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Introduction

Researchers in computational sciences are faced with the problem of solving a va-
riety of equations. A large number of problems are solved by finding the solutions
of certain equations. For example, dynamic systems are mathematically modeled by
difference or differential equations, and their solutions represent usually the states
of the systems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation x ′ = f (x), where x is the state, then the equilibrium states
are determined by solving the equations f (x) = 0. Similar equations are used in the
case of discrete systems. The unknowns of engineering equations can be functions
(difference, differential, integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
single unknowns). Except special cases, the most commonly used solutions methods
are iterative; when starting from one or several initial approximations, a sequence is
constructed, which converges to a solution of the equation. Iteration methods are ap-
plied also for solving optimization problems. In such cases, the iteration sequences
converge to an optimal solution of the problem in hand. Because all of these methods
have the same recursive structure, they can be introduced and discussed in a general
framework.

To complicate the matter further, many of these equations are nonlinear. How-
ever, all may be formulated in terms of operators mapping a linear space into an-
other, the solutions being sought as points in the corresponding space. Consequently,
computational methods that work in this general setting for the solution of equations
apply to a large number of problems and lead directly to the development of suit-
able computer programs to obtain accurate approximate solutions to equations in the
appropriate space.

This monograph is written with optimization considerations including the weak-
ening of existing hypotheses for solving equations. It can also be used as a reference
book for an advanced numerical-functional analysis course. The goal is to introduce
these powerful concepts and techniques at the earliest possible stage. The reader is
assumed to have had courses in numerical functional analysis and linear algebra.

We have divided the material into 11 chapters. Each chapter contains several new
theoretical results and important applications in engineering, in dynamic economic
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systems, in input-output systems, in the solution of nonlinear and linear differen-
tial equations, and optimization problems. The applications appear in the form of
Examples or Applications or Exercises or they are implied as our results improve
(weaken) (extend the applicability of) earlier ones that have already been applied in
concrete problems. Sections have been written as independent of each other as pos-
sible. Hence the interested reader can go directly to a certain section and understand
the material without having to go back and forth in the whole textbook to find related
material.

There are four basic problems connected with iterative methods.

Problem 1: Show that the iterates are well defined. For example, if the algorithm
requires the evaluation of F at each xn , it has to be guaranteed that the iterates remain
in the domain of F . It is, in general, impossible to find the exact set of all initial
data for which a given process is well defined, and we restrict ourselves to giving
conditions that guarantee that an iteration sequence is well defined for certain specific
initial guesses.

Problem 2: Concerns the convergence of the sequences generated by a process and
the question of whether their limit points are, in fact, solutions of the equation. There
are several types of such convergence results. The first, which we call a local conver-
gence theorem, begins with the assumption that a particular solution x∗ exists, and
then asserts that there is a neighborhood U of x∗ such that for all initial vectors in U
the iterates generated by the process are well defined and converge to x∗. The second
type of convergence theorem, which we call semilocal, does not require knowledge
of the existence of a solution, but states that, starting from initial vectors for which
certain—usually stringent—conditions are satisfied, convergence to some (generally
nearby) solutions x∗ is guaranteed. Moreover, theorems of this type usually include
computable (at least in principle) estimates for the error xn − x∗, a possibility not
afforded by the local convergence theorems. Finally, the third and most elegant type
of convergence result, the global theorem, asserts that starting anywhere in a linear
space, or at least in a large part of it, convergence to a solution is ensured.

Problem 3: Concerns the economy of the entire operations and, in particular, the
question of how fast a given sequence will converge. Here, there are two approaches,
which correspond with the local and semilocal convergence theorems. As mentioned
above, the analysis that leads to the semilocal type of theorem frequently produces
error estimates, and these, in turn, may sometimes be reinterpreted as estimates of
the rate of convergence of the sequence. Unfortunately, however, these are usually
overly pessimistic. The second approach deals with the behavior of the sequence {xn}
when n is large, and hence when xn is near the solutions x∗. This behavior may then
be determined, to a first approximation, by the properties of the iteration function
near x∗ and leads to so-called asymptotic rates of convergence.

