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Convergence Analysis of the Gaussian Mixture
PHD Filter

Daniel Clark∗ and Ba-Ngu Vo†

Abstract— The Gaussian mixture Probability Hypothesis Den-
sity (PHD) filter was proposed recently for jointly estimating the
time-varying number of targets and their states from a sequence
of sets of observations without the need for measurement-to-
track data association. It was shown that, under linear-Gaussian
assumptions, the posterior intensity at any point in time is a
Gaussian mixture. This article proves uniform convergence of
the errors in the algorithm and provides error bounds for the
pruning and merging stages. In addition, uniform convergence
results for the extended Kalman PHD Filter are given, and the
unscented Kalman PHD Filter implementation is discussed.

Index Terms— Multi-target tracking, optimal filtering, point
processes, random sets, PHD filter.

SP-EDICS: SSP-aFiltering, SSP-dTracking algorithms.

I. I NTRODUCTION

The closed-form solution to the PHD (Probability Hypothe-
sis Density) filter was recently derived to provide a solution for
multiple target tracking with linear/Gaussian models without
the need for measurement-to-track data association [1], [2]. It
was shown that when the initial prior intensity of the random-
set of targets is a Gaussian mixture, the posterior intensity at
any time step is also a Gaussian mixture.

This article demonstrates the uniform convergence of the
errors for each of the stages of the Gaussian Mixture PHD
Filter [1], [2] using results already established for the particle
implementation of the PHD filter [3] and Wiener’s Theory of
Approximation [4]. Error bounds are provided inL1 for the
pruning and merging stages of the algorithm, based on those
established for the Gaussian Sum filter [5].

Extensions of the Gaussian Mixture PHD filter proposed
in [2], namely the Extended Kalman PHD filter and the
Unscented Kalman PHD filter, are also discussed. Conver-
gence results for the Extended Kalman PHD filter are given
based on the Gaussian Sum filter developed by Sorenson
and Alspach [5], theL1 convergence properties discussed in
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Anderson and Moore [6], and the fact that densities can be
represented by a linear combination of Gaussians inL1 [4].
Taken with the convergence results of theL1 error, the
Gaussian mixture approximation then converges to the true
posterior intensity.

The results show that, under linear Gaussian assumptions
of the dynamic model, the Gaussian Mixture posterior in-
tensity can approximate the true posterior intensity to any
desired degree of accuracy. In addition, error bounds have
been established for the pruning and merging stages of the
algorithm which ensure that the accuracy of these stages can
be controlled.

II. BACKGROUND

The random-set framework for multiple target tracking
developed by Mahler [7] using Finite Set Statistics offers
a distinct alternative to the traditional approach to multiple
target tracking, which involves single target stochastic filters
assigned to each target which are managed by a data as-
sociation technique, by treating the collection of individual
targets as a set-valued state and the collection of individual
observations as a set-valued observation. The set-valued state
is predicted and updated at each time-step based on the
set-valued observation. The multiple target posterior can be
estimated using a generalisation of the single target Bayesian
filtering equations to a multiple target scenario. This model
can also incorporate clutter, or false measurements, into the
framework.

The complexity of computing this recursion grows exponen-
tially with the number of targets and so the optimal filter must
be approximated. To alleviate the complexity of computing
the multi-target posterior, a recursion was derived for the first
order moment of the multi-target posterior distribution, known
as the PHD filter [7].

The Sequential Monte Carlo implementation of the PHD
filter [8] provided a solution for multiple target tracking with
non-linear/non-Gaussian target models. Convergence of this
algorithm has been shown [8] [3], [9], and applications have
been demonstrated on realistic synthetic data [10] and real
data [11], [12].

The closed-form version of the PHD filter for linear-
Gaussian target dynamics was developed recently to provide
a multi-target tracker without the complexity of the particle
filtering approach [1]. This algorithm provided a means of
estimating the set of targets at each time-step but did not
provide continuity of the individual targets. The Gaussian
mixture multi-target tracker [13] was developed recently and
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it was shown that individual Gaussians within the mixture
are able to track targets successfully. This has also been
demonstrated sucessfully for tracking objects in forward-scan
sonar in clutter [14]. We show here the convergence properties
of the closed-form PHD filter, also known as the Gaussian
Mixture PHD filter.

III. R ANDOM-SET MULTI -TARGET FILTERING

In this section, the random-set approach to multiple target
filtering is described. The multiple target tracking model
is formulated using random-sets for the observations, target
states and target estimates. The number of targets is also
a parameter that needs to be estimated. The posterior PHD
or posterior intensity is given as the first-order statistical
moment of the posterior random-set of targets. The PHD
represents the expectation of a multi-target posterior and is
multimodal, where each mode represents an expected target
location. Finally, the PHD filter recursion for predicting and
updating the intensity is described.

