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_Abstract—The Gaussian mixture Probability Hypothesis Den- Anderson and Moore [6], and the fact that densities can be
sity (PHD) filter was proposed recently for jointly estimating the  represented by a linear combination of Gaussiank;irf4].
time-varying number of targets and their states from a sequence Taken with the convergence results of the error, the

of sets of observations without the need for measurement-to- G . ixt mati th to the t
track data association. It was shown that, under linear-Gaussian aussian mixiure approximation then cornverges to the true

assumptions, the posterior intensity at any point in time is a POSterior intensity.
Gaussian mixture. This article proves uniform convergence of  The results show that, under linear Gaussian assumptions

the errors lc? the a}lgoritthm an(lj Prg\éi}ges e"(?fr bounds for the  of the dynamic model, the Gaussian Mixture posterior in-
runing and merging stages. In addition, uniform convergence ; ; P ;
Eesultsgfor the ex?en%ed I%alman PHD Filter are given, an% the tensﬁy can approximate the true pg;tenor intensity to any
unscented Kalman PHD Filter implementation is discussed. desired degree of accuracy. In addition, error bounds have
been established for the pruning and merging stages of the
algorithm which ensure that the accuracy of these stages can
be controlled.

Index Terms— Multi-target tracking, optimal filtering, point
processes, random sets, PHD filter.

SP-EDICS: SSP-aFiltering, SSP-d Tracking algorithms.

Il. BACKGROUND

. INTRODUCTION The random-set framework for multiple target tracking
The closed-form solution to the PHD (Probability Hypothe(-je\/(alOped by Mahler [7] using Finite Set Statistics offers

sis Density) filter was recently derived to provide a solution fqar distinct alternative to the traditional approach to multiple

multiple target tracking with linear/Gaussian models Withoufjlrg.et tracking, which involves single target stochastic filters

the need for measurement-to-track data association [1], [2].aﬁs!gned to ea_ch target Wh'.Ch are managed by_a d gta as-
S o : sociation technique, by treating the collection of individual
was shown that when the initial prior intensity of the random-

. . : o . largets as a set-valued state and the collection of individual
set of targets is a Gaussian mixture, the posterior intensity . .
. ; . i observations as a set-valued observation. The set-valued state
any time step is also a Gaussian mixture.

: . . is predicted and updated at each time-step based on the
This article demonstrates the uniform convergence of the ; : .
t-valued observation. The multiple target posterior can be

errors for each of the stages of the Gaussian Mixture P Sstimated using a generalisation of the single target Bayesian
Filter [1], [2] using results already established for the particle gag 9 9 Y

implementation of the PHD filter [3] and Wiener's Theory oﬁlterlng eguat|ons to a multiple target scenario. This .model
S . can also incorporate clutter, or false measurements, into the
Approximation [4]. Error bounds are provided In for the

framework.

pruning and merging stages of the algorithm, based on thosel_he complexity of computing this recursion arows exponen-
established for the Gaussian Sum filter [5]. . complexity puting thi ursion grows exp
) ) . ) t(llally with the number of targets and so the optimal filter must
Extensions of the Gaussian Mixture PHD filter proposeb . ; . :
e approximated. To alleviate the complexity of computing

in [2], namely the Extended Kalman PHD filter and th(tehe multi-target posterior, a recursion was derived for the first

Unscented Kalman PHD filter, are also discussed. Conver- . T
; .~ order moment of the multi-target posterior distribution, known
gence results for the Extended Kalman PHD filter are given '
as the PHD filter [7].

based on the Gaussian Sum filter developed by Sorensoq_ . . .
; ; .~ The Sequential Monte Carlo implementation of the PHD
and Alspach [5], the., convergence properties discussed IHlter [8] provided a solution for multiple target tracking with

non-linear/non-Gaussian target models. Convergence of this
This work is supported in part by a research grant awarded by the Austr%llglﬂmhm has been shown [8] _[3]' [9]’ a'f]d appllcatlons have
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it was shown that individual Gaussians within the mixtur&@he multi-target filtering problem is to estimate the unobserved
are able to track targets successfully. This has also besgnal procesXox = {Xo, ..., Xk} based on observatioZs x =
demonstrated sucessfully for tracking objects in forward-scéd;, ...,Z}, i.e. to obtainX, = {)’{k71,...,)’€k7-|‘—k}, wherexg; are
sonar in clutter [14]. We show here the convergence propertige individual target estimates afg is the estimate of the
of the closed-form PHD filter, also known as the Gaussiatumber of targets at timk.