Problem 4: Concerns with how to best choose a method, algorithm, or software pro-
gram to solve a specific type of problem and its descriptions of when a given algo-
rithm or method succeeds or fails.
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We have included a variety of new results dealing with Problems 1–4.
This monograph is an outgrowth of research work undertaken by us and comple-

ments/updates earlier works of ours focusing on in-depth treatment of convergence
theory for iterative methods [7]–[43]. Such a comprehensive study of optimal itera-
tive procedures appears to be needed and should benefit not only those working in the
field but also those interested in, or in need of, information about specific results or
techniques. We have endeavored to make the main text as self-contained as possible,
to prove all results in full detail, and to include a number of exercises throughout the
monograph. In order to make the study useful as a reference source, we have comple-
mented each section with a set of “Remarks” in which literature citations are given,
other related results are discussed, and various possible extensions of the results of
the text are indicated. For completion, the monograph ends with a comprehensive list
of references. Because we believe our readers come from diverse backgrounds and
have varied interests, we provide “recommended reading” throughout the textbook.
Often a long textbook summarizes knowledge in a field. This monograph, however,
may be viewed as a report on work in progress. We provide a foundation for a scien-
tific field that is rapidly changing. Therefore we list numerous conjectures and open
problems as well as alternative models that need to be explored.

The monograph is organized as follows:
Chapter 1: The essentials on the solution of equations are provided.
Newton-type methods and their implications/applications are covered in the rest

of the chapters.
The Newton-Kantorovich Theorem 2.2.4 for solving nonlinear equations is one

of the most important tools in nonlinear analysis and in classic numerical analysis.
This theorem has been successfully used for obtaining optimal bounds for many iter-
ative procedures. The original paper or Kantorovich [124] contains optimal a priori
bounds for the Newton-Kantorovich (NK) method (2.1.3), albeit not in explicit form.
Explicit forms of those a priori bounds were obtained independently by Ostrowski
[155], Gragg and Tapia [102].

The paper of Gragg and Tapia [102] also contains sharp a posteriori bounds for
the NK method. By using different techniques and/or different a posteriori informa-
tion, these bounds were refined by others [6], [53], [58], [59], [64], [74], [76]–[78],
[128], [135], [139]–[142], [154], [162], [167], [184], [191], [209]–[212], [214]–
[216], [218]–[220], and us [11]–[43]. Various extensions of the NK theorem also
have been used to obtain error bounds for Newton-like (or Newton-type) methods:
Inexact Newton method, the secant method, Halley’s method, etc. A survey of such
methods can be found in [26], [43].

The NK theorem has also been used in concrete applications for proving exis-
tence and uniqueness of solutions for nonlinear equations arising in various fields.
The spectrum of applications of this theorem is immense. An Internet search seek-
ing “Newton-Kantorovich Theorem” leads to hundreds if not thousands of works
related/based on this theorem.

The list given below is therefore incomplete. However, we have included di-
verse problems such as the NK method on a cone, Robinson [178] (Section 2.6);
the weak NK method, Tapia [188] (Section 2.4); bounds on manifolds, Argyros [39],
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Paardekooper [156] (Section 2.10); radius of convergence and one-parameter imbed-
ding Meyer [139] (Section 2.11); NK method on Riemannian manifolds, Ferreira
and Svaiter [94] (Section 2.12); shadowing orbits in dynamical systems, Hadeller
[108] (Section 2.13); computation of continuation curves, Deuflhard, Pesh, Rentrop
[77], Rheinboldt [176] (Section 2.14); Moore’s theorem [143] from interval anal-
ysis, Rall [171], Neumaier and Shen [146], Zuhe and Wolfe [220] (Section 3.1);
Miranda’s theorem [142] for enclosing solutions of equations, Mayer [136] (Sec-
tion 3.2); point-based approximation (PBA) used successfully by Robinson [179],
[180] in Mathematical Programming (Section 3.3); curve tracing, Allgower [2], Chu
[62], Rheinboldt [176] (Section 3.4); finite element analysis for boundary value prob-
lems, Tsuchiya [194], Pousin [168], Feinstauer-Zernicek [93] (Section 3.5); PSB
updates in Hilbert spaces using quasi-NK method, Laumen [134] (Section 3.6); shad-
owing Lemma and chaotic behavior for nonlinear equations, Palmer [156], Stoffer
[186] (Section 3.7); mesh independence principle for optimal design problems, Lau-
men [133], Allgower, Böhmer, Potra, Rheinboldt [2] (Section 3.8); conditioning of
semidefinite programs, Nayakkankuppam [144], Alizadeh [1], Haeberly [109] (Sec-
tion 3.9); analytic complexity/enlarging the set of initial guesses for the NK method,
Kung [131], Traub [192] (Chapter 6, Sections 6.1, 6.2, 6.3); interior point meth-
ods, Potra [165] (Section 11.1); LP methods, Rheinboldt [177], Wang-Zhao [206],
Renegar-Shub [174], Smale [184] (Section 11.2).

