstly, the nonlinear benchmark problem is solved by

FEM with 21600 dof and triangular-shaped second-order mesh

elements using Comsol Multiphysics 5.4 software. In order

to determine the number of elements in different regions

of the benchmark, a mesh convergence study is carried for

FEM. The maximum size of the mesh elements near corners

is determined as 0.05 mm to avoid having large errors in

these regions. Then, the developed HAM is used with FPM

nonlinear solver for the same problem. In both methods, the

attraction force is calculated using the Maxwell stress tensor.

It is applied to a surface (S) enclosing one of the parts, but

the contribution to the integral of the Dirichlet and periodic

boundaries is equal to zero. The middle of the airgap is chosen

to minimize the numerical noise

Fy =
1

2µ0

∮

S

(B2
y +B2

x)dS. (17)

Combining (17), (5), (6) and the advantage of having an even

symmetric benchmark, Fy is derived as

Fy =
l τp

µ0

Nh
∑

n=1

cn dn. (18)

The absolute error is defined as the normalized difference

between the attraction force calculated using HAM (FHAM)

and FEM (FFEM). The variation of the absolute error with

respect to Nx and Ny , and Nh is presented in Fig. 3. While

Ny and Nh are 60 and 50 respectively in Fig. 3(a), Nx and

Nh are 120 and 50 respectively in Fig. 3(b). Moreover, in

Fig. 3(c), Nx and Ny are set to 120 and 60, respectively.

In addition, the current density (J) is selected as 20 A/mm2

to reach the nonlinear region of the magnetization curve of

the iron material. The purpose of this analysis is to achieve an

accurate hybrid analytical model and show the convergence of

the attraction force predicted by HAM under different mesh

and harmonic refinements. A discrepancy of less than 1%

is accepted as sufficient engineering accuracy for electrical

machine applications. The figure shows that 0.18% absolute

error in the attraction force is achieved with Nx=120, Ny=60,

and Nh=50. This shows that FPM used in HAM is able to

obtain similar accuracy as state-of-the-art high-order methods

[16]. On the other hand, it is also observed that analyzing

further than that point causes the system of equation to be ill-

conditioned, which leads to numerical errors in the solution.

However, since the selected model parameter values provide

acceptable accuracy, further investigation is not covered in
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(a) (b) (c)

Fig. 3. Effect of the number of mesh elements in x- and y-directions and harmonics on the absolute error of attraction force.

this study. After the refinements, HAM consists of 7200 MEC

elements and 200 Fourier coefficients that corresponds to 7400

dof.

The investigation of local distributions is also essential

to observe the absolute error for different sections of the

benchmark. In Fig. 4(a), the root mean square (rms) of the

error in the magnetic flux density distribution of the stator,

mover and airgap is presented with respect to the number of

dof. The rms of the magnetic flux density error is defined as

(BHAM −BFEM)rms =

√

√

√

√

1

N

N
∑

k=1

(Bk
FEM −Bk

HAM)2, (19)

where N is the total number of points. For the stator and

mover, the center of each mesh element is selected as a grid

point. Since there is no mesh element in the airgap, the grid

points are generated in the post-processing of HAM. In total,

600 grid points are used in the airgap in a way that the distance

between the neighboring points is 0.1 mm. Fig. 4(a) shows that

the decrease of the magnetic flux density error of the stator is

slower than others. The increase of the computational cost of a

single iteration with respect to the number of dof is presented

in Fig. 4(b). Moreover, it is observed that the computation

time does not change with the change of current density.

In order to observe the convergence of the FPM, different

error estimators are used in HAM. The relative difference

between successive iterations for a global parameter such as

force (εF ) and a local parameter such as the magnetic flux

density (εB) is expressed as

ε
(i)
F =

|F (i) − F (i−1)|

F (i)
, ε

(i)
B =

||B(i) −B(i−1)||

||B(i)||
. (20)

(a) (b)

Fig. 4. The change of absolute error in magnetic flux density and elapsed
time with the number of dof.

where || · || is the L2-norm. The same approach of local

parameters is applied to the magnetic scalar potential (ψ)

and Fourier coefficients (FC) for the same grid points used

in Fig. 4(a) and the results are presented in Fig. 5(a) for 20

A/mm2. In addition, the variation of the relative difference of

the attraction force under different saturation levels is given

in Fig. 5(b). In order to compare the speed of convergences,

the rates are estimated by relative differences following

∆F =
log10(ε

(i1)
F )− log10(ε

(i2)
F )

i2 − i1
, (21)

where ∆F is the convergence rate of the attraction force, i1
and i2 are the iteration indices. The initial (init) and average

(ave) slopes of different error estimators for different current

densities are calculated using (21) and presented in Table I.