A. Multiple Target Tracking Model

Let (Ω,F,P) be a probability space on which we have
defined two finite set-valued stochastic processesX = {Xk :
k ∈ N} and Z = {Zk : k ∈ N\{0}}. ProcessX is called the
state process and processZ is called the observation process,
and these processes are used to formulate the multiple target
Bayesian Filtering equations. The multiple target inference
model adopted here uses Finite Set Statistics [7] as a means
of directly extending the single target Bayesian recursive state
estimation to a multiple target scenario. Instead of using a
random vector to represent a target state, a random finite set
of vectors is used to represent a variable number of target
states.

The set of objects tracked at timek is modelled by the
Random Finite Set (RFS)Xk, which includes the set of targets
survived at timek from the previous time step, the set of
targets spawned fromXk−1 and the set of targets that appear
spontaneously at timek. The RFSXk is the set of target
states,Xk = {xk,1, ...,xk,Tk}, wherexk,i represents the state of
an individual target andTk is the number of targets at timek.

The measurements at timek are modelled by RFSZk =
{zk,1, ...,zk,mk}, wherezk, j represents a single-target measure-
ment or false alarm andmk is the number of observations at
time k. This RFS includes measurements from target states
in Xk and also measurements due to clutter. The Bayesian
recursion for the multiple target model is determined from the
following prior and posterior calculations:

pk|k−1(Xk|Z1:k−1) = (1)Z
fk|k−1(Xk|Xk−1,Z1:k−1)pk−1(Xk−1|Z1:k−1)µ(dXk−1),

pk(Xk|Z1:k) ∝ gk(Zk|Xk)pk|k−1(Xk|Z1:k−1), (2)

where pk|k−1(Xk|Z1:k−1), pk(Xk|Z1:k), fk|k−1(Xk|Xk−1,Z1:k−1),
gk(Zk|Xk), represent the multitarget prior, posterior, transition
and likelihood respectively. The dominating measureµ is
constructed from the Lebesgue measure as described in [15].

The multi-target filtering problem is to estimate the unobserved
signal processX0:k = {X0, ...,Xk} based on observationsZ1:k =
{Z1, ...,Zk}, i.e. to obtainX̂k = {x̂k,1, ..., x̂k,T̂k

}, where ˆxk,i are
the individual target estimates and̂Tk is the estimate of the
number of targets at timek.

B. The Probability Hypothesis Density (PHD) filter

The PHD, also known as the intensity in the point process
literature, is defined as the density,vk(xk|Z1:k), whose integral,R

Svk(xk|Z1:k)dxk, on any regionS of the state space is the
expected number of targets inS. The estimated object states
can be detected as the peaks of this distribution. The posterior
intensity vk(x) is propagated in time via the PHD prediction
and measurement update equations:

vk|k−1(x) =
Z

φk|k−1(x,ζ)vk−1(ζ)dζ+ γk(x), (3)

vk(x) = [1− pD,k(x)]vk|k−1(x)

+ ∑
z∈Zk

ψk,z(x)vk|k−1(x)
κk(z)+

R
ψk,z(ξ)vk|k−1(ξ)dξ

,
(4)

where φk|k−1(x,ξ) = pS,k(ξ) fk|k−1(x|ξ)+ βk|k−1(x|ξ), κk(z) =
λkck(z) and ψk,z = pD,k(x)g(z|x). The conditioning on mea-
surementsZ1:k is removed invk for notational simplicity. In
the prediction equation,βk|k−1 is the PHD for spawned target
birth of a new target at timek, pS,k is the probability of
target survival andfk|k−1(xk|xk−1) is the single target motion
distribution1. In the data update equation,g(z|x) is the single
target likelihood,pD,k is the probability of detection,λk is
the Poisson parameter specifying the expected number of
false alarms andck is the probability distribution over the
observation space of clutter points.

The PHD filter model assumes that each target evolves and
generates observations independently of one another, that the
clutter is independent of target-induced measurements, and
that the predicted multi-target RFS governed bypk|k−1 is
Poisson.

IV. T HE GAUSSIAN M IXTURE PHD FILTER

In this section, we describe the linear-Gaussian multiple
target model and the recently developed Gaussian Mixture
PHD filter.

A. The Linear Gaussian Multiple Target Model

The multiple target model for the PHD recursion is de-
scribed here. Each target follows a linear Gaussian dynamical
model,

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1), (5)

gk(z|x) = N (z;Hkx,Rk), (6)

whereN (·;m,P) denotes a Gaussian density with meanm and
covarianceP, Fk−1 is the state transition matrix,Qk−1 is the
process noise covariance,Hk is the observation matrix, andRk

is the observation noise covariance.

