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Abstract

We propose and analyze the convergence of a novel stochastic algorithm for solving monotone
inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian
operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator.
We obtain the rate O(log(n)/n) in expectation for the strongly monotone case, as well as almost
sure convergence for the general case. Furthermore, in the context of application to convex-
concave saddle point problems, we derive the rate of the primal-dual gap. In particular, we also
obtain O(1/n) rate convergence of the primal-dual gap in the deterministic setting.
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1 Introduction

A wide class of problems in monotone operator theory, variational inequalities, convex optimization,
image processing, machine learning, reduces to the problem of solving monotone inclusions involving
Lipschitzian operators; see [2, 4, 3, 5, 8, 11, 22, 32, 23, 33, 35] and the references therein. In this
paper, we revisit the generic monotone inclusions of finding a zero point of the sum of a maximally
monotone operator A and a monotone, µ-Lipschitzian operator B, acting on a real separable Hilbert
space H, i.e.,

Find x ∈ H such that 0 ∈ (A+B)x. (1.1)
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The first splitting method proposed for solving problem was in [33] which is now known as the
forward-backward-forward splitting method (FBFSM). Further investigations of this method lead
to a new primal-dual splitting method in [4] where B is a linear monotone skew operator in suitable
product spaces. A main limitation of the FBFSM is their two calls of B per iteration. This issue
was recently resolved in [22] in which the forward reflected backward splitting method (FRBSM)
was proposed, namely,

γ ∈ ]0,+∞[ , xn+1 = (Id+γA)−1(xn − 2γBxn + γBxn−1). (1.2)

An alternative approach to overcome this issue was in [11] where the reflected forward backward
splitting method (RFBSM) was proposed:

γ ∈ ]0,+∞[ , xn+1 = (Id+γA)−1(xn − γB(2xn − xn−1)). (1.3)

It is important to stress that the methods FBFSM, RFBSM and RFBSM are limited to the de-
terministic setting. The stochastic version of FBFSM was investigated in [35] and recently in [14].
Both works [35] and [14] requires two stochastic approximation of B. While, a stochastic version
of FRBSM was also considered in [22] for the case when B is a finite sum. However, it remains
require to evaluate the operator B.

The objective of this paper is to avoid these above limitations of [35, 14, 22] by considering the
stochastic counterpart of (1.3). At each iteration, we use only one unbiased estimation of B(2xn−
xn−1) and hence the resulting algorithm shares the same structure as the standard stochastic
forward-backward splitting [7, 9, 28]. However, it allows to solve a larger class of problems involving
non-cocoercive operators.

In Section 2, we recall the basic notions in convex analysis and monotone operator theory as
well as the probability theory, and establish the results which will be used in the proof of the
convergence of the proposed method. We present the proposed method and derive the almost sure
convergence, convergence in expectation in Section 3. In the last section, we will further apply the
proposed algorithm to the convex-concave saddle problem involving the infimal convolutions, and
establish the rate of the ergodic convergence of the primal-dual gap.

2 Notation and Background

Let H be a separable real Hilbert space endowed with the inner product 〈. | .〉 and the associated
norm ‖.‖. Let (xn)n∈N be a sequence in H, and x ∈ H. We denote the strong convergence and the
weak convergence of (xn)n∈N to x by xn → x and xn ⇀ x, respectively.

Definition 2.1 Let A : H → 2H be a set-valued operator.

(i) The domain of A is denoted by dom(A) that is a set of all x ∈ H such that Ax 6= ∅.

(ii) The range of A is ran(A) =
{

u ∈ H | (∃x ∈ H)u ∈ Ax
}

.

(iii) The graph of A is gra(A) =
{

(x, u) ∈ H ×H | u ∈ Ax
}

.
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(iv) The inverse of A is A−1 : u 7→
{

x | u ∈ Ax
}

.

(v) The zero set of A is zer(A) = A−10.

Definition 2.2 We have the following definitions:

(i) We say that A : H → 2H is monotone if

(

∀(x, u) ∈ graA
)(

∀(y, v) ∈ graA
)

〈x− y | u− v〉 ≥ 0. (2.1)

(ii) We say that A : H → 2H is maximally monotone if it is monotone and there exists no mono-
tone operator B such that gra(B) properly contains gra(A).

(iii) We say that A : H → 2H is φA-uniformly monotone, at x ∈ dom(A), if there exists an
increasing function φA : [0,∞[ → [0,∞] that vanishes only at 0 such that

(

∀u ∈ Ax
)(

∀(y, v) ∈ graA
)

〈x− y | u− v〉 ≥ φA(‖y − x‖). (2.2)

If φA = νA| · |2 for some νA ∈ ]0,∞[, then we say that A is νA-strongly monotone.

(iv) The resolvent of A is
JA = (Id+A)−1, (2.3)

where Id denotes the identity operator on H.

(v) A single-valued operator B : H → H is 1-cocoercive or firmly nonexpasive if

(∀(x, y) ∈ H2) 〈x− y | Bx−By〉 ≥ ‖Bx−By‖2. (2.4)

Let Γ0(H) be the class of proper lower semicontinuous convex function from H to ]−∞,+∞].

Definition 2.3 For f ∈ Γ0(H):

(i) The proximity operator of f is

proxf : H → H : x 7→ argmin
y∈H

(

f(y) +
1

2
‖x− y‖2

)

. (2.5)

(ii) The conjugate function of f is

f∗ : a 7→ sup
x∈H

(

〈a | x〉 − f(x)
)

. (2.6)

(iii) The infimal convolution of the two functions ℓ and g from H to ]−∞,+∞] is

ℓ � g : x 7→ inf
y∈H

(ℓ(y) + g(x− y)). (2.7)
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Note that proxf = J∂f , let x ∈ H and set p = proxfx, we have

(∀y ∈ H) f(p)− f(y) ≤ 〈y − p | p− x〉 , (2.8)

and that

(∀f ∈ Γ0(H)) (∂f)−1 = ∂f∗. (2.9)

Following [25], let (Ω,F,P) be a probability space. A H-valued random variable is a measurable
function X : Ω → H, where H is endowed with the Borel σ-algebra. We denote by σ(X) the σ-field
generated by X. The expectation of a random variable X is denoted by E[X]. The conditional
expectation of X given a σ-field A ⊂ F is denoted by E[X|A]. A H-valued random process is a
sequence {xn} of H-valued random variables. The abbreviation a.s. stands for ’almost surely’.

Lemma 2.4 ([27, Theorem 1]) Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of F, let
(zn)n∈N, (ξn)n∈N, (ζn)n∈N and (tn)n∈|NN be [0,+∞[-valued random sequences such that, for every
n ∈ N, zn, ξn, ζn and tn are Fn-measurable. Assume moreover that

∑

n∈N tn < +∞,
∑

n∈N ζn <
+∞ a.s. and

(∀n ∈ N) E[zn+1|Fn] ≤ (1 + tn)zn + ζn − ξn a.s.

Then zn converges a.s. and (ξn) is summable a.s.