The foundation of the NK theorem is famous for its simplicity and clarity of NK
hypothesis (2.2.17) (or (2.2.37) in affine invariant form).

This hypothesis is the crucial sufficient condition for the convergence of New-
ton’s method. However, convergence of Newton’s method can be obtained even if
the NK hypothesis is violated (see, e.g., Example 2.2.14). Therefore weakening this
condition is of extreme importance because the applicability of this powerful method
will be extended. Recently we showed [39] by considering more precise majorizing
sequences that the NK hypothesis can always be replaced by the weaker (2.2.52) (if
�0 �= �) (see also Theorem 2.2.11) which doubles (at most if �0 = 0) the applicabil-
ity of this theorem. Note that the verification of condition (2.2.56) requires the same
information and computational cost as (2.2.37) because in practice the computation
of Lipschitz constant � requires the evaluation of center-Lipschitz constant �0 too.

Moreover the following advantages hold (see Theorem 2.2.11 and the Remarks
that follow): semilocal case: finer error estimates on the distances involved and an
at least as precise information on the location of the solution; local case: finer error
bounds and larger trust regions (radius of convergence).

The following advantages carry over if our approach is extended to related
methods/hypotheses: Below we provide a list: secant method, Argyros [12], [43],
Dennis [74], Potra [162], Hernandez [116], [117] (Section 2.3); “Terra Incognita”
and Hölder continuity, Argyros [32], [35], Lysenko [135], Ciancarruso, De Pascale
[64] (Section 2.4); NK method under regular smoothness conditions, Galperin [98],
Galperin and Waksman [99] (Section 2.5); enlarging the radius of convergence for
the NK method using hypotheses on the m (m > 1 an integer) Fréchet-differentiable
operators, Argyros [27], [43], Ypma [216] (Section 2.8); Gauss-Newton method,
Ben-Israel [46], Häussler [110] (Section 2.15); Broyden’s method [52], Dennis [75]
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(Section 4.1); Stirling’s method [185], Rall [170] (Section 4.2); Steffenssen-Aitken
method, Catinas [54], Pavaloiu [158], [159]; method of tangent hyperbolas, Kanno
[123], Yamamoto [211] (Section 4.5); modified secant method with applications in
function optimization, Amat, Busquier, Gutierrez [4], Bi, Ren, Wu [47], Ren [172]
(Section 4.6); the King-Werner method, Ren [172]; Newton methods (including two-
point), Argyros [34], [35], [43] Dennis [74], [75], Chen, Yamamoto, [58], [59], [60],
(in Chapters 5 and 8); variational inequalities in Chapter 7, K-theory and conver-
gence on generalized Banach spaces with a convergence structure, Caponetti, De
Pascale, Zabrejko [53], Meyer [139]–[141] in Chapter 9, and extensions to set-to-set
mappings in Chapter 10.

Earlier results by us or others are included in sections mentioned above directly
or indirectly as special cases of our results. Note that revisiting all results to date
that have used the NK hypothesis (2.2.37) and replacing (2.2.37) with our weaker
hypothesis (2.2.56) is worth it for the reasons/benefits mentioned above. However,
this will be an enormous or even impossible task. That is why in this monograph
we decided to include only the above chapters and leave the rest for the motivated
reader. Note that some results are also listed as exercises to reduce the size of the
book.

Finally we state that although the refinement of majorizing sequences technique
inaugurated by us in [39] is very recent, several authors have already succesfully used
it: Amat, Busquier, Gutierrez [4] (see Section 4.8), Bi, Ren, Wu [47] (see Section
4.6), and Ren [172] (see Section 4.7).



1

Operators and Equations

The basic background for solving equations is introduced here.

1.1 Operators on linear spaces

Some mathematical operations have certain properties in common. These properties
are given in the following definition.

Definition 1.1.1. An operator T that maps a linear space X into a linear space Y
over the same scalar field S is said to be additive if

T (x + y) = T (x) + T (y), for all x, y ∈ X,

and homogeneous if

T (sx) = sT (x), for all x ∈ X, s ∈ S.

An operator that is additive and homogeneous is called a linear operator.

Many examples of linear operators exist.

Example 1.1.2. Define an operator T from a linear space X into itself by T (x) = sx ,
s ∈ S. Then T is a linear operator.