1The same notation is used for multi-target and single-target densities.
There is no danger of confusion since in the single-target case the arguments
are vectors whereas in the multi-target case the arguments are finite sets.
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The survival and detection probabilities are state indepen-
dent, pS,k(x) = pS,k, and pD,k(x) = pD,k. The intensities of the
spontaneous birth and spawned targets are Gaussian mixtures,

γk(x) =
Jγ,k

∑
i=1

w(i)
γ,kN (x;m(i)

γ,k,P
(i)
γ,k), (7)

βk|k−1(x|ζ) =
Jβ,k

∑
j=1

w( j)
β,kN (x;F( j)

β,k−1ζ+d( j)
β,k−1,Q

( j)
β,k−1), (8)

where Jγ,k, w(i)
γ,k, m(i)

γ,k, P(i)
γ,k, i = 1, . . . ,Jγ,k, are given model

parameters that determine the shape of the birth intensity.
Similarly, Jβ,k, w( j)

β,k, F( j)
β,k−1, d( j)

β,k−1, andQ( j)
β,k−1, j = 1, . . . ,Jβ,k,

determine the shape of the spawning intensity of a target
with previous stateζ. Note that the sum of the weights
in the above summations represent the expected number of
spontaneous birth and spawned targets respectively, since the
Gaussian mixture is an intensity function and not a probability
distribution.

B. Prediction

Assume that each target follows a linear Gaussian dynam-
ical model, that the survival and detection probabilities are
constant, that the intensities of the birth and spawned targets
are Gaussian mixtures, and that the posterior intensity at time
k−1 is a Gaussian mixture of the form

vk−1(x) =
Jk−1

∑
i=1

w(i)
k−1N (x;m(i)

k−1,P
(i)
k−1), (9)

then the predicted intensity to timek is also a Gaussian mixture
and is given by

vk|k−1(x) = vS,k|k−1(x)+vβ,k|k−1(x)+ γk(x), (10)

where

vS,k|k−1(x) = pS,k

Jk−1

∑
j=1

w( j)
k−1N (x;m( j)

S,k|k−1,P
( j)
S,k|k−1), (11)

m( j)
S,k|k−1 = Fk−1m( j)

k−1, (12)

P( j)
S,k|k−1 = Qk−1 +Fk−1P( j)

k−1FT
k−1, (13)

vβ,k|k−1(x) =
Jk−1

∑
j=1

Jβ,k

∑̀
=1

w( j)
k−1w(`)

β,kN (x;m( j,`)
β,k|k−1,P

( j,`)
β,k|k−1), (14)

m( j,`)
β,k|k−1 = F(`)

β,k−1m( j)
k−1 +d(`)

β,k−1, (15)

P( j,`)
β,k|k−1 = Q(`)

β,k−1 +F(`)
β,k−1P( j)

k−1(F
(`)
β,k−1)

T . (16)

The proof of this is given in [2].

C. Measurement Update

Under the above assumptions, and that the predicted inten-
sity to timek is a Gaussian mixture of the form

vk|k−1(x) =
Jk|k−1

∑
i=1

w(i)
k|k−1N (x;m(i)

k|k−1,P
(i)
k|k−1), (17)

then the posterior intensity at timek is also a Gaussian mixture,
and is given by

vk(x) = (1− pD,k)vk|k−1(x)+ ∑
z∈Zk

vD,k(x;z) (18)

where

vD,k(x;z) =
Jk|k−1

∑
j=1

pD,k w( j)
k|k−1q( j)

k (z)

κk(z)+ pD,k ∑
Jk|k−1
`=1 w(`)

k|k−1q(`)
k (z)

N (x;m( j)
k|k(z),P

( j)
k|k ),

(19)

q( j)
k (z) = N (z;Hkm

( j)
k|k−1,HkP

( j)
k|k−1HT

k +Rk), (20)

m( j)
k|k(z) = m( j)

k|k−1 +K( j)
k (z−Hkm

( j)
k|k−1), (21)

P( j)
k|k = [I −K( j)

k Hk]P
( j)
k|k−1, (22)

K( j)
k = P( j)

k|k−1HT
k (HkP

( j)
k|k−1HT

k +Rk)−1. (23)

The proof of this is given in [2].

V. CONVERGENCE OF THEL1 ERROR

This section shows theL1 convergence of the Gaussian
mixture PHD filter; in other words, proving that each step in
time of the PHD filter will maintain a suitable approximation
error that converges to zero as the number of Gaussians in
the mixture tends to infinity. This is achieved through the
successive application of triangle inequalities and Hölder’s
inequality. Finally the observation update is shown to converge
using an adaptation of the previous result on particle PHD
convergence [3].

Results for the convergence properties of the Gaussian
mixture PHD Filter are now established. Convergence of theL1

error is first shown, limJk→∞ |〈vJk
k −vk,ϕ〉|= 0, for any function

ϕ, wherevJk
k is the Gaussian mixture approximation tovk with

Jk Gaussian components. The〈., .〉 notation defines the usual
inner product

〈vk,ϕ〉=
Z

vk(xk|Z1:k)ϕ(xk)dxk. (24)

and the operator notationsfk|k−1ϕ, v fk|k−1 are defined by

( fk|k−1ϕ)(xk−1) =
Z

fk|k−1(xk|xk−1)ϕ(xk)dxk, (25)

(v fk|k−1)(xk) =
Z

v(xk−1) fk|k−1(xk|xk−1)dxk−1. (26)

Note that〈v fk|k−1,ϕ〉= 〈v, fk|k−1ϕ〉. Also the PHD prediction
equation (3) can be written as

vk|k−1 = (pS,kvk−1) fk|k−1 +vk−1βk|k−1 + γk. (27)