Corollary 2.5 Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of F, let (xn)n∈N be
[0,+∞[-valued random sequences such that, for every n ∈ N, xn−1 is Fn-measurable and

∑

n∈N
E[xn|Fn] < +∞ a.s (2.10)

Then
∑

n∈N
xn < +∞ a.s

Proof. Let us set

(∀n ∈ N) zn =
n−1
∑

k=1

xk.

Then, zn is Fn measurable. Moreover,

E[zn+1|Fn] = zn + E[xn|Fn]

Hence, it follows from Lemma 2.4 and (2.10) that (zn)n∈N converges a.s.

The following lemma can be viewed as direct consequence of [7, Proposition 2.3].

Lemma 2.6 Let C be a non-empty closed subset of H and let (xn)n∈N be a H-valued random
process. Suppose that, for every x ∈ C, (‖xn+1 − x‖)n∈N converges a.s. Suppose that the set of
weak sequentially cluster points of (xn)n∈N is a subset of C a.s. Then (xn)n∈N converges weakly
a.s. to a C-valued random vector.
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3 Algorithm and convergences

We propose the following algorithm, for solving (1.1), that requires only the unbiased estimations
of the monotone, µ−Lipschitzian operators B.

Algorithm 3.1 Let (γn)n∈N be a sequence in ]0,+∞[. Let x0, x−1 beH-valued, squared integrable
random variables. Iterates

(∀n ∈ N)









yn = 2xn − xn−1

Finding rn : E[rn|Fn] = Byn
xn+1 = JγnA(xn − γnrn),

(3.1)

where Fn = σ(x0, x1, . . . , xn).

Remark 3.2 Here are some remarks.

(i) Algorithm 3.1 is an extension of the reflected forward backward splitting in [11] which itself
recovers the projected reflected gradient methods for monotone variational inequalities in [21]
as a special case. Further connections to existing works in the deterministic setting can be
found in [11] as well as [21].

(ii) In the special case when A is a normal cone operator, A = NX for some non-empty closed
convex set, the iteration (3.1) reduces to the one in [13]. However, as we will see in Remark
3.9, our convergences results are completely different from that of [13].

(iii) The proposed algorithm shares the same structure as the stochastic forward-backward split-
ting in [7, 9, 28]. The main advantage of (3.1) is the monotonicity and Lipschitzianity of B
which is much weaker than cocoercivity assumption in [7, 9, 28].

(iv) Under the current conditions on A and B, an alternative method ”Between forward-backward
and forward-reflected-backward” for solving Problem 1.1 is presented in [22, Section 6] which
remains require to evaluate the operator B as well as its unbiased estimations.

We first prove some lemmas which will be used in the proof of Theorem 3.5 and Theorem 3.8.

Lemma 3.3 Let (xn)n∈N and (yn)n∈N be generated by (3.1). Suppose that A is φA-uniformly
monotone and B is φB-uniformly monotone. Let x ∈ zer(A+B) and set

(∀n ∈ N) ǫn = 2γn
(

φA(‖xn+1 − x‖) + φA(‖xn+1 − xn‖) + φB(‖yn − x‖)
)

. (3.2)

The following holds.

‖xn+1 − x‖2 + ǫn + (3− γn
γn−1

)‖xn+1 − xn‖2 +
γn
γn−1

‖xn+1 − yn‖2 + 2γn 〈rn −Bx | xn+1 − xn〉

≤ ‖xn − x‖2 + 2γn 〈rn−1 −Bx | xn − xn−1〉+ 2γn 〈rn−1 − rn | xn+1 − yn〉+
γn
γn−1

‖xn − yn‖2

+ 2γn 〈rn −Byn | x− yn〉 . (3.3)
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Proof. Let n ∈ N and x ∈ zer(A+B). Set

pn+1 =
1

γn
(xn − xn+1)− rn. (3.4)

Then, by the definition of the resolvent,

pn+1 ∈ Axn+1. (3.5)

Since A is νA-uniformly monotone and −Bx ∈ Ax, we obtain
〈

xn − xn+1

γn
− rn +Bx | xn+1 − x

〉

≥ νAφA(‖xn+1 − x‖), (3.6)

which is equivalent to

〈xn − xn+1 | xn+1 − x〉 − γnνAφA(‖xn+1 − x‖) ≥ γn 〈rn −Bx | xn+1 − x〉 . (3.7)

Let us estimate the right hand side of (3.7). Using yn = 2xn − xn−1, we have

〈rn −Bx | xn+1 − x〉 = 〈rn −Bx | xn+1 − yn〉+ 〈rn −Byn | yn − x〉+ 〈Byn −Bx | yn − x〉
= 〈rn −Bx | xn+1 − xn〉 − 〈rn −Bx | xn − xn−1〉+ 〈rn −Byn | yn − x〉
+ 〈Byn −Bx | yn − x〉

= 〈rn −Bx | xn+1 − xn〉 − 〈rn−1 −Bx | xn − xn−1〉+ 〈rn−1 − rn | xn − xn−1〉
+ 〈rn −Byn | yn − x〉+ 〈Byn −Bx | yn − x〉

= 〈rn −Bx | xn+1 − xn〉 − 〈rn−1 −Bx | xn − xn−1〉+ 〈rn − rn−1 | xn+1 − yn〉
+ 〈rn−1 − rn | xn+1 − xn〉+ 〈rn −Byn | yn − x〉+ 〈Byn −Bx | yn − x〉

(3.8)

Using the uniform monotonicity of A again, it follows from (3.4) that
〈

xn − xn+1

γn
− rn − xn−1 − xn

γn−1
+ rn−1 | xn+1 − xn

〉

≥ νAφA(‖xn+1 − xn‖), (3.9)

which is equivalent to

〈rn−1 − rn | xn+1 − xn〉 ≥ νAφA(‖xn+1 − xn‖) +
‖xn+1 − xn‖2

γn

+

〈

xn − yn
γn−1

| xn+1 − xn

〉

. (3.10)

We have
{

2 〈xn − yn | xn+1 − xn〉 = ‖xn+1 − yn‖2 − ‖xn − yn‖2 − ‖xn+1 − xn‖2
2 〈xn − xn+1 | xn+1 − x〉 = ‖xn − x‖2 − ‖xn − xn+1‖2 − ‖xn+1 − x‖2.

(3.11)

Therefore, we derive from (3.7), (3.8), (3.10) and (3.11), and the uniform monotonicity of B that

‖xn − x‖2 − ‖xn − xn+1‖2 − ‖xn+1 − x‖2 − 2γnνAφA(‖xn+1 − x‖)
≥ 2γn

(

〈rn −Bx | xn+1 − xn〉 − 〈rn−1 −Bx | xn − xn−1〉
)

+ 2γnνBφB(‖yn − x‖)
+ 2γn 〈rn − rn−1 | xn+1 − yn〉+ 2γnνAφA(‖xn+1 − xn‖) + 2‖xn+1 − xn‖2

+
γn

γn−1

(

‖xn+1 − yn‖2 − ‖xn − yn‖2 − ‖xn+1 − xn‖2
)

+ 2γn 〈rn −Byn | yn − x〉 . (3.12)
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Hence,

‖xn+1 − x‖2 + ǫn + (3− γn
γn−1

)‖xn+1 − xn‖2 +
γn
γn−1

‖xn+1 − yn‖2 + 2γn 〈rn −Bx | xn+1 − xn〉

≤ ‖xn − x‖2 + 2γn 〈rn−1 −Bx | xn − xn−1〉+ 2γn 〈rn−1 − rn | xn+1 − yn〉+
γn
γn−1

‖xn − yn‖2

+ 2γn 〈rn −Byn | x− yn〉 , (3.13)

which proves (3.3).