Mixture PHD filter.

B. The Probability Hypothesis Density (PHD) filter

_ _ _ The PHD, also known as the intensity in the point process
_In this section, the random-set approach to multiple targ@krature, is defined as the density(x«|Z;«), whose integral,
filtering is described. The multiple target tracking modef,y, (x|z;x)dx, on any regionS of the state space is the

is formulated using random-sets for the observations, targsipected number of targets B The estimated object states
states and target estimates. The number of targets is alg@ be detected as the peaks of this distribution. The posterior

a parameter that needs to be estimated. The posterior PlRknsity v (x) is propagated in time via the PHD prediction
or posterior intensity is given as the first-order statistic@nd measurement update equations:

moment of the posterior random-set of targets. The PHD

represents the expectation of a multi-target posterior and is Vigk—1(X) = /(pK|k_1(x,Z)vk,1(Z)dZ+Vk(x), 3)

multimodal, where each mode represents an expected target

location. Finally, the PHD filter recursion for predicting and Vie(¥) = [1 = P k(X)[Vigk-1.(X)

updating the intensity is described. Wi 2(X) Vi 1(X) 4)
2 K@+ el 1)

A. Multiple Target Tracking Model where @1 (% &) = psk(€) fi1(X€) + Bek_1(XE), kk(2) =
Let (Q,F,P) be a probability space on which we have\.cc(z) and Y, = pok(X)g(z]x). The conditioning on mea-
defined two finite set-valued stochastic processes {Xc: surementsZ;y is removed invg for notational simplicity. In
ke N} and Z = {Z: k € N\{0}}. ProcessX is called the the prediction equatiorfyx_1 is the PHD for spawned target
state process and proceass called the observation processbirth of a new target at timeé, psk is the probability of
and these processes are used to formulate the multiple targeget survival andiyk_1(Xc/X1) is the single target motion
Bayesian Filtering equations. The multiple target inferenegistribution. In the data update equatiog(z|x) is the single
model adopted here uses Finite Set Statistics [7] as a megiiget likelihood, pp x is the probability of detection)y is
of directly extending the single target Bayesian recursive stat® Poisson parameter specifying the expected number of
estimation to a multiple target scenario. Instead of usingf@ise alarms and is the probability distribution over the
random vector to represent a target state, a random finite gtervation space of clutter points.
of vectors is used to represent a variable number of targetthe PHD filter model assumes that each target evolves and
states. generates observations independently of one another, that the
The set of objects tracked at timeis modelled by the clutter is independent of target-induced measurements, and
Random Finite Set (RFS¥, which includes the set of targetsthat the predicted multi-target RFS governed Pyk—1 is
survived at timek from the previous time step, the set ofPoisson.
targets spawned frod_; and the set of targets that appear
spontaneously at tim& The RFSXy is the set of target IV. THE GAUSSIAN MIXTURE PHD RLTER
states X = {Xc1,.... X7}, Wherex; represents the state of |, yis section, we describe the linear-Gaussian multiple

an individual target andy is_ the number of targets at tinte target model and the recently developed Gaussian Mixture
The measurements at timeare modelled by RFZy = PHD filter

{Z 1, Zm }, Wherez; represents a single-target measure-
ment or false alarm andy is the number of observations at
time k. This RFS includes measurements from target stal’g‘s
in X and also measurements due to clutter. The BayesianfThe multiple target model for the PHD recursion is de-
recursion for the multiple target model is determined from thgribed here. Each target follows a linear Gaussian dynamical

IIl. RANDOM-SET MULTI-TARGET FILTERING

The Linear Gaussian Multiple Target Model

following prior and posterior calculations: model,
Prik—1 (X Z1k-1) = (1) fik-1(X|{) = AL Fe-14, Qk-1), (5)
Z|X) = N (z HkX, Ry), 6
[ e 1061, Zasc )P 106 1123 DR 1) (20 = Az R ©
whereA/(-; m,P) denotes a Gaussian density with meaand
Pl Z%) 0 Gk (ZuXe) Pk L% Z1x1) @) covarianceP, F_1 is the state transition matrixQy_1 is the

process noise covariandey is the observation matrix, arg,
where pyk_1(X|Zik-1), Px(%|Z1k), fik—1(X[X-1,Z1k-1), Iis the observation noise covariance.
gk(Z«|X«), represent the multitarget prior, posterior, transition ; o _ _ o
The same notation is used for multi-target and single-target densities.

and likelihood respectively. The dominating MEeASWES  There is no danger of confusion since in the single-target case the arguments
constructed from the Lebesgue measure as described in [Bbd.vectors whereas in the multi-target case the arguments are finite sets.