In the proofs, we use an instance of Hölder’s Inequality (see,
for example pp. 27 [16]),

|〈v,ϕ〉| ≤ ‖v‖1‖ϕ‖∞. (28)

The data update equation assumes a Poisson model and,
hence, is only an approximation. The clutter parameters need
to be determined from the data and cannot be inferred from
the recursion. For the purpose of these proofs, it has been
assumed that the correct densityck and average number of
Poisson clutter pointsλk are known.
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THEOREM 1 Any density onRd can be approximated as
closely as desired inL1 by a linear combination of Gaussian
densities,

v(x) = lim
n→∞

n

∑
i=1

w(i)N (x;µi ,Pi) (29)

Proof: This result is due to Wiener’s theorem on approx-
imation [4].

This means that given anyε > 0, a positive integerN can be
found such thatZ

|v(x)−
n

∑
i=1

w(i)N (x;µi ,Pi)|dx≤ ε, (30)

for n≥N. This result shall be used to establish bounds for the
error in the Gaussian approximation to the posterior intensity.

A. Initialisation

It is assumed that the initial intensity is known. By Theorem
1, this initial intensity can be approximated to any arbitrary
degree of accuracy, so that, for any bounded measurable
function ϕ and any givenε0 > 0, there is a positive integer
J such that

|〈v0−vJ0
0 ,ϕ〉| ≤ ε0‖ϕ‖∞, (31)

for any J0 > J, using Ḧolder’s Inequality where

‖v0−vJ0
0 ‖1 ≤ ε0. (32)

The notation vJ is used to denote the Gaussian mixture
approximation to the densityv, where J is the number of
Gaussians in the mixture.

B. Prediction Equation

Let us assume that the approximation of the posterior
intensity, v

Jk−1
k−1 , by a sum of Gaussians converges uniformly

to the true posterior intensityvk−1. Then, given anyεk−1 > 0,
an integerJ can be found such that

|〈vk−1−v
Jk−1
k−1 ,ϕ〉| ≤ εk−1‖ϕ‖∞, (33)

for Jk−1 ≥ J, using Ḧolder’s Inequality.

LEMMA 1 After the prediction step, there exist real numbers
bk|k−1, dk andek|k−1 such that

|〈v
Jk|k−1

k|k−1−vk|k−1,ϕ〉| ≤ (bk|k−1εk−1 +dk +ek|k−1)‖ϕ‖∞, (34)

where dk and ek|k−1 are dependent on the models for the
spontaneous birth and spawned target models.

Proof: Expanding the prediction density using equation
(27) and using the triangle inequality,

|〈v
Jk|k−1

k|k−1−vk|k−1,ϕ〉| ≤ |〈(pS,kvk−1 fk|k−1)
Jk−1 − pS,kvk−1 fk|k−1,ϕ〉|

+ |〈(vk−1βk|k−1)
Jk−1Jβ,k −vk−1βk|k−1,ϕ〉|+ |〈γJγk

k − γk,ϕ〉|
(35)

Taking the first term on the right hand side, which concerns the
predicted intensity for existing targets, adding and subtracting

〈pS,kv
Jk−1
k−1 , fk|k−1ϕ〉, and using the triangle inequality again we

get

|〈(pS,kvk−1 fk|k−1)
Jk−1 − pS,kvk−1 fk|k−1,ϕ〉| (36)

≤ |〈(pS,kvk−1 fk|k−1)
Jk−1,ϕ〉−〈pS,kv

Jk−1
k−1 , fk|k−1ϕ〉|

+ pS,k|〈v
Jk−1
k−1 −vk−1, fk|k−1ϕ〉|, (37)

the first term on the right hand side is zero due to the linear
Gaussian prediction model. Moreover,

( fk|k−1ϕ)(xk−1) =
Z

fk|k−1(xk|xk−1)ϕ(xk)dxk (38)

≤ ‖ϕ‖∞

Z
fk|k−1(xk|xk−1)dxk

= ‖ϕ‖∞

where the last equation follows from the fact that
fk|k−1(xk|xk−1) is a transition density. Hence,

|〈vJk−1
S,k|k−1− pS,kvk−1 fk|k−1,ϕ〉| ≤ pS,k‖ϕ‖∞εk−1, (39)

for Jk−1 ≥ J.
Now consider the birth model; there exists a constantdk

and integerJ such that

|〈γJγ,k
k − γk,ϕ〉| ≤ dk‖ϕ‖∞, (40)

for Jγ,k ≥ J, since we assume that we can model this exactly.
Finally, for the spawned target model, adding and subtract-

ing 〈vJk−1
k−1 ,β

Jβ,k

k|k−1ϕ〉 and applying the triangle inequality gives

|〈(vk−1βk|k−1)
Jk−1Jβ,k −vk−1βk|k−1,ϕ〉| (41)

≤ |〈(vk−1βk|k−1)
Jk−1Jβ,k,ϕ〉−〈vJk−1

k−1 ,β
Jβ,k

k|k−1ϕ〉|

+ |〈vJk−1
k−1 ,β

Jβ,k

k|k−1ϕ〉−〈vk−1,βk|k−1ϕ〉|, (42)

the first term on the right is zero due to the linear Gaussian
spawned target model. Using an argument similar to the
prediction for existing targets, equations (37-39), there exists
a numberek|k−1, such that the second term is less than or
equal toek|k−1‖ϕ‖∞, for Jβ,kJk|k−1 ≥ J. This number,ek|k−1,
is dependent on theL1 norm of the spawned target intensity,
‖βk|k−1‖1. The lemma is proved by combining the three results
above and settingbk|k−1 = pS,k.