We also have the following lemma where (3.14) was used in [21] as well as in [11].

Lemma 3.4 For every n ∈ N, we have following estimations

2 〈Byn−1 −Byn | xn+1 − yn〉 ≤ µ(1 +
√
2)‖yn − xn‖2 + µ‖xn − yn−1‖2 + µ

√
2‖yn − xn+1‖2,

(3.14)

and

Tn =
1

γn
‖xn − x‖2 + µ‖xn − yn−1‖2 + (

1

γn−1
+ µ(1 +

√
2))‖xn − xn−1‖2 + 2αn−1

≥ 1

2γn
‖xn − x‖2, (3.15)

where αn = 〈Byn −Bx | xn+1 − xn〉.

Proof. Let n ∈ N. We have

2 〈Byn−1 −Byn | xn+1 − yn〉 ≤ 2‖xn+1 − yn‖‖Byn−1 −Byn‖
≤ 2µ‖xn+1 − yn‖‖yn−1 − yn‖
≤ µ√

2
‖yn − yn−1‖2 + µ

√
2‖xn+1 − yn‖2

=
µ√
2
‖yn − xn + xn − yn−1‖2 + µ

√
2‖xn+1 − yn‖2

≤ µ√
2

(

(1 +
1√
2− 1

)‖yn − xn‖2 + (1 +
√
2− 1)‖xn − yn−1‖2

)

+ µ
√
2‖xn+1 − yn‖2

= µ(1 +
√
2)‖xn − yn‖2 + µ‖xn − yn−1‖2 + µ

√
2‖xn+1 − yn‖2.

Since αn−1 = 〈Byn−1 −Bx | xn − xn−1〉, we obtain

2|αn−1| ≤ 2µ‖yn−1 − x‖‖xn − xn−1‖
≤ 2µ(‖xn − yn−1‖+ ‖xn − x‖)‖xn − xn−1‖
≤ µ(‖xn − yn−1‖2 + ‖xn − x‖2 + 2‖xn − xn−1‖2). (3.16)

Therefore, we derive from (3.16) and the definition of Tn that

Tn ≥ 1

2γn
‖xn − x‖2 + (

1

2γn
− µ)‖xn − x‖2 + (

1

γn−1
+ µ(−1 +

√
2))‖xn − xn−1‖2

≥ 1

2γn
‖xn − x‖2,

which proves (3.15).
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Theorem 3.5 The following hold.

(i) Let (γn)n∈N be a nondecreasing sequence in
]

0,
√
2−1
µ

[

, satisfies

τ = inf
n∈N

(
2

γn
− 1

γn−1
− µ(1 +

√
2)) > 0

In the setting of Algorithm 3.1, assume that the following condition are satisfied for Fn =
σ((xk)0≤k≤n)

∑

n∈N
E[‖rn −Byn‖2|Fn] < +∞ a.s (3.17)

Then (xn) converges weakly to a random varibale x : Ω → zer(A+B) a.s.

(ii) Suppose that dom(A) is bounded, A or B is uniformly monotone. Let (γn)n∈N be a monotone

decreasing sequence in
]

0,
√
2−1
µ

[

such that

(γn)n∈N ∈ ℓ2(N)\ℓ1(N) and
∑

n∈N
γ2nE[‖rn −Byn‖2|Fn] < ∞ a.s. (3.18)

Then (xn)n∈N converges strongly a unique solution x.

Proof. (i): Let n ∈ N. Applying Lemma 3.3 with νA = νB = 0, we have,

1

γn
‖xn+1 − x‖2 + 1

γn−1
‖xn+1 − yn‖2 +

( 3

γn
− 1

γn−1

)

‖xn − xn+1‖2 + 2δn

≤ 1

γn
‖xn − x‖2 + 1

γn−1
‖xn − yn‖2 + 2δn−1 + 2 〈rn−1 − rn | xn+1 − yn〉+ 2βn (3.19)

where
{

δn = 〈rn −Bx | xn+1 − xn〉
βn = 〈rn −Byn | x− yn〉

Let χ be in
]

0, τ2
[

, it follows from the Cauchy Schwarz’s inequality and (3.14) that

2 〈rn−1 − rn | xn+1 − yn〉 = 2 〈rn−1 −Byn−1 +Byn−1 −Byn +Byn − rn | xn+1 − yn〉

≤ ‖rn−1 −Byn−1‖2
χ

+ χ‖xn+1 − yn‖2 +
‖rn −Byn‖2

χ
+ χ‖xn+1 − yn‖2

+ µ(1 +
√
2)‖yn − xn‖2 + µ‖xn − yn−1‖2 + µ

√
2‖yn − xn+1‖2 (3.20)

Hence, we derive from (3.19) and (3.20) that

1

γn
‖xn+1 − x‖2 + (

1

γn−1
− µ

√
2− 2χ)‖xn+1 − yn‖2 +

( 3

γn
− 1

γn−1

)

‖xn − xn+1‖2 + 2δn

≤ 1

γn
‖xn − x‖2 + (

1

γn−1
+ µ(1 +

√
2))‖xn − yn‖2 + µ‖xn − yn−1‖2 + 2δn−1 + 2βn

+
‖rn−1 −Byn−1‖2

χ
+

‖rn −Byn‖2
χ

. (3.21)
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In turn, using γn ≤ γn+1 and xn − yn = xn−1 − xn

1

γn+1
‖xn+1 − x‖2 + µ‖xn+1 − yn‖2 +

( 3

γn
− 1

γn−1

)

‖xn − xn+1‖2 + 2δn

≤ 1

γn
‖xn − x‖2 + µ‖xn − yn−1‖2 +

( 3

γn−1
− 1

γn−2

)

‖xn − xn−1‖2 + 2δn−1 + 2βn

− (
1

γn−1
− µ(1 +

√
2)− 2χ)‖xn+1 − yn‖2 −

( 2

γn−1
− 1

γn−2
− µ(1 +

√
2)
)

‖xn − xn−1‖2

+
‖rn−1 −Byn−1‖2 + ‖rn −Byn‖2

χ
.