The survival and detection probabilities are state indepeitien the posterior intensity at tinkds also a Gaussian mixture,
dent, psk(X) = psk, and pp k(X) = pp k. The intensities of the and is given by

spontaneous birth and spawned targets are Gaussian mixtures,
P P g W(X) = (1- PorVik 1) + 3 Vox(x2)  (18)

zc

Ik ) )
Yk(X) = .ZW\(&N(Xi ”\(/Ifa P;,I&)a (") where
i=
(

- w ol

A% M (2), P

Bric1(X0) = 3 WA R 2+dd) .ol ), (®) Vox(xi2) = TRETT
Bt i S B2 ol P vl 0
here de wi, miL PO i —1 3, - del (19)
where Jyi, Wi, My, Py, i=1,...,d are given mode W) o _ (i) M wuT
parameters t\ha(t_) et(egmine(_)the shap(e_)of the birth intensitydk (2)=N(z FicMygie 1 HkPi 1 Hi +Rd), (20)
i i i j j ; - - - -
Similarly, Jp k. W'y, Fg 10 g 10 andQpe 1, j=1,.... 3k, ”ﬁ&(z) — mﬂfﬁ_ﬁKi”(z— Hkmli{li—l)’ (21)
determine the shape of the spawning intensity of a target M () ()
with previous state(. Note that the sum of the weights Pk\ =[I =Ky Hk]Pk\k—l’ (22)
in the ab ti t th ted ber of (i j j -
in the above summations represent the expected number o Klij) =Pé\‘ﬁ,lHkT(HkPé\‘k’,thRk) 1 (23)

spontaneous birth and spawned targets respectively, since the
Gaussian mixture is an intensity function and not a probabilityhe proof of this is given in [2].
distribution.

V. CONVERGENCE OF THEL; ERROR

B. Prediction This section shows thé&; convergence of the Gaussian

mixture PHD filter; in other words, proving that each step in

Assume that each target follows a linear Gaussian dynamﬁe of the PHD filter will maintain a suitable approximation

ical model, that the survival and detection probabilities al%ror that converges to zero as the number of Gaussians in

constant, that the intensities of the birth and spawned targgls mixture tends to infinity. This is achieved through the

are Gaussian mixtures, and that the posterior intensity at ti@\?ccessive application of triangle inequalities andiddr’s

k—11is a Gaussian mixture of the form inequality. Finally the observation update is shown to converge
1 _ _ using an adaptation of the previous result on particle PHD
Vk-1(X) = ZWEQN(X: fTH(('ll,F’égl), (9) convergence [3].
i= Results for the convergence properties of the Gaussian
then the predicted intensity to tinkds also a Gaussian mixture mixture PHD Filter are now established. Convergence otthe

and is given by error is first shown, lingj . |<vﬁk—vk,¢>| =0, for any function
o, Wherevﬂk is the Gaussian mixture approximationvpwith
Vidk-1(X) = Vsik-1(}) + Vaik-1(X) +¥(X),  (10) 3 Gaussian components. THe.) notation defines the usual
inner product
where
0 e S el B ) (v ) = [ WO Za1 ) e (24)
Vskk-1(X) = Psk ) W X 1 _1)
| le ! TSk Skk-1 and the operator notatiorfgy_19, vfqx_1 are defined by
(i) (i)
=FR.im’’,, 12
T =Ralen B2 () 0n ) = [ fgoatubs D000a%, (29
PSk|k—1 = Qk—l + Fk—lpkfll:k—la (13)
NS (Vi )0%) = [ V0% ) fi 106 )b 1. (26)

_ (1) \a(0) 0 (i-0)
Vo1 = 3 D We WMy 1 Pokic): (19 Note that(vfge1,8) = (v, fige_16). Also the PHD prediction
== equation (3) can be written as

(j,0) 0 ) (£)
k1= FaeaMea +dg g (15)
m[zj l[) ' B([) ! © P U-)l 0 T Vigk-1 = (PskVk-1) figk-1 + Vi-1Brk-1+ Y- (27)
Pokk-1= Qi1+ FaraPe1(Fpe 1) (16) , :
Bk ' ’ ’ In the proofs, we use an instance oblder’s Inequality (see,
The proof of this is given in [2]. for example pp. 27 [16]),

(V) < IVI[1]|9]le- (28)

The data update equation assumes a Poisson model and,
Under the above assumptions, and that the predicted inteence, is only an approximation. The clutter parameters need
sity to timek is a Gaussian mixture of the form to be determined from the data and cannot be inferred from
M the recursion. For the purpose of these proofs, it has been
e ) () (i) assumed that the correct densty and average number of
Vik_1(X) = W, X; P , 17 - .
kk—1(X) i; k\kle( Mk-1 k\kfl) (17 Poisson clutter pointay are known.