Fig. 5(a) shows that the convergence of the magnetic flux

density is slower than the other error estimators. Fig. 5(b)

and Table I show that the convergence rate decreases with the

saturation. Table I shows that the convergence of any error

estimator is faster at the beginning of the iterations compared

to the rest. Fig. 5(b) shows that when the relative difference is

smaller than 10-5, the numerical error due to the ill-condition

number might disturb the smoothness of the convergence for

some error estimators and excitation levels. However, the

iterations can be stopped when the error estimators reach

some prescribed threshold. For instance, 10-4 on the force

estimator is sufficient for electrical machines applications. This

corresponds to two fixed-point iterations in mildly saturated

cases and four iterations for strongly saturated one.

Lastly, the resultant magnetic flux density distribution cal-

culated using HAM for 20 A/mm2 current density is presented

in Fig. 6(a). The finite element approximation to the magnetic

(a) (b)

Fig. 5. Relative difference between successive iterations for different error
estimators and excitation levels.
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(a) (b)

Fig. 6. Magnetic flux density distribution calculated using HAM and the difference between HAM and FEM.

TABLE I
INITIAL AND AVERAGE CONVERGENCE RATES WITH INCREASING

CURRENT DENSITY FOR THE DIFFERENT ERRORS ESTIMATORS.

J ∆ψ ∆F ∆FC ∆B

[A/mm2] init ave init ave init ave init ave

5 2.77 1.22 2.42 1.27 3.38 1.28 0.85 0.78
10 2.03 0.89 2.48 0.91 2.58 0.91 0.46 0.36
15 0.61 0.49 1.83 0.51 2.23 0.51 0.16 0.15
20 0.36 0.38 0.52 0.39 1.06 0.39 0.17 0.14

flux density is constructed by interpolation using the calculated

solution vector of FEM. In Fig. 6(b), the magnetic flux density

distribution of HAM is compared with the interpolated results

of the FEM for the position of each MEC elements and the

defined 0.1 mm grid in the airgap of HAM. The maximum

error is obtained as 50 mT, while the maximum flux density

in the benchmark is 0.6 T. In addition, the rms discrepancy

of the magnetic flux density is calculated as 9 mT using (19).

Since the global parameters, such as the attraction force or

inductance, are the result of an integration, the effect of the

maximum local error is negligible. Moreover, the maximum

error in the flux distribution is located on the corners of the

stator teeth. This is the main reason for the large rms error

of the magnetic flux density in the stator (Fig. 4(a)) and the

slow convergence of the magnetic flux density (Fig. 5(a)). To

improve on this result, the adaptive mesh refinement method

can be applied to the MEC regions to decrease the maximum

local error on the corners by optimizing the mesh size.

V. CONCLUSION

The accuracy and convergence of HAM with FPM is ana-

lyzed for a 2-D magnetostatic problem. The proposed method

is favorable to solve a wide spectrum of electromagnetic prob-

lems related to the reluctance machine including the magnetic

saturation. It is shown that the Fourier coefficient, scalar poten-

tials, and attraction force exhibit similar rates of convergence,

while the convergence of the magnetic flux density is slower

than the other proposed error estimators. Moreover, the initial

convergence rate of the attraction force is decreased from 2.42

to 0.52 when the current density is increased from 5 to 20

A/mm2. The reason is that a large electrical excitation results

in high magnetic saturation which increases the saturation

related MMF values in the reluctance network. FPM obtains

the field solution by updating these MMF values iteratively.

Hence, reaching the final distribution of the MMF is more time

consuming under stronger magnetic saturation. Although the

maximum discrepancy of the magnetic flux density is obtained

as 50 mT on the stator corners, the rms error including all

domains of the benchmark is calculated as 9 mT. Lastly, it

is demonstrated that an excellent agreement of the attraction

force, 0.18%, is obtained with the proposed approach with

three times less degrees-of-freedom as compared to FEM.
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