(3.22)

Let us set

θn =
1

γn
‖xn−x‖2+µ‖xn−yn−1‖2+

( 3

γn−1
− 1

γn−2

)

‖xn−xn−1‖2+2δn−1+
‖rn−1 −Byn−1‖2

χ
. (3.23)

We have

2|δn−1| = 2| 〈rn−1 −Byn−1 | xn − xn−1〉+ 2 〈Byn−1 −Bx | xn − xn−1〉 |

≤ ‖rn−1 −Byn−1‖2
χ

+ χ‖xn − xn−1‖2 + 2µ‖yn−1 − x‖‖xn − xn−1‖ (3.24)

≤ ‖rn−1 −Byn−1‖2
χ

+ χ‖xn − xn−1‖2 + 2µ
(

‖xn − yn−1‖+ ‖xn − x‖
)

‖xn − xn−1‖

≤ ‖rn−1 −Byn−1‖2
χ

+ χ‖xn − xn−1‖2 + µ
(

‖xn − yn−1‖2 + ‖xn − x‖2 + 2‖xn − xn−1‖2
)

⇒ θn ≥ (
1

γn
− µ)‖xn − x‖2 +

( 3

γn−1
− 1

γn−2
− χ− 2µ

)

‖xn − xn−1‖2 ≥ µ‖xn − x‖2 ≥ 0 (3.25)

Moreover, it follows from (3.1) that
E[βn|Fn] = 0. (3.26)

Therefore, by taking the conditional expectation both sides of (3.22) with respect to Fn, we obtain

E[θn+1|Fn] ≤ θn − (
1

γn−1
− µ(

√
2 + 1)− 2χ)E[‖xn+1 − yn‖2|Fn]

−
( 2

γn−1
− 1

γn−2
− µ(1 +

√
2)
)

‖xn − xn−1‖2 + 2
E[‖rn −Byn‖2|Fn]

χ
. (3.27)

It follows from our conditions on step sizes (γn)n∈N that

1

γn−1
− µ(

√
2 + 1)− 2χ > 0 and

2

γn−1
− 1

γn−2
− µ(1 +

√
2)− χ > 0, (3.28)

Now, in view of Lemma 2.4, we get

θn → θ̄ and ‖xn − xn−1‖ → 0 a.s. (3.29)
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From (3.17) and Corollary 2.5, we have
∑

n∈N
‖rn−1 −Byn−1‖2 < +∞ ⇒ ‖rn−1 −Byn−1‖ → 0 a.s (3.30)

Since (θn)n∈N converges, it is bounded and therefore, using (3.25), it follows that (‖xn − x‖)n∈N
and (xn)n∈N are bounded. Hence (yn)n∈N is also bounded. In turn, from (3.24), we derive

δn−1 → 0 a.s (3.31)

Moreover,

‖xn − yn‖ = ‖xn − xn−1‖ → 0, and ‖xn − yn−1‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − yn−1‖ → 0. (3.32)

Therefore, we derive from (3.23), (3.29), (3.30), (3.31), (3.32) and Lemma 2.4 that

(‖xn − x‖)n∈N converges a.s. (3.33)

Let x∗ be a weak cluster point of (xn)n∈N. Then, there exists a subsequence (xnk
)k∈N which

converges weakly to x∗ a.s. By (3.32), ynk
⇀ x∗ a.s. Let us next set

zn = (I + γnA)
−1(xn − γnByn). (3.34)

Then, since JγnA is nonexpansive, we have

‖xn+1 − zn‖ ≤ γn‖Byn − rn‖ → 0 a.s. (3.35)

It follows from xnk
⇀ x∗ that xnk+1 ⇀ x∗ and hence from (3.35) that znk

(ω) ⇀ x∗(ω). Since
znk

= (I + γnk
A)−1(xnk

− γnk
Bynk

), we have

xnk
− znk

γnk

−Bynk
+Bznk

∈ (A+B)znk
, (3.36)

From (3.32) and (3.35), we have

lim
k→∞

‖xnk
− znk

‖ = lim
k→∞

‖ynk
− znk

‖ = 0 (3.37)

Since B is µ-Lipschitz and (γn)n∈N is bounded away from 0, it follows that

xnk
− znk

γnk

−Bynk
+Bznk

→ 0 a.s. (3.38)

Using [2, Corollary 25.5], the sum A+B is maximally monotone and hence, its graph is closed in
Hweak ×Hstrong [2, Proposition 20.38]. Therefore, 0 ∈ (A+B)x∗ a.s., that is x∗ ∈ zer(A+B) a.s.
By Lemma 2.6, the sequence (xn)n∈N converges weakly to x̄ ∈ zer(A+B) and the proof is complete

(ii) It follows from Lemma 3.3 and (3.14) that

‖xn+1 − x‖2 + γn
γn−1

‖xn+1 − yn‖2 +
(

3− γn
γn−1

)

‖xn − xn+1‖2 + 2γnαn

+ 2γn 〈rn −Byn | xn+1 − xn〉+ ǫn

≤ ‖xn − x‖2 + 2γn 〈rn−1 −Byn−1 +Byn−1 −Byn +Byn − rn | xn+1 − yn〉+
γn
γn−1

‖xn − yn‖2

+ 2γnαn−1 + 2γn 〈rn−1 −Byn−1 | xn − xn−1〉+ 2γnβn

≤ ‖xn − x‖2 + γn
(

µ(1 +
√
2)‖yn − xn‖2 + µ‖xn − yn−1‖2 + µ

√
2‖yn − xn+1‖2

)

+
γn
γn−1

‖xn − yn‖2

+ 2γnαn−1 + 2γn 〈rn−1 −Byn−1 | xn − xn−1〉+ 2γnβn + 2γn 〈rn−1 −Byn−1 +Byn − rn | xn+1 − yn〉 ,
(3.39)
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For any η ∈
]

0, 1−γ0µ(1+
√
2)

10

[

, using the Cauchy Schwarz’s inequality, we have























2γn 〈rn−1 −Byn−1 | xn+1 − yn〉 ≤ γ2
n

η
‖rn−1 −Byn−1‖2 + η‖xn+1 − yn‖2

2γn 〈rn −Byn | xn+1 − yn〉 ≤ γ2
n

η
‖rn −Byn‖2 + η‖xn+1 − yn‖2

2γn 〈rn−1 −Byn−1 | xn − xn−1〉 ≤ γ2
n

η
‖rn−1 −Byn−1‖2 + η‖xn − xn−1‖2

2γn 〈rn −Byn | xn+1 − xn〉 ≤ γ2
n

η
‖rn −Byn‖2 + η‖xn+1 − xn‖2

(3.40)

We have
‖xn+1 − yn‖2 ≤ 2(‖xn+1 − xn‖2 + ‖xn − yn‖2) (3.41)

Therefore, we derive from (3.39), (3.40), (3.41), the monotonic decreasing of (γn)n∈N and yn−xn =
xn − xn−1 that

‖xn+1 − x‖2 + (
γn

γn−1
− γnµ

√
2)‖xn+1 − yn‖2 + 2‖xn+1 − xn‖2 + 2γnαn + ǫn

≤ ‖xn − x‖2 + γnµ‖xn − yn−1‖2 + (1 + γ0µ(1 +
√
2))‖xn − xn−1‖2 + 2γn−1αn−1

− 2(γn−1 − γn)αn−1 + 2γnβn + 2
γ2n−1

η
‖rn−1 −Byn−1‖2 + 2

γ2n
η
‖rn −Byn‖2

+ 5η
(

‖xn+1 − xn‖2 + ‖xn − yn‖2
)

(3.42)

Since dom(A) is bounded, there exists M > 0 such that (∀n ∈ N) |αn| ≤ M , and hence (3.42)
implies that

‖xn+1 − x‖2 + γnµ‖xn+1 − yn‖2 + (2− 5η)‖xn+1 − xn‖2 + 2γnαn

≤ ‖xn − x‖2 + γn−1µ‖xn − yn−1‖2 + (2− 5η)‖xn − xn−1‖2 + 2γn−1αn−1

− (
γn
γn−1

− γnµ(
√
2 + 1))‖xn+1 − yn‖2 − (1− γ0µ(1 +

√
2)− 10η)‖xn − xn−1‖2

+ 2(γn−1 − γn)M + 2
γ2n−1

η
‖rn−1 −Byn−1‖2 + 2

γ2n
η
‖rn −Byn‖2 − ǫn + 2γnβn. (3.43)

Let us set

pn = ‖xn−x‖2+γn−1µ‖xn−yn−1‖2+(2−5η)‖xn−xn−1‖2+2γn−1αn−1+2
γ2n−1

η
‖rn−1−Byn−1‖2.