C. Measurement Update



THEOREM1 Any density onRY can be approximated as(pskvi"jll, fkk-1¢), and using the triangle inequality again we
closely as desired ih; by a linear combination of Gaussianget

densities, 3
N [((PskVk-1 figk—1)™** — PskVk-1fik-1,§) | (36)
v(x) = lim WAL i, P (29) < [{(PskVic1 ik 1) %1, 0) — (PskVe 2, fie_10) |
i=
+ Pkl (VX7 — Vi1, fie_19) ], (37)

Proof: This result is due to Wiener's theorem on approx-
imation [4]. the first term on the right hand side is zero due to the linear

. ) L Gaussian prediction model. Moreover,
This means that given arg/> 0, a positive integeN can be

found such that (figk-190) (%-1) = / fik—1 (% Xe-1)p(X)dx  (38)
n .
/|v(x)—_leﬂ)f?\[j(X;M,H)\de g, (30) < H¢||<>O/fk\k71(xk‘xkfl)dxk
i=
for n> N. This result shall be used to establish bounds for the = [|¢]]e

error in the Gaussian approximation to the posterior imenSiWhere the last equation follows from the fact that

fik—1(X[X«—1) is a transition density. Hence,
A. Initialisation

-1
It is assumed that the initial intensity is known. By Theorem |(Vsii-1 ~ PskVi-1 figk-1, @) < Pscl|® i1,
1, this initial intensity can be approximated to any arbitranyy 3, | > J.

degree of accuracy, so that, for any bounded measurablgyow consider the birth model; there exists a consint
function ¢ and any givereg > 0O, there is a positive integer 5 integer such that

(39)

J such that N
(Vo — Vg, 0)| < €0l (31) | = Vi 0)] < 9], (40)
for any Jp > J, using Hdlder’s Inequality where for Jyx > J, since we assume that we can model this exactly.
Finally, for the spawned target model, adding and subtract-
Vo~ 7l < 0. (32) f P ; y

. J i ) . L
ing <vﬂ'§11,[3k‘fl’(k_l¢> and applying the triangle inequality gives
The notationV’ is used to denote the Gaussian mixture

approximation to the density, where J is the number of [{(Vi1Brgge—1) * 2Pk — Vi 1Bie_1, 9)| (41)
ians in the mixture. o1 gl
Gaussians in the mixture < |<(kalBk\k—l)Jk_1JB'k7¢> N <VkI:J%’Bk[‘3I,(k_l¢>|
J-1 plek
B. Prediction Equation +‘<Vkl:ll’[3k\k—1¢>_<Vk71a[3k\kfl¢>|v (42)

Let us assume that the approximation of the posteritite first term on the right is zero due to the linear Gaussian

intensity, vﬂ"jll, by a sum of Gaussians converges uniformlgpawned target model. Using an argument similar to the

to the true posterior intensity_;. Then, given ang,_; > 0, prediction for existing targets, equations (37-39), there exists

an integerJ can be found such that a numbereg,_1, such that the second term is less than or
J1 equal togqk_1¢|lw, for JgkJk—1 > J. This numberggy_1,
[(Mk-1 = Vi1 )] < &1 |, (33) is dependent on the; norm of the spawned target intensity,
for J_1 > J, using Hlders Inequality. |Buk_1/l1- The lemma is proved by combining the three results

above and settinbyk_1 = Psk-
LEMMA 1 After the prediction step, there exist real numbers

byk—1, dk and gqk_1 such that C. Measurement Equation
Tk Let us assume that the approximation of the prediction
|<Vk\k;‘<k,i—Vk\k—17¢>| < (bgk-18k-1+ Ak + &-1) |90, (34) ekt bp P

intensity, v, 7, by a sum of Gaussians converges uniformly
where d¢ and -, are dependent on the models for theo the true prediction intensity,_;. Then, using the same
spontaneous birth and spawned target models. arguments as in (31), we have for agyi_; > 0, an integer
Proof: Expanding the prediction density using equatiop can be found such that
(27) and using the triangle inequality, 3
et ] |<Vk|k|ti —Vigk—1, $) | < Ek—1//9 |, (43)
[ (Vigie—1 — Vik—1: 0| < [{(PskVic-1 figk—1) ™ — PskVic-1 -1, §)|
Se1dgy MEMMAﬁ After the measurement update step, there exists a
+ [ ((Vk-1Brk-1) Vi 1B, ®) | + [ Vg ar Wiy ﬂ)erbk, dependent on the number of measurements
such that
Taking the first term on the right hand side, which concerns the 3

predicted intensity for existing targets, adding and subtracting [V = Vi )| < D119 - (44)