Example 1.1.3. The operator D = d
dt mapping X = C1 [0, 1] into Y = C [0, 1]

given by

D (x) = dx

dt
= y (t) , 0 ≤ t ≤ 1,

is linear.

If X and Y are linear spaces over the same scalar field S, then the set L(X, Y )

containing all linear operators from X into Y is a linear space over S if addition is
defined by

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 1, c© Springer Science+Business Media, LLC 2008
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(T1 + T2)(x) = T1(x) + T2(x), for all x ∈ X,

and scalar multiplication by

(sT )(x) = s(T (x)), for all x ∈ X, s ∈ S.

We may also consider linear operators B mapping X into L(X, Y ). For an x ∈ X
we have

B(x) = T,

a linear operator from X into Y . Hence, we have

B(x1, x2) = (B(x1))(x2) = y ∈ Y.

B is called a bilinear operator from X into Y . The linear operators B from X into
L(X, Y ) form a linear space L(X, L(X, Y )). This process can be repeated to generate
j-linear operators ( j > 1 an integer).

Definition 1.1.4. A linear operator mapping a linear space X into its scalar S is
called a linear functional in X.

Definition 1.1.5. An operator Q mapping a linear space X into a linear space Y is
said to be nonlinear if it is not a linear operator from X into Y .

Some metric concepts of importance are now introduced.

Definition 1.1.6. An operator F from a Banach space X into a Banach space Y is
continuous at x = x∗ if

lim
n→∞

∥
∥xn − x∗∥∥

X = 0 =⇒ lim
n→∞

∥
∥F (xn) − F

(

x∗)∥∥
Y = 0

Theorem 1.1.7. If a linear operator T from a Banach space X into a Banach space
Y is continuous at x∗ = 0, then it is continuous at every point x of space X.

Proof. We have T (0) = 0, and from lim n→∞ ‖xn‖ = 0 we get limn→∞ ‖T (xn)‖ =
0. If sequence {xn} (n ≥ 0) converges to x∗ in X , by setting yn = xn − x∗ we obtain
limn→∞ ‖yn‖ = 0. By hypothesis this implies that

lim
n→∞ ‖T (xn)‖ = lim

n→∞
∥
∥T

(

xn − x∗)∥∥ = lim
n→∞

∥
∥T (xn) − T

(

x∗)∥∥ = 0.

Definition 1.1.8. An operator F from a Banach space X into a Banach space Y is
Lipschitz continuous on the set A in X if there exists a constant c < ∞ such that

‖F (x) − F (y)‖ ≤ c ‖x − y‖ , for all x, y ∈ A.

The greatest lower bound (infimum) of numbers c satisfying the above inequality for
x �= y is called the bound of F on A. An operator that is bounded on a ball (open)
U (z, r) = {x ∈ X | ‖x − z‖ < r} is continuous at z. It turns out that for linear
operators, the converse is also true.
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Theorem 1.1.9. A continuous linear operator T from a Banach space X into a Ba-
nach space Y is bounded on X.

Proof. By the continuity of T there exists ε > 0 such that ‖T (z)‖ < 1, if ‖z‖ < ε.
For 0 �= z ∈ X

‖T (z)‖ ≤ 1
ε
‖z‖ , (1.1.1)

because ‖cz‖ < ε for |c| < ε
‖z‖ , and ‖T (cz)‖ = |c| · ‖T (z)‖ < 1. Letting z = x − y

and c = ε−1 in (1.1.1), we conclude that operator T is bounded on X .

The bound on X of a linear operator T denoted by ‖T ‖X or simply ‖T ‖ is called
the norm of T . As in Theorem 1.1.9 we get

‖T ‖ = sup
‖x‖=1

‖T (x)‖. (1.1.2)

Hence, for any bounded linear operator T

‖T (x)‖ ≤ ‖T ‖ · ‖x‖, for all x ∈ X. (1.1.3)

From now on, L(X, Y ) denotes the set of all bounded linear operators from a Ba-
nach space X into another Banach space Y . It also follows immediately that L(X, Y )

is a linear space if equipped with the rules of addition and scalar multiplication in-
troduced in Definition 1.1.1.

The proof of the following result is left as an exercise (see also [119], [125]).

Theorem 1.1.10. The set L(X, Y ) is a Banach space for the norm (1.1.2).