(3.44)
Then, by taking the conditional expectation with respect to Fn both sides of (3.43) and using
E[rn|Fn] = Byn, we get

E[pn+1|Fn] ≤ pn − (
γn

γn−1
− γnµ(

√
2 + 1))E[‖xn+1 − yn‖2|Fn]− (1− γ0µ(1 +

√
2)− 10η)‖xn − xn−1‖2

+ 2(γn−1 − γn)M + 4
γ2n
η
E[‖rn −Byn‖2|Fn]− E[ǫn|Fn] (3.45)

Note that,










γn
γn−1

− γnµ(
√
2 + 1) > 0,

1− γ0µ(1 +
√
2)− 10η > 0,

∑

n∈N(γn−1 − γn)M = γ0M

(3.46)
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Similar to (3.15), we have pn is a nonnegative sequence. In turn, Lemma 2.4 and (3.45) give,

pn → p̄, ‖xn − xn−1‖ → 0 and
∑

n∈N
E[ǫn|Fn] < +∞ a.s. (3.47)

Using the same argument as the proof of (i),

lim
n→∞

‖xn − x‖2 = p̄. (3.48)

Now, let us consider the case where A is φA−uniformly monotone. We then derive from (3.47) that

∑

n∈N
γnE[φA(‖xn+1 − x‖)|Fn] < +∞, (3.49)

hence Corollary 2.5 impies that

∑

n∈N
γnφA(‖xn+1 − x‖) < +∞. (3.50)

Since
∑

n∈N γn = ∞, it follows from (3.50) that limφA(‖xn+1 − x‖) = 0. Thus, there exists a
subsequence (kn)n∈N such that φA(‖xkn − x‖) → 0 and hence ‖xkn − x‖ → 0. Therefore, by
(3.48), we obtain xn → x. We next consider that case when B is φB−uniformly monotone. Since
yn = 2xn − xn−1, by the triangle inequality,

‖xn − x‖ − ‖xn − xn−1‖ ≤ ‖yn − x‖ ≤ ‖xn − x‖+ ‖xn−1 − xn‖, (3.51)

and by (3.47), we obtain lim
n→∞

‖yn − x‖ = lim
n→∞

‖xn − x‖. Hence, by using the same argument as

the case A is uniformly monotone, we obtain yn → x and hence xn → x. The proof of the theorem
is complete.

Remark 3.6 For 0 < γ <

√
2− 1

µ
,

1

2− γµ(1 +
√
2)

< c < 1. Then for every (γn)n∈N ⊂ [cγ, γ]N,

we have τ = inf
n∈N

(
2

γn
− 1

γn−1
− µ(1 +

√
2)) > 0

Corollary 3.7 Let γ ∈
]

0, (
√
2− 1)/µ

[

. Let x0, x−1 be H-valued, squared integrable random vari-
ables.

(∀n ∈ N)









yn = 2xn − xn−1

E[rn|Fn] = Byn
xn+1 = JγA(xn − γrn).

(3.52)

Suppose that
∑

n∈N
E[‖rn −Byn‖2|Fn] < +∞ a.s. (3.53)

Then (xn)n∈N converges weakly to a random variable x : Ω → zer(A+B) a.s.

Theorem 3.8 Suppose that A is ν-strongly monotone. Define

∀n ∈ N) γn =
1

2ν(n + 1)
. (3.54)
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Suppose that there exists a constant c such that

(∀n ∈ N) E[‖rn −Byn‖2|Fn] ≤ c. (3.55)

Then
(∀n > n0)E

[

‖xn − x‖2
]

= O(log(n+ 1)/(n + 1)), (3.56)

where n0 is the smallest integer such that n0 > 4ν−1µ(1 +
√
2).

Proof. Let n ∈ N. It follows from (3.54) that

1 + 2νγn =
2ν(n+ 2)

2ν(n+ 1)
=

γn
γn+1

. (3.57)

Set










ρ1,n = 〈rn −Byn | x− yn〉+ 〈rn−1 −Byn−1 | xn − xn−1〉 − 〈rn −Byn | xn+1 − xn〉 ,
ρ2,n = 〈rn−1 −Byn−1 − rn +Byn | xn+1 − yn〉 ,
ρn = ρ1,n + ρ2,n.

(3.58)

Hence, by applying Lemma 3.3 with φB = 0 and φA = ν| · |2, we obtain

(1 + 2νAγn)‖xn+1 − x‖2 + (3 + 2νγn − γn
γn−1

)‖xn+1 − xn‖2 +
γn
γn−1

‖xn+1 − yn‖2 + 2γnαn

≤ ‖xn − x‖2 + 2γnαn−1 + 2γn 〈Byn−1 −Byn | xn+1 − yn〉+
γn
γn−1

‖xn − yn‖2 + 2γnρn. (3.59)

We derive from Lemma 3.4 and (3.59) that

1

γn+1
‖xn+1 − x‖2 + (

1

γn−1
− µ

√
2)‖xn+1 − yn‖2 +

( 3

γn
+ 2ν − 1

γn−1

)

‖xn − xn+1‖2 + 2αn

≤ 1

γn
‖xn − x‖2 + (

1

γn−1
+ µ(1 +

√
2))‖xn − xn−1‖2 + µ‖xn − yn−1‖2 + 2αn−1 + 2ρn. (3.60)

Now, using the definition of Tn, we can rewrite (3.60) as

Tn+1 ≤ Tn + 2ρn − (
1

γn−1
− µ(

√
2 + 1))‖xn+1 − yn‖2

−
( 2

γn
+ 2ν − 1

γn−1
− µ(

√
2 + 1)

)

‖xn − xn+1‖2 (3.61)

Let us rewrite ρ2,n as

ρ2,n = 〈rn−1 −Byn−1 | xn+1 − xn〉 − 〈rn−1 −Byn−1 | xn − xn−1〉
− 〈rn −Byn | xn+1 − xn〉+ 〈rn −Byn | xn − xn−1〉 , (3.62)

which implies that

ρn = 〈rn −Byn | x− xn〉+ 〈rn−1 −Byn−1 | xn+1 − xn〉 − 2 〈rn −Byn | xn+1 − xn〉 . (3.63)
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Taking the conditional expectation with respect to Fn, we obtain