We assume that the predicted intensigg_; is non-zero. This A. Pruning
is a reasonable assumption as there would be no intensity tgpe pruning stage of the algorithm allows us to drop

update when the measurements are received if it were zZergarms with negligible weights. It is shown here that the error
Proof: Using the convergence result for the particle PHEytroduced in this stage can be bounded. Suppose that the

filter (Lemma 2, Clark [3]), we have the inequality posterior intensity at tim& is given by the sum of Gaussians,
3 Jilk— J . . .
|<ka _Vk7¢>‘ < (l_ pD,k)|<Vk||<|‘(k7?|-_ _Vk|k—la¢>‘ (45) Vk(X) — Zkkwl(;)f]\[(x’nl((l)’l:)él)) (49)
i=

Assume, without loss of generality, that the components with
indicesi = 1,...,Np are those with Weightsxvf('), less than
some specified threshold;. Prune these components and
), replacevi(x) by Vi (x),

Kk (i) Jk

KW, f B B
=g S wAm?RY), (50)
p+1

1

I
(1|0]]e ‘(Vk\k—l - Vkﬁ(k,i, Wk z)

Jik—
+' (Vick 1 — Vi1 OWikz)

using the assumption, we find that it is less than or equal to VIF:(X) _
J

s Wi
(2] W) etk ST
ekk-1/9llw [ (1—Pok) + < ; (46) where components with indices= Np+1,...,J are the
PASYAR

Vik—
-tz surviving components. The following bound can be established
so that the lemma is proved with (from Sorenson and Alspach [5]),
Np .
2 ad V= VEl1 <25 wl < 2Npd;. 51
bk = (1— pD,k) + ((”qJKZ|)> . (47) H k k”l i; K pO1 ( )
€2y <Vk\k71a'~|-'k,z>

This shows that thed_; error can be selected to fall within

specified bounds for the pruning stage of the algorithm.
V1. PRUNING AND MERGING OFGAUSSIAN COMPONENTS

Since the number of Gaussians used to represent the GddisMerging
sian mixture increases at each time step, methods are requiregeveral methods for Gaussian mixture reduction using
to ensure that the complexity of the algorithm is controllegnerging techniques have been proposed for Gaussian sum
This is achieved through pruning, to eliminate the Gaussiafiigers. The first of which was derived by Alspach who pro-
with low weights, and merging, to combine Gaussians witfided anL; error for approximating two Gaussian components
similar means [2]. This section considers the errors introduc@gth the same covariance as follows [17]. Suppose that two
in these stages and shows that they can be controlled. Wgnponents have the same covariafge= pigl) — pé2>, and

first approximation shows that a bound can be placed on tg\?nilar meansmf(l) ~ m&z) so that for some thresho
error introduced by eliminating terms with negligible weights, ' ’

using a result for the Gaussian sum filter [5]. The second (MY —mP) TPt mY —m?) < (8,)2 (52)

approximation arises from the tendency of many terms to S

converge to the same result so that they can be combirfe@nsider approximatingi(x) by

by adding their weights. When two terms are approximately k. o

equal, a bound on the error can be introduced so that the errorsw' (x) = ZWS)N(X; mf('), Pﬁ”) +W,<(I)9\[(X; ﬁ\i'), P), (53)

introduced in the merging stage are within tolerable limits, i=

using another result for the Gaussian sum filter [17]. where the weight and mean of the new component are given
The number of Gaussian components used to represent e

Gaussian mixture increases without bound; at tikjethe

&) _ (D) 2
posterior intensity requires Wi _Wli W (54)
(1) (1) (1) (2) +(2)
= —=(W +Ww, , 55
(a1 3p10) + 3 (L Z) = OdalZd)  (48) M= g MM Wam) (59)

k
Gaussian components, whei| is the number of measure-then the following bound holds,

ments at tim& andO(-) represents the asymptotic complexity. oD@
Clearly this has implications for the complexity of the algo- [vic — W1 < ﬁég. (56)
rithm, so it would be useful to reduce the total number of W+ W

components required to represent the PHD. To alleviate thegste that as the covariance decreases, the distance between
problems, components with small weigh (_')1 are pruned, the terms must also decrease to retain the same bound. Un-
and components with similar meama.f(') ~ mk‘), are merged. fortunately, this requires that both of the covariance matrices
The full procedure is given in Vo and Ma [2]. It is shown herare the same which may be an unrealistic assumption.

that bounds can be put on the error when these methods Salmond proposed two techniques for merging Gaussian
are used. components named Joining and Clustering algorithms [18].