In a Banach space X , solving a linear equation can be stated as follows: given a
bounded linear operator T mapping X into itself and some y ∈ X , find an x ∈ X
such that

T (x) = y. (1.1.4)

The point x (if it exists) is called a solution of Equation (1.1.4).

Definition 1.1.11. If T is a bounded linear operator in X and a bounded linear op-
erator T1 exists such that

T1T = T T1 = I, (1.1.5)

where I is the identity operator in X (i.e., I (x) = x for all x ∈ X), then T1 is called
the inverse of T and we write T1 = T −1. That is,

T −1T = T T −1 = I. (1.1.6)

If T −1 exists, then Equation (1.1.4) has the unique solution

x = T −1(y). (1.1.7)

The proof of the following result is left as an exercise (see also [130]).
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Theorem 1.1.12. (Banach Lemma on Invertible Operators) [125]. If T is a bounded
linear operator in X, T −1 exists if and only if there is a bounded linear operator P
in X such that P−1 exists and

‖I − PT ‖ < 1. (1.1.8)

If T −1 exists, then

T −1 =
∞
∑

n=0

(I − PT )n P (Neumann Series) (1.1.9)

and
∥
∥
∥T −1

∥
∥
∥ ≤ ‖P‖

1 − ‖I − PT ‖ . (1.1.10)

Based on Theorem 1.1.12, we can immediately introduce a computational theory
for Equation (1.1.4) composed by three factors:

(A) Existence and Uniqueness. Under the hypotheses of Theorem 1.1.12, Equa-
tion (1.1.4) has a unique solution x∗.

(B) Approximation. The iteration

xn+1 = P(y) + (I − PT )(xn) (n ≥ 0) (1.1.11)

gives a sequence {xn} (n ≥ 0) of successive approximations, which converges to x∗
for any initial guess x0 ∈ X .

(C) Error Bounds. Clearly the speed of convergence of iteration {xn} (n ≥ 0) to
x∗ is governed by the estimate:

‖xn − x∗‖ ≤ ‖I − PT ‖n

1 − ‖I − PT ‖‖P(y)‖ + ‖I − PT ‖n‖x0‖. (1.1.12)

Let T be a bounded linear operator in X . One way to obtain an approximate
inverse is to make use of an operator sufficiently close to T .

Theorem 1.1.13. If T is a bounded linear operator in X, T −1 exists if and only if
there is a bounded linear operator P1 in X such that P−1

1 exists, and

‖P1 − T ‖ ≤
∥
∥
∥P−1

1

∥
∥
∥

−1
. (1.1.13)

If T −1 exists, then

T −1 =
∞
∑

n=0

(

I − P−1
1 T

)n
P−1

1 (1.1.14)

and
∥
∥
∥T −1

∥
∥
∥ ≤

∥
∥P−1

∥
∥

1 −
∥
∥
∥I − P−1

1 T
∥
∥
∥

≤

∥
∥
∥P−1

1

∥
∥
∥

1 −
∥
∥
∥P−1

1

∥
∥
∥ ‖P1 − T ‖

. (1.1.15)
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Proof. Let P = P−1
1 in Theorem 1.1.12 and note that by (1.1.13)

∥
∥
∥I − P−1

1 T
∥
∥
∥ =

∥
∥
∥P−1

1 (P1 − T )

∥
∥
∥ ≤

∥
∥
∥P−1

1

∥
∥
∥ · ‖P1 − T ‖ < 1. (1.1.16)

That is, (1.1.8) is satisfied. The bounds (1.1.15) follow from (1.1.10) and (1.1.16).
That proves the sufficiency. The necessity is proved by setting P1 = T , if T −1 exists.

The following result is equivalent to Theorem 1.1.12.

Theorem 1.1.14. A bounded linear operator T in a Banach space X has an inverse
T −1 if and only if linear operators P, P−1 exist such that the series

∞
∑

n=0

(I − PT )n P (1.1.17)

converges. In this case we have

T −1 =
∞
∑

n=0

(I − PT )n P.

Proof. If series (1.1.17) converges, then it converges to T −1 (see Theorem 1.1.12).
The existence of P , P−1 and the convergence of series (1.1.17) is again established
as in Theorem 1.1.12, by taking P = T −1, when it exists.

Definition 1.1.15. A linear operator N in a Banach space X is said to be nilpotent if

N m = 0, (1.1.18)

for some positive integer m.

Theorem 1.1.16. A bounded linear operator T in a Banach space X has an inverse
T −1 and only if there exist linear operators P, P−1 such that I − PT is nilpotent.

Proof. If P