E[Tn+1|Fn] ≤ Tn + 2E[ρn|Fn]− (
1

γn−1
− µ(

√
2 + 1))E[‖xn+1 − yn‖2|Fn]

−
( 2

γn
+ 2ν − 1

γn−1
− µ(

√
2 + 1)

)

E[‖xn − xn+1‖2|Fn]. (3.64)

By the definition of ρn in (3.63), we have

2E[ρn|Fn] = 2E[〈rn−1 −Byn−1 | xn+1 − xn〉 |Fn]− 4E[〈rn −Byn | xn+1 − xn〉 |Fn]

≤ 2γn−1E[‖rn−1 −Byn−1‖2|Fn] +
1

2γn−1
E[‖xn+1 − xn‖2|Fn]

+ 16γnE[‖rn −Byn‖2|Fn] +
1

4γn
E[‖xn+1 − xn‖2|Fn] (3.65)

In turn, it follows from (3.64) that

E[Tn+1|Fn] ≤ Tn − (
1

γn−1
− µ(

√
2 + 1))E[‖xn+1 − yn‖2|Fn]

−
( 1

4γn
− µ(

√
2 + 1)

)

E[‖xn − xn+1‖2|Fn] + 18γn−1c. (3.66)

Note that for n > n0,
1

4γn
− µ(1 +

√
2) ≥ 0, and hence taking expectation both the sides of (3.66),

we obtain

(∀n > n0) E [Tn+1] ≤ E [Tn0
] + c

n
∑

k=n0

γk, (3.67)

which proves the desired result by invoking Lemma 3.4.

Remark 3.9 We have some comparisons to existing work.

(i) Under the standard condition (3.18), we obtain the strong almost sure convergence of the
iterates, when A or B is uniformly monotone, as in the context of the stochastic forward-
backward splitting [28]. In the general case, to ensure the weak almost sure convergence, we
not only need the step-size bounded away from 0 but also the summable condition in (3.17).
These conditions were used in [7, 9, 29, 30].

(ii) In the case when A is a normal cone in Euclidean spaces and the weak sharpness of B is
satisfied, as it was shown in [13, Proposition1], the strong almost sure convergence of (xn)n∈N
is obtained under the condition (3.18). Without imposing additional conditions on B such
as weak sharpness [13], uniform monotonicity [28], the problem of proving the almost sure
convergence of the iterates under the condition (3.18) is still open.

(iii) When A is strongly monotone, we obtained the rate O(log(n+1)/(n+1)) which is slower than
the rate O(1/(n + 1)) of the stochastic forward-backward splitting [28] and their extensions
in [12, 34] . The main reason is the monotonicity and Lipschitzianity of B is weaker than the
cocoercivity of B as in [28, 29].
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(iv) In the case when A is a normal cone to a nonempty closed convex set X in Euclidean
spaces, the work in [13] obtained the rate 1/

√
n of the gap function defined by X ∋ x 7→

supy∈X 〈By | x− y〉. This rate of convergence was firstly established in [19] for solving vari-
ational inequalities with stochastic mirror-prox algorithm. Therefore, they differ from our
results in the present paper.

We provide an generic special case which was widely studied in the stochastic optimization; see
[1, 31, 15, 16, 18, 20] for instances.

Corollary 3.10 Let f ∈ Γ0(H) and let h : H → R be a convex differentiable function, with µ-
Lipschitz continuous gradient, given by an expectation form h(x) = Eξ[H(x, ξ)]. In the expectation,
ξ is a random vector whose probability distribution is supported on a set ΩP ⊂ R

m, and H : H×Ωp →
R is convex function with respect to the variable x. The problem is to

minimize
x∈H

f(x) + h(x), (3.68)

under the following assumptions:

(i) zer(∂f +∇h) 6= ∅.

(ii) It is possible to obtain independent and identically distributed (i.i.d.) samples (ξn)n∈N of ξ.

(iii) Given (x, ξ) ∈ H × ΩP , one can find a point ∇H(x, ξ) such that E[∇H(x, ξ)] = ∇h(x).

Let (γn)n∈N be a sequence in ]0,+∞[. Let x0, x−1 be in H.

(∀n ∈ N)

⌊

yn = 2xn − xn−1

xn+1 = proxγnf (xn − γn∇H(yn, ξn)).
(3.69)

Then, the following hold.

(i) If f is ν-strongly monotone, for some ν ∈ ]0,+∞[, and there exists a constant c such that

E[‖∇H(yn, ξn)−∇h(yn)‖2|ξ0, . . . , ξn−1] ≤ c. (3.70)

Then, for the learning rate (∀n ∈ N) γn = 1
2ν(n+1) . We obtain

(∀n > n0)E
[

‖xn − x‖2
]

= O(log(n+ 1)/(n + 1)), (3.71)

where n0 is the smallest integer such that n0 > 2ν−1µ(1 +
√
2), and x is the unique solution

to (3.68).

(ii) If f is not strongly monotone, let (γn)n∈N be a non-decreasing sequence in
]

0,
√
2−1
µ

[

, satisfies

τ = inf
n∈N

(
2

γn
− 1

γn−1
− µ(1 +

√
2)) > 0 and

∑

n∈N
E[∇H(yn, ξn)−∇h(yn)‖2|ξ0, . . . , ξn−1] < +∞ a.s (3.72)

Then (xn) converges weakly to a random variable x : Ω → zer(∂f +∇h) a.s.
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Proof. The conclusions are followed from Theorem 3.5 & 3.8 where

A = ∂f,B = ∇h, and (∀n ∈ N) rn = ∇H(yn, ξn). (3.73)

Remark 3.11 The algorithm (3.69) as well as the convergence results appear to be new. Algorithm
(3.69) is different from the standard stochastic proximal gradient [1, 31, 15, 16] only the evaluation
of the stochastic gradients at the reflections (yn)n∈N.

4 Ergodic convergences

In this section, we focus on the class of primal-dual problem which was firstly investigated in
[8]. This typical structured primal-dual framework covers a widely class of convex optimization
problems and it has found many applications to image processing, machine learning [8, 10, 26, 6, 24].
We further exploit the duality nature of this framework to obtain a new stochastic primal-dual
splitting method and focus on the ergodic convergence of the primal-dual gap.