In the Joining algorithm, the two componenitgnd j, which to be calculated accurately. These are based on the results

are closest using the distance measure established for the Gaussian sum filter [6]. In a low noise
M. (i) environment, the EK PHD filter can be nearly optimal. In a
52— Wik W (rq((i) _ m(Kj))TP’l(mf(i) _ m((i)) (57) high noise environment, it may be necessary to reinitialise the
s wl o wl) K algorithm such that the error covariance of each Gaussian is
k k

are merged, wherB, is the covariance of the entire mixture. Itsufﬁuently small. If these conditions can not be met, then it

was shown that the minimum distance increases monotonicall yhbe more approl_prlate(;o use the za:tlcle dPHD fgter [8.]’
as the reduction proceeds, and that it is bounded by t ICh can use hon-inear dynamic models and hon-t>aussian

dimension of the state space where a threshold is chose stt%te and observation noises, although this will result in a

- - : : igher computational complexity.
be a con;tant fr.act|on of this. In. the Clustering algorlfch .'g e now 2stablish the ch))nditiyons for uniform convergence
the Gaussians with the largest weights are chosen as pnnmgfa he extended Kalman PHD filter. It is shown that. as the
components which define cluster centres. The covariance’in ' ’

. : . : .. _covariance term tends to zero, the approximation is optimal.
equation (57) is replaced with the covariance of the princip pvanar ’ .
component, and components in asithin a specified thresh- In addition, convergence for the Unscented Kalman PHD filter

old can be merged with the following calculations to preser\}a discussed.

the overall covariance of the cluster.

~(0) Q) A. Extended Kalman Prediction Update
W, = Zwk , (58)
i

Using the PHD prediction equation,

= g 3w (59) Wi 109 = [ 1M QAT K, (69
le

=4 ZW|<<|>(P|£|) + (7 —my” —m)T).  (60) we show that the predicted intensity for the EK PHD filter
Wi fe can be given by a sum of Gaussians. The extended Kalman
This procedure was used in the original formulation of thrediction tools for existing targets are given by
Gaussian mixture PHD filter [2] and is appropriate since wi) _ wi) (64)
the intensity is multi-modal, where the principal components " Skik-1 Psk k=17
represent the expected target states. mgl)qwl = ¢u(m1,0), (65)
Williams developed a reduction algorithm which considered () () 1T () o) re() 1T
the overall change in the probability distribution by evaluating  Pskk-1 = Gk 1Qc-1[G’a]” + R3PS [Rcy) T,  (66)
the cost of each possible action and selecting the one which fasre
the minimum effect on the entire mixture in &n sense [19].

The components are merged with equations (58-60) aboyej) _ 9k(X«-1,0) Gl — 5¢k(m|(<l_>1,vk71)
which preserves the mixture mean and covariance. This 1§ 0Xk_1 kal:m<ki)l’ k-1 OVk_1 0
good for probability distributions but it may not be desirable - V("é%

for intensities as this has the effect of smearing out the modes.
LEMMA 3 If we know the dynamic model, and the posterior

VIl. NON-LINEAR TARGET DYNAMIC MODELS intensity at timek— 1 is given by the sum of Gaussians,
This section considers the convergence for the nonlinear o1 _ _
extensions of the Gaussian mixture PHD filter proposed in [2]. Vie1(X) = 21 wi aem R, (68)
As with the linear case, the survival and detection probabilities i=

are assumed constant and the intensities of the birth af@n the predicted intensity approaches a sum of Gaussians in
spawned target intensities are Gaussian but the state and

observation processes can be relaxed to the nonlinear model: VE\E—1(X) — Viik—1(X) + Vpkk—1(X) +Yk(X), (69)

X = Ok (X1, Vi-1), 61) o R0, 0.2

2 = (X, ), (62) Proof: We assume that we know the birth intensiy,
where ¢, and hy are known nonlinear functions,_1 and SO tha.t by Theorem 1, we can represent this by a sum of
gc are zero-mean Gaussian process noise and measurerff@ssians as closely as we wishLin
noise with covariance®y_1 and Ry respectively. Due to the Ik o
nonlinearity ofdy andhy, the posterior intensity can no longer Yi(X) = le&f(ﬂ\[(x; r’rk(,'f(, P&j&). (70)
be represented as a Gaussian mixture. However, the proposed i=
Gaussian mixture PHD filter can be adapted to accommodaté=or the existing targets, using the intensity at tike 1,
models with mild nonlinearities. wk-1(x), and the extended Kalman filter prediction equations,

The results here show that the intensity function can kee obtain an approximate expression for the predicted estimate

approximated by a set of extended Kalman filters where t3¢ each Gaussian componemy(x; m(('lvplggl), to a new
covariance of each separate Gaussian component is sufficiently
small for the time evolution of its mean and covariance 2The EK superscript refers to the extended Kalman approximation.



Gaussian componenf\(x; m(Si)k\kfrpg)Mkfl)' Then using the the updated density approaches the Gaussian sum
It for the EK ian S filte find th
result for the Gaussian Sum filter [6], we find that VEK(X) — (1- PV (0 + T Vok(%:2), (84)

J1 ) ) 72
EK (1) )] (1)

VEK 100 — pskc 3 W A emdy, PO ). (70) -
Sk S ,; k1 TSki1 T Sk-1 uniformly in x andZx as Pli"l)(_l —0fori=1,... Jqk-1-
(Q1—>0f0”:17-~~a3k—1- where Proof: Clearly the term on the left of the measurement
G (i) equation,[1— pp k(X)]Vik—1(X), is @ Gaussian sum, since the

mS_k\k—l_q)k(m(—l’o)’ _ o (72) probability of detectionppk(X) = ppx iS assumed to be a

Pglz\kfl =G, QG T+ RV RV FYIT. (73) constant andi_1(X) is given by the predicted intensity.

Taking the numerator of the term on the right inside the

Finally, we come to the predicted intensity for spawned,mation and using the predicted intensity (equatis)),
targets,Byk—1(x/{). Using the PHD prediction equations for

the EK PHD filter, each of the Gaussian components at timeWk2(X)Vik—1(X) = P kk(ZX)Vijk 1 (%) (85)
k—1 producesls x Gaussian components, Jk-1

= PouN(h(0.R) 3 Wi NG 1Ry ). (86)

(which, by Anderson and Moore [6] pp p215-216)

uniformly in x asP,

JB-k
i - | | i | |
B Xmy) = 5 Woi A6 Fpye oM +0gic 1 Qi)
(74) k-1

Similar to the result used for the prediction of existing targets; Pbk Zi W,((")k_lN(Z; hk("ﬂ_l)kaJrHél) F’é;&_lH;ﬁ'))N(X; ml(:ﬁcpéfﬁ(),
the sum over thé,_; components approaches a Gaussian sum =

(87)
VEK B B (1) W© (j.6) (i.0) iformly asp®) Oforalli=1....3
7()()_, W W, N(X; o P "'_)’ (75) unitormly ask,, ,—Oforalli=1,...,Jk-1.
Pkt ,Zu; K17k k-1 B2 Now considér the denominator,
whee (@) + [ Weal®)v 1(E)E: (89)
i) _ j
mB,.k\k—l_ FB.k—lmk—lerﬁJf—l’ _ . . (76) Taking the integral and thé; convergence result discussed
ks = Gl s 6T+ YL FYLFYLLT.  above, by equationds,
77
(77 /UJk,z(E)Vk\kfl(E)dE (89)
B. Extended Kalman Measurement Update Jk-1 0 0 0
Using the EK PHD filter measurement update equation, — pka/N(Z; hk(€); Re) i; Wk\kle(E;mK|k71’Pk\k71)dE
Wi z(X) Vigk—1(X) (90)
W(X) =[1— X) [Viik—1(X) + ' ,
a8 —Poxf ¥ W10 @AEMGE) Rlode D
i=

we show that the posterior intensity converges to a sum ghere
Gaussians uniformly ;. The PHD update components are (i

_ : _— :
given by U (2 =N(z hk(”\g\L_l)7Hél> P;E‘I;)(_lngl)+Rk)~ (92)
D _ (T (Hp) (T Changing the order of the summation and integral, this is equal
8/ =URUTHHIRRLHITL a9
K|£J>:PIE|J|<>_1[H|£J>}T[3(<]>}_17 (80) K1 0 Ly— 0
- Dl Pow 3 Wi [ o) @AEME).Plde  (93)
PIE\Jk) 1 _Kél)HéJ)]Pli‘Jk)il’ 81) i; kk-1 [ Y Mk Klk
where k-1 : o
() = pok 3 wieso @AM R, (99
H(j) _ ohy(Xk, 0) U(j) _ ahk(mk|k,17£k) i=
K X dex © so that,
- -0
* 82) Vk(X) = (1= Po.i)Vigk-1(%) (95)
St W o) o
LEMMA 4 With the non-linear measurement equatinn= T PoK 21 k“‘*Jl K N(X; ”‘;&I\LPIE\I&)’
hk(xc, &) and the predicted intensity given by the sum of = Kk(z)+pD.,kZQTIWS‘L_lqs)(Z)
Gaussians,

Ik uniformly asPIE‘iLl —Oforalli=1,...,Jk-1, Where

— (i) - (i) , . . .
e 2, M M) 69 MA@ =+ ) (99



C. The Unscented Kalman PHD Filter [12] N. lkoma, T. Uchino, and T. Maeda. Tracking of feature points in image
. .. . . sequence by SMC implementation of PHD filtetCE 2004 Annual
Instead of linearising the model, as is the case with the conterence, 4-6 Aug, 2004. p 1696 - 1701 vol. 2
extended Kalman filter, the unscented Kalman filter [2Q]3] D. Clark, K. Panta, and B. Vo. The GM-PHD Filter Multiple Target

approximates the mean and covariance with a set of sigma Tracker. Proc. International Conference on Information Fusion. Flo-
rence, July 2006.

points u_smg the unscented transform._lt can b_e ShOWh ﬂ[‘fﬂ] D. Clark, B. Vo, and J. Bell. GM-PHD Filter Multi-target Tracking in
the predicted mean converges to an estimate which is accurate Sonar ImagesProc. SPIE Defense and Security Symposium. Orlando,

to a second order, which is more accurate than the estim(fl;ﬁ Florida, April 2006.

. . . B.N. Vo, S. Singh, and A. Doucet. Sequential Monte Carlo Implemen-
given by the extended Kalman filter, and that the predlct tation of the PHD filter for Multi-target Tracking?roc. FUSION 2003

covariance converges to the same as that estimated through pages 792-799, 2003.

linearisation using the EKF. In the unscented PHD filtef6] B nynne and M. Youngson. Linear Functional AnalysiSpringer-
Verlag, 2000.

the unscent_ed tranSform_iS applied in the prediction step [EQ] D. L. Alspach.A Bayesian Approximation Technique for Estimation and
each term in the Gaussian mixture and the update step is Control of Discrete Time SystemBhD thesis, University of California,
the same as the Gaussian mixture PHD filter update. The San Diego, 1970. o .

. . . . 18] D. Salmond.Tracking in Uncertain Environment$hD thesis, Univer-
convergence analysis of the UK PHD filter is omitted here,™ g ot sussex, 1989.
and the interested reader is referred to the work by Julige] J. L. wiliams. Gaussian mixture reduction for tracking multiple

and Uhlmann [21] for an analysis of the convergence of the maneuvering targets in clutter. Master’s thesis, Air Force Institute of
Technology, 2003.

unscented Kalman filter. [20] S. Julier and J. Uhimann. A new extension of the kalman filter to
nonlinear systems.In Int. Symp. Aerospace/Defense Sensing, Simul.
VIIl. CONCLUSIONS and Controls, Orlando, FL.1997.

) ) ) [21] S. J. Julier and J. K. Uhimann. A General Method for Approximat-
A consequence of Wiener's Theory of Approximation is  ing Nonlinear Transformations of Probability Distribution$echnical

that density functions can be approximated uniformly with a Report, RRG, Dept. of Engineering Science, University of Oxfb886.
sum of Gaussians. This result has been used to show that the

error for the recently proposed Gaussian mixture PHD filter

converges uniformly for each of the steps in the algorithm.

Error bounds have been provided for the pruning and merging

stages, which are used to reduce the number of Gaussian

components, based on those established for the Gaussian sum

filter. These results give further theoretical justification for

the use of the Gaussian mixture PHD filter in multiple target

tracking problems.

Proofs of uniform convergence are also derived for the
extended Kalman PHD filter. The accuracy of the unscented
Kalman PHD filter is discussed as an extension to the results
already established for the unscented Kalman filter.
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