C. Measurement Equation

Let us assume that the approximation of the prediction
intensity,v

Jk|k−1

k|k−1, by a sum of Gaussians converges uniformly
to the true prediction intensityvk|k−1. Then, using the same
arguments as in (31), we have for anyεk|k−1 > 0, an integer
J can be found such that

|〈v
Jk|k−1

k|k−1−vk|k−1,ϕ〉| ≤ εk|k−1‖ϕ‖∞, (43)

LEMMA 2 After the measurement update step, there exists a
real numberbk, dependent on the number of measurements
such that

|〈vJk
k −vk,ϕ〉| ≤ bkεk|k−1‖ϕ‖∞. (44)
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We assume that the predicted intensityvk|k−1 is non-zero. This
is a reasonable assumption as there would be no intensity to
update when the measurements are received if it were zero.

Proof: Using the convergence result for the particle PHD
filter (Lemma 2, Clark [3]), we have the inequality

|〈vJk
k −vk,ϕ〉| ≤ (1− pD,k)|〈v

Jk|k−1

k|k−1−vk|k−1,ϕ〉| (45)

+ ∑
z∈Zk

(
1

〈vk|k−1,ψk,z〉
(‖ϕ‖∞

∣∣∣〈vk|k−1−v
Jk|k−1

k|k−1,ψk,z〉
∣∣∣

+
∣∣∣〈vJk|k−1

k|k−1−vk|k−1,ϕψk,z〉
∣∣∣)),

using the assumption, we find that it is less than or equal to

εk|k−1‖ϕ‖∞

(
(1− pD,k)+ ∑

z∈Zk

(
(2‖ψk,z‖∞)
〈vk|k−1,ψk,z〉

))
, (46)

so that the lemma is proved with

bk =

(
(1− pD,k)+ ∑

z∈Zk

(
(2‖ψk,z‖∞)
〈vk|k−1,ψk,z〉

))
. (47)

VI. PRUNING AND MERGING OFGAUSSIAN COMPONENTS

Since the number of Gaussians used to represent the Gaus-
sian mixture increases at each time step, methods are required
to ensure that the complexity of the algorithm is controlled.
This is achieved through pruning, to eliminate the Gaussians
with low weights, and merging, to combine Gaussians with
similar means [2]. This section considers the errors introduced
in these stages and shows that they can be controlled. The
first approximation shows that a bound can be placed on the
error introduced by eliminating terms with negligible weights,
using a result for the Gaussian sum filter [5]. The second
approximation arises from the tendency of many terms to
converge to the same result so that they can be combined
by adding their weights. When two terms are approximately
equal, a bound on the error can be introduced so that the errors
introduced in the merging stage are within tolerable limits,
using another result for the Gaussian sum filter [17].

The number of Gaussian components used to represent the
Gaussian mixture increases without bound; at timek, the
posterior intensity requires

(Jk−1(1+Jβ,k)+Jγ,k)(1+ |Zk|) = O(Jk−1|Zk|) (48)

Gaussian components, where|Zk| is the number of measure-
ments at timek andO(·) represents the asymptotic complexity.
Clearly this has implications for the complexity of the algo-
rithm, so it would be useful to reduce the total number of
components required to represent the PHD. To alleviate these
problems, components with small weights,w(i)

k , are pruned,

and components with similar means,m(i)
k ≈ m( j)

k , are merged.
The full procedure is given in Vo and Ma [2]. It is shown here
that bounds can be put on theL1 error when these methods
are used.

A. Pruning

The pruning stage of the algorithm allows us to drop
terms with negligible weights. It is shown here that the error
introduced in this stage can be bounded. Suppose that the
posterior intensity at timek is given by the sum of Gaussians,

vk(x) =
Jk

∑
i=1

w(i)
k N (x;m(i)

k ,P(i)
k ). (49)

Assume, without loss of generality, that the components with
indices i = 1, . . . ,NP are those with weights,w(i)

k , less than
some specified thresholdδ1. Prune these components and
replacevk(x) by vP

k (x),

vP
k (x) =

∑Jk
i=1w(i)

k

∑Jk
i=NP+1w(i)

k

Jk

∑
i=NP+1

w(i)
k N (x;m(i)

k ,P(i)
k ), (50)

where components with indicesi = NP +1, . . . ,Jk are the
surviving components. The following bound can be established
(from Sorenson and Alspach [5]),

‖vk−vP
k‖1 ≤ 2

NP

∑
i=1

w(i)
k ≤ 2NPδ1. (51)

This shows that theL1 error can be selected to fall within
specified bounds for the pruning stage of the algorithm.