Problem 4.1 Let f ∈ Γ0(H), g ∈ Γ0(G) and let h : H → R be a convex differentiable function,
with µh-Lipschitz continuous gradient, given by an expectation form h(x) = Eξ[H(x, ξ)]. In the
expectation, ξ is a random vector whose probability distribution P is supported on a set Ωp ⊂ R

m,
and H : H × Ω → R is convex function with respect to the variable x. Let ℓ ∈ Γ0(G) be a convex
differentiable function with µℓ-Lipschitz continuous gradient, and given by an expectation form
ℓ(v) = Eξ[L(v, ξ)]. In the expectation, ζ is a random vector whose probability distribution is
supported on a set ΩD ⊂ R

d, and L : G × ΩD → R is convex function with respect to the variable
v. Let K : H → G be a bounded linear operator. The primal problem is to

minimize
x∈H

h(x) + (ℓ∗�g)(Kx) + f(x), (4.1)

and the dual problem is to

minimize
v∈G

(h+ f)∗(−K∗v) + g∗(v) + ℓ(v), (4.2)

under the following assumptions:

(i) There exists a point (x⋆, v⋆) ∈ H × G such that the primal-dual gap function defined by

G :H× G → R ∪ {−∞,+∞}
(x, v) 7→ h(x) + f(x) + 〈Kx | v〉 − g∗(v)− ℓ(v) (4.3)

verifies the following condition:

(

∀x ∈ H
)

(
(

∀v ∈ G
)

G(x⋆, v) ≤ G(x⋆, v⋆) ≤ G(x, v⋆), (4.4)

(ii) It is possible to obtain independent and identically distributed (i.i.d.) samples (ξn, ζn)n∈N of
(ξ, ζ).
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(iii) Given (x, v, ξ, ζ) ∈ H × G × ΩP ×ΩD, one can find a point (∇H(x, ξ),∇L(v, ξ)) such that

E(ξ,ζ)[(∇H(x, ξ),∇L(v, ζ))] = (∇h(x),∇ℓ(v)). (4.5)

Using the standard technique as in [8], we derive from (3.69) the following stochastic primal-dual
splitting method, Algorithm 4.2, for solving Problem 4.1. The weak almost sure convergence and
the convergence in expectation of the resulting algorithm can be derived easily from Corollary 3.10
and hence we omit them here.

Algorithm 4.2 Let (x0, x−1) ∈ H2 and (v0, v−1) ∈ G2. Let (γn)n∈N be a non-negative sequence.
Iterates

For n = 0, 1 . . . ,












yn = 2xn − xn−1

un = 2vn − vn−1

xn+1 = proxγnf (xn − γn∇H(yn, ξn)− γnK
∗un)

vn+1 = proxγng∗(vn − γn∇L(un, ζn) + γnKyn)

(4.6)

Theorem 4.3 Let x0 = x−1, v0 = v−1. Set µ = 2max{µh, µℓ}+ ‖K‖, let (γn)n∈N be a decreasing

sequence in
]

0, 1
2µ

[

such that

e0 =
∑

n∈N
γ2nE

[

‖∇H(yn, ξn)−∇h(yn)‖2 + ‖∇L(un, ζn)−∇ℓ(un)‖2
]

< ∞. (4.7)

For every N ∈ N, define

x̂N =

( N
∑

n=0

γnxn+1

)

/

( N
∑

n=0

γn

)

and v̂N =

( N
∑

n=0

γnvn+1

)

/

( N
∑

n=0

γn

)

. (4.8)

Assume that dom f and dom g∗ are bounded. Then the following holds:

E[G(x̂N , v)−G(x, v̂N )] ≤
(

1

2
‖(x0, v0)− (x, v)‖2 + γ0c(x, v) + e0

)/( N
∑

k=0

γk

)−1

. (4.9)

where

c(x, v) = ‖K‖sup
n∈N

{E [| 〈xn+1 − x | vn+1 − vn〉 |] + E [| 〈xn+1 − xn | vn+1 − v〉 |]} < ∞. (4.10)

Proof. We first note that (4.10) holds because of the boundedness of dom f and dom g∗. Since ℓ is
a convex, differentiable function with µℓ-Lipschitz continuous gradient, using the descent lemma,

ℓ(u) ≤ ℓ(q) + 〈∇ℓ(q) | u− q〉+ µℓ

2
‖u− q‖2. (4.11)

Since ℓ is convex, ℓ(q) ≤ ℓ(w) + 〈∇ℓ(q) | q − w〉. Adding this inequality to (4.11), we obtain

ℓ(u) ≤ ℓ(w) + 〈∇ℓ(q) | u− w〉+ µℓ

2
‖u− q‖2. (4.12)
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In particular, applying (4.12) with u = vn+1, w = v and q = un, we get

ℓ(vn+1) ≤ ℓ(v) + 〈∇ℓ(un) | vn+1 − v〉+ µℓ

2
‖vn+1 − un‖2. (4.13)

Moreover, it follows from (4.6) that

− (vn+1 − vn + γn∇L(un, ζn)− γnKyn) ∈ γn∂g
∗(vn+1), (4.14)

and hence, using the convexity of g∗,

g∗(v)− g∗(vn+1) ≥
1

γn
〈vn+1 − v | vn+1 − vn + γn∇L(un, ζn)− γnKyn〉 . (4.15)

Therefore, we derive from (4.13), (4.15) and (4.3) that

G(xn+1, v)−G(xn+1, vn+1) = 〈Kxn+1 | v − vn+1〉 − g∗(v) + g∗(vn+1)− ℓ(v) + ℓ(vn+1)

≤ 〈Kxn+1 | v − vn+1〉+
1

γn
〈v − vn+1 | vn+1 − vn + γn∇L(un, ζn)− γnKyn〉

+ 〈∇ℓ(un) | vn+1 − v〉+ µℓ

2
‖vn+1 − un‖2

= 〈K(xn+1 − yn) | v − vn+1〉+
1

γn
〈v − vn+1 | vn+1 − vn〉+

µℓ

2
‖vn+1 − un‖2

+ 〈∇ℓ(un)−∇L(un, ζn) | vn+1 − v〉 . (4.16)

By the same way, since h is convex differentiable with µh-Lipschitz gradient, we have

h(xn+1)− h(x) ≤ 〈∇h(yn) | xn+1 − x〉+ µh

2
‖xn+1 − yn‖2. (4.17)

Moreover, it follows from (4.6) that

− (xn+1 − xn + γn∇H(yn, ξn) + γnK
∗(un)) ∈ γn∂f(xn+1), (4.18)

and hence, by the convexity of f ,

f(xn+1)− f(x) ≤ 1

γn
〈x− xn+1 | xn+1 − xn + γn∇H(yn, ξn) + γnK

∗(un)〉 . (4.19)

In turn, using the definition of G as in (4.4), we have

G(xn+1, vn+1)−G(x, vn+1) = h(xn+1)− h(x) + 〈K(xn+1 − x) | vn+1〉+ f(xn+1)− f(x)

≤ 〈∇h(yn) | xn+1 − x〉+ µh

2
‖xn+1 − yn‖2 + 〈K(xn+1 − x) | vn+1〉

+
1

γn
〈x− xn+1 | xn+1 − xn + γn∇H(yn, ξn) + γnK

∗(un)〉

= 〈K(xn+1 − x) | vn+1 − un〉+
1

γn
〈x− xn+1 | xn+1 − xn〉

+
µh

2
‖xn+1 − yn‖2 + 〈∇h(yn)−∇H(yn, ξn) | xn+1 − x〉 . (4.20)

Let us set
{

x̄n+1 = proxγnf (xn − γn∇h(yn)− γnK
∗(un)),

v̄n+1 = proxγng∗(vn − γn∇ℓ(un) + γnK(yn)).
(4.21)
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Then, using the Cauchy Schwarz’s inequality and the nonexpansiveness of proxγnf , we obtain