B. Merging

Several methods for Gaussian mixture reduction using
merging techniques have been proposed for Gaussian sum
filters. The first of which was derived by Alspach who pro-
vided anL1 error for approximating two Gaussian components
with the same covariance as follows [17]. Suppose that two
components have the same covariancePk := P(1)

k = P(2)
k , and

similar means,m(1)
k ≈ m(2)

k , so that for some thresholdδ2,

(m(1)
k −m(2)

k )TP−1
k (m(1)

k −m(2)
k )≤ (δ2)2. (52)

Consider approximatingvk(x) by

vM
k (x) =

Jk

∑
i=3

w(i)
k N (x;m(i)

k ,P(i)
k )+ w̃(l)

k N (x;m̃(l)
k ,Pk), (53)

where the weight and mean of the new component are given
by

w̃(l)
k = w(1)

k +w(2)
k , (54)

m̃(l)
k =

1

w̃(l)
k

(w(1)
k m(1)

k +w(2)
k m(2)

k ), (55)

then the following bound holds,

‖vk−vM
k ‖1 ≤

2w(1)
k w(2)

k

w(1)
k +w(2)

k

δ2. (56)

Note that as the covariance decreases, the distance between
the terms must also decrease to retain the same bound. Un-
fortunately, this requires that both of the covariance matrices
are the same which may be an unrealistic assumption.

Salmond proposed two techniques for merging Gaussian
components named Joining and Clustering algorithms [18].
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In the Joining algorithm, the two components,i and j, which
are closest using the distance measure

δ2
3 =

w(i)
k w( j)

k

w(i)
k +w( j)

k

(m(i)
k −m( j)

k )TP−1
k (m(i)

k −m( j)
k ) (57)

are merged, wherePk is the covariance of the entire mixture. It
was shown that the minimum distance increases monotonically
as the reduction proceeds, and that it is bounded by the
dimension of the state space where a threshold is chosen to
be a constant fraction of this. In the Clustering algorithm,
the Gaussians with the largest weights are chosen as principal
components which define cluster centres. The covariance in
equation (57) is replaced with the covariance of the principal
component, and components in setL within a specified thresh-
old can be merged with the following calculations to preserve
the overall covariance of the cluster.

w̃(`)
k = ∑

i∈L
w(i)

k , (58)

m̃(`)
k = 1

w̃
(`)
k

∑
i∈L

w(i)
k m(i)

k , (59)

P̃(`)
k = 1

w̃
(`)
k

∑
i∈L

w(i)
k (P(i)

k +(m̃(`)
k −m(i)

k )(m̃(`)
k −m(i)

k )T). (60)

This procedure was used in the original formulation of the
Gaussian mixture PHD filter [2] and is appropriate since
the intensity is multi-modal, where the principal components
represent the expected target states.

Williams developed a reduction algorithm which considered
the overall change in the probability distribution by evaluating
the cost of each possible action and selecting the one which has
the minimum effect on the entire mixture in anL2 sense [19].
The components are merged with equations (58-60) above,
which preserves the mixture mean and covariance. This is
good for probability distributions but it may not be desirable
for intensities as this has the effect of smearing out the modes.

VII. N ON-LINEAR TARGET DYNAMIC MODELS

This section considers the convergence for the nonlinear
extensions of the Gaussian mixture PHD filter proposed in [2].
As with the linear case, the survival and detection probabilities
are assumed constant and the intensities of the birth and
spawned target intensities are Gaussian but the state and
observation processes can be relaxed to the nonlinear model:

xk = ϕk(xk−1,νk−1), (61)

zk = hk(xk,εk), (62)

where ϕk and hk are known nonlinear functions,νk−1 and
εk are zero-mean Gaussian process noise and measurement
noise with covariancesQk−1 and Rk respectively. Due to the
nonlinearity ofϕk andhk, the posterior intensity can no longer
be represented as a Gaussian mixture. However, the proposed
Gaussian mixture PHD filter can be adapted to accommodate
models with mild nonlinearities.

The results here show that the intensity function can be
approximated by a set of extended Kalman filters where the
covariance of each separate Gaussian component is sufficiently
small for the time evolution of its mean and covariance

to be calculated accurately. These are based on the results
established for the Gaussian sum filter [6]. In a low noise
environment, the EK PHD filter can be nearly optimal. In a
high noise environment, it may be necessary to reinitialise the
algorithm such that the error covariance of each Gaussian is
sufficiently small. If these conditions can not be met, then it
may be more appropriate to use the particle PHD filter [8],
which can use non-linear dynamic models and non-Gaussian
state and observation noises, although this will result in a
higher computational complexity.

We now establish the conditions for uniform convergence
of the extended Kalman PHD filter. It is shown that, as the
covariance term tends to zero, the approximation is optimal.
In addition, convergence for the Unscented Kalman PHD filter
is discussed.

A. Extended Kalman Prediction Update

Using the PHD prediction equation,

vk|k−1(x) =
Z

φk|k−1(x,ζ)vk−1(ζ)dζ+ γk(x), (63)

we show that the predicted intensity for the EK PHD filter
can be given by a sum of Gaussians. The extended Kalman
prediction tools for existing targets are given by

w( j)
S,k|k−1 = pS,k w( j)

k−1, (64)

m( j)
S,k|k−1 = ϕk(m

( j)
k−1,0), (65)

P( j)
S,k|k−1 = G( j)

k−1Qk−1[G
( j)
k−1]

T +F( j)
k−1P( j)

k−1[F
( j)
k−1]

T , (66)

where

F( j)
k−1 =

∂ϕk(xk−1,0)
∂xk−1

∣∣∣∣
xk−1=m

( j)
k−1

,G( j)
k−1 =

∂ϕk(m
( j)
k−1,νk−1)

∂νk−1

∣∣∣∣∣
νk−1=0

.

(67)

LEMMA 3 If we know the dynamic model, and the posterior
intensity at timek−1 is given by the sum of Gaussians,

vk−1(x) =
Jk−1

∑
i=1

w(i)
k−1N (x;m(i)

k−1,P
(i)
k−1), (68)

then the predicted intensity approaches a sum of Gaussians in
L1,

vEK
k|k−1(x)→ vS,k|k−1(x)+vβ,k|k−1(x)+ γk(x), (69)

asP(i)
k−1 → 0. 2

Proof: We assume that we know the birth intensity,γk,
so that by Theorem 1, we can represent this by a sum of
Gaussians as closely as we wish inL1,

γk(x) =
Jγ,k

∑
i=1

w(i)
γ,kN (x;m(i)

γ,k,P
(i)
γ,k). (70)

For the existing targets, using the intensity at timek− 1,
vk−1(x), and the extended Kalman filter prediction equations,
we obtain an approximate expression for the predicted estimate
of each Gaussian component,N (x;m(i)

k−1,P
(i)
k−1), to a new

2The EK superscript refers to the extended Kalman approximation.
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Gaussian component,N (x;m(i)
S,k|k−1,P

(i)
S,k|k−1). Then using the

result for the EK Gaussian Sum filter [6], we find that

vEK
S,k|k−1(x)→ pS,k

Jk−1

∑
j=1

w( j)
k−1N (x;m( j)

S,k|k−1,P
( j)
S,k|k−1), (71)

uniformly in x asP(i)
k−1 → 0 for i = 1, . . . ,Jk−1, where

m( j)
S,k|k−1 = ϕk(m

( j)
k−1,0), (72)

P( j)
S,k|k−1 = G( j)

k−1Qk−1[G
( j)
k−1]

T +F( j)
k−1P( j)

k−1[F
( j)
k−1]

T . (73)

Finally, we come to the predicted intensity for spawned
targets,βk|k−1(x|ζ). Using the PHD prediction equations for
the EK PHD filter, each of the Gaussian components at time
k−1 producesJβ,k Gaussian components,

βk|k−1(x|m
(i)
k−1) =

Jβ,k

∑
l=1

w(l)
β,kN (x;F(l)

β,k−1m(i)
k−1 +d(l)

β,k−1,Q
(l)
β,k−1).

(74)

Similar to the result used for the prediction of existing targets,
the sum over theJk−1 components approaches a Gaussian sum

vEK
β,k|k−1(x)→

Jk−1

∑
j=1

Jβ,k

∑̀
=1

w( j)
k−1w(`)

β,kN (x;m( j,`)
β,k|k−1,P

( j,`)
β,k|k−1), (75)

where

m( j,`)
β,k|k−1 = F(`)

β,k−1m( j)
k−1 +d(`)

β,k−1, (76)

P( j,`)
β,k|k−1 = G( j)

β,k−1Qβ,k−1[G
( j)
β,k−1]

T +F( j)
β,k−1P( j)

β,k−1[F
( j)
β,k−1]

T .

(77)

B. Extended Kalman Measurement Update

Using the EK PHD filter measurement update equation,

vk(x) = [1− pD,k(x)]vk|k−1(x)+ ∑
z∈Zk

ψk,z(x)vk|k−1(x)
κk(z)+

R
ψk,z(ξ)vk|k−1(ξ)dξ

,

(78)

we show that the posterior intensity converges to a sum of
Gaussians uniformly inL1. The PHD update components are
given by

S( j)
k = U ( j)

k Rk[U
( j)
k ]T +H( j)

k P( j)
k|k−1[H

( j)
k ]T , (79)

K( j)
k = P( j)

k|k−1[H
( j)
k ]T [S( j)

k ]−1, (80)

P( j)
k|k = [I −K( j)

k H( j)
k ]P( j)

k|k−1, (81)

where

H( j)
k =

∂hk(xk,0)
∂xk

∣∣∣∣
xk=m

( j)
k|k−1

,U ( j)
k =

∂hk(m
( j)
k|k−1,εk)

∂εk

∣∣∣∣∣∣
εk=0

.

(82)

LEMMA 4 With the non-linear measurement equationzk =
hk(xk,εk) and the predicted intensity given by the sum of
Gaussians,

vk|k−1(x) =
Jk|k−1

∑
i=1

w(i)
k|k−1N (x;m(i)

k|k−1,P
(i)
k|k−1), (83)

the updated density approaches the Gaussian sum

vEK
k (x)→ (1− pD,k)vk|k−1(x)+ ∑

z∈Zk

vD,k(x;z), (84)

uniformly in xk andZk asP(i)
k|k−1 → 0 for i = 1, . . . ,Jk|k−1.

Proof: Clearly the term on the left of the measurement
equation,[1− pD,k(x)]vk|k−1(x), is a Gaussian sum, since the
probability of detectionpD,k(x) = pD,k is assumed to be a
constant andvk|k−1(x) is given by the predicted intensity.

Taking the numerator of the term on the right inside the
summation and using the predicted intensity (equation(69)),

ψk,z(x)vk|k−1(x) = pD,kgk(z|x)vEK
k|k−1(x) (85)

= pD,kN (z;hk(x),Rk)
Jk|k−1

∑
i=1

w(i)
k|k−1N (x;m(i)

k|k−1,P
(i)
k|k−1), (86)

(which, by Anderson and Moore [6] pp p215-216)

→ pD,k

Jk|k−1

∑
i=1

w(i)
k|k−1N (z;hk(m

(i)
k|k−1),Rk +H(i)T

k P(i)
k|k−1H(i)

k )N (x;m(i)
k|k,P

(i)
k|k),

(87)

uniformly asP(i)
k|k−1 → 0 for all i = 1, . . . ,Jk|k−1.

Now consider the denominator,

κk(z)+
Z

ψk,z(ξ)vk|k−1(ξ)dξ. (88)

Taking the integral and theL1 convergence result discussed
above, by equation(69),Z

ψk,z(ξ)vk|k−1(ξ)dξ (89)

= pD,k

Z
N (z;hk(ξ),Rk)

Jk|k−1

∑
i=1

w(i)
k|k−1N (ξ;m(i)

k|k−1,P
(i)
k|k−1)dξ

(90)

→ pD,k

Z Jk|k−1

∑
i=1

w(i)
k|k−1q( j)

k (z)N (ξ;m(i)
k|k(ξ),P(i)

k|k)dξ, (91)

where

q( j)
k (z) = N (z;hk(m

(i)
k|k−1),H

(i)T
k P(i)

k|k−1H(i)
k +Rk). (92)

Changing the order of the summation and integral, this is equal
to

pD,k

Jk|k−1

∑
i=1

w(i)
k|k−1

Z
q(i)

k (z)N (ξ;m(i)
k|k(ξ),P(i)

k|k)dξ (93)

= pD,k

Jk|k−1

∑
i=1

w(i)
k|k−1q(i)

k (z)N (x;m(i)
k|k,P

(i)
k|k), (94)

so that,

vk(x)→ (1− pD,k)vk|k−1(x) (95)

+pD,k

Jk|k−1

∑
i=1

w(i)
k|k−1q(i)

k (z)

κk(z)+ pD,k ∑
Jk|k−1
l=1 w(l)

k|k−1q(l)
k (z)

N (x;m(i)
k|k,P

(i)
k|k),

uniformly asP(i)
k|k−1 → 0 for all i = 1, . . . ,Jk|k−1, where

m( j)
k|k(z) = m( j)

k|k−1 +K( j)
k (z−hk(m

( j)
k|k−1)). (96)
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C. The Unscented Kalman PHD Filter

Instead of linearising the model, as is the case with the
extended Kalman filter, the unscented Kalman filter [20]
approximates the mean and covariance with a set of sigma
points using the unscented transform. It can be shown that
the predicted mean converges to an estimate which is accurate
to a second order, which is more accurate than the estimate
given by the extended Kalman filter, and that the predicted
covariance converges to the same as that estimated through
linearisation using the EKF. In the unscented PHD filter,
the unscented transform is applied in the prediction step to
each term in the Gaussian mixture and the update step is
the same as the Gaussian mixture PHD filter update. The
convergence analysis of the UK PHD filter is omitted here,
and the interested reader is referred to the work by Julier
and Uhlmann [21] for an analysis of the convergence of the
unscented Kalman filter.

VIII. C ONCLUSIONS

A consequence of Wiener’s Theory of Approximation is
that density functions can be approximated uniformly with a
sum of Gaussians. This result has been used to show that the
error for the recently proposed Gaussian mixture PHD filter
converges uniformly for each of the steps in the algorithm.
Error bounds have been provided for the pruning and merging
stages, which are used to reduce the number of Gaussian
components, based on those established for the Gaussian sum
filter. These results give further theoretical justification for
the use of the Gaussian mixture PHD filter in multiple target
tracking problems.

Proofs of uniform convergence are also derived for the
extended Kalman PHD filter. The accuracy of the unscented
Kalman PHD filter is discussed as an extension to the results
already established for the unscented Kalman filter.
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