〈∇h(yn)−∇H(yn, ξn) | xn+1 − x〉
= 〈∇h(yn)−∇H(yn, ξn) | xn+1 − x̄n+1〉+ 〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉
≤ ‖∇H(yn, ξn)−∇h(yn)‖‖xn+1 − x̄n+1‖+ 〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉
≤ γn‖∇H(yn, ξn)−∇h(yn)‖2 + 〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉 . (4.22)

By the same way,

〈∇ℓ(un)−∇L(un, ζn) | vn+1 − v〉
≤ γn‖∇L(un, ζn)−∇ℓ(un)‖2 + 〈∇ℓ(un)−∇L(un, ζn) | v̄n+1 − v〉 . (4.23)

It follows from (4.16), (4.20) and (4.22), (4.23) that

G(xn+1, v)−G(x, vn+1)

≤ 1

γn

(

〈v − vn+1 | vn+1 − vn〉+ 〈xn − xn+1 | xn+1 − x〉
)

+
µh

2
‖xn+1 − yn‖2

+ 〈K(xn+1 − yn) | v − vn+1〉+ 〈K(xn+1 − x) | vn+1 − un〉+
µℓ

2
‖vn+1 − un‖2

+ 〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉+ 〈∇ℓ(un)−∇L(un, ζn) | v̄n+1 − v〉
+ γn‖∇H(yn, ξn)−∇h(yn)‖2 + γn‖∇L(un, ζn)−∇ℓ(un)‖2, (4.24)

which is equivalent to

γn
(

G(xn+1, v)−G(x, vn+1)
)

≤
(

〈v − vn+1 | vn+1 − vn〉+ 〈xn − xn+1 | xn+1 − x〉
)

+
µhγn
2

‖xn+1 − yn‖2

+ γn
(

〈K(xn+1 − yn) | v − vn+1〉+ 〈K(xn+1 − x) | vn+1 − un〉
)

+
µℓγn
2

‖vn+1 − un‖2

+ γ2n
(

‖∇H(yn, ξn)−∇h(yn)‖2 + ‖∇L(un, ζn)−∇ℓ(un)‖2
)

+ γn
(

〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉+ 〈∇ℓ(un)−∇L(un, ζn) | v̄n+1 − v〉
)

. (4.25)

For simple, set µ0 = max{µh, µℓ} and let us define some notations in the space H × G where the
scalar product and the associated norm are defined in the normal manner,











x = (x, v), xn = (xn, vn), yn = (yn, un), xn = (xn, vn),

rn = (∇H(yn, ξn),∇L(un, ζn)),

Rn = (∇h(yn),∇ℓ(un)),

(4.26)

and
S : H× G → H× G : (x, v) 7→ (K∗v,−Kx). (4.27)

Then, one has ‖S‖ = ‖K‖ and

〈K(xn+1 − yn) | v − vn+1〉+ 〈K(xn+1 − x) | vn+1 − un〉
= 〈S(xn+1 − xn) | xn+1 − x〉 − 〈S(xn − xn−1) | xn − x〉 − 〈S(xn − xn−1) | xn+1 − xn〉

≤ dn+1 − dn +
‖K‖
2

(

‖xn − xn−1)‖2 + ‖xn+1 − xn‖2
)

, (4.28)
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where we set dn = 〈S(xn − xn−1) | xn − x〉. Moreover, we also have

〈v − vn+1 | vn+1 − vn〉+ 〈xn − xn+1 | xn+1 − x〉
= 〈xn+1 − xn | x− xn+1〉

=
1

2
‖xn − x‖2 − 1

2
‖xn − xn+1‖2 −

1

2
‖xn+1 − x‖2. (4.29)

Furthermore, using the triangle inequality, we obtain

µhγn
2

‖xn+1 − yn‖2 +
µℓγn
2

‖vn+1 − un‖2 ≤ γnµ0

(

‖xn − xn+1‖2 + ‖xn − xn−1‖2
)

. (4.30)

Finally, we can rewrite the two last terms in (4.25) as

γ2n
(

‖∇H(yn, ξn)−∇h(yn)‖2 + ‖∇L(un, ζn)−∇ℓ(un)‖2
)

+ γn
(

〈∇h(yn)−∇H(yn, ξn) | x̄n+1 − x〉+ 〈∇ℓ(un)−∇L(un, ζn) | v̄n+1 − v〉
)

= γ2n‖rn − Rn‖2 + γn 〈rn − Rn | x− x̄n+1〉 (4.31)

Therefore, inserting (4.28), (4.29), (4.30) and (4.31) into (4.25) and rearranging, we get

γn
(

G(xn+1, v)−G(x, vn+1)
)

≤ 1

2
‖xn − x‖2 − 1

2
‖xn+1 − x‖2 + γndn+1 − γndn

− (
1

2
− γnµ0 −

γn‖K‖
2

)‖xn − xn+1‖2 + (γnµ0 +
γn‖K‖

2
)‖xn − xn−1‖2

+ γ2n‖rn − Rn‖2 + γn 〈rn − Rn | x− x̄n+1〉 . (4.32)

Let us set

bn =
1

2
‖xn − x‖2 + (γnµ0 +

γn‖K‖
2

)‖xn − xn−1‖2 − γndn. (4.33)

We have

|γndn| ≤ γn‖K‖‖xn − x‖‖xn − xn−1‖ ≤ γn‖K‖
2

(

‖xn − x‖2 + ‖xn − xn−1‖2
)

⇒ bn ≥ 0 ∀n ∈ N

Then, we can rewrite (4.32) as

γn
(

G(xn+1, v)−G(x, vn+1)
)

≤ bn − bn+1 − (
1

2
− 2γnµ0 −

2γn‖K‖
2

)‖xn − xn+1‖2

+ (γn − γn+1)dn+1 + γ2n‖rn − Rn‖2 + γn 〈rn − Rn | x− x̄n+1〉 . (4.34)

Now, using our assumption, since xn+1 is independent of (ξn, ζn), we have

E [〈rn − Rn | x− x̄n+1〉 |(ξ0, ζ0), . . . (ξn−1, ζn−1)] = 0. (4.35)

Moreover, the condition on the learning rate gives

1

2
− 2γnµ0 − γn‖K‖ ≥ 0 and γn − γn+1 ≥ 0. (4.36)

Therefore, taking expectation both sides of (4.34), we obtain

E[γn
(

G(xn+1, v)−G(x, vn+1)
)

] ≤ E [bn]− E [bn+1] + (γn − γn+1)c(x, v) + γ2nE
[

‖rn − Rn‖2
]

. (4.37)

Now, for any N ∈ N, summing (4.34) from n = 0 to n = N and invoking the convexity-concavity
of G, we arrive at the desired result.
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Remark 4.4 Here are some remarks.

(i) To the best of our knowledge, this is first work establishing the rate convergence of the
primal-dual gap for structure convex optimization involving infimal convolutions.

(ii) The results presented in this Section are new even in the deterministic setting. In this case,
by setting γn ≡ γ, our results share the same rate convergence O(1/N) of the primal-dual
gap as in [17]. While in the stochastic setting, our results share the same rate convergence
of the primal-dual gap as in [30] under the same conditions on (γn)n∈N and variances as in
(4.7). However, the work in [30] are limited to the case ℓ is a constant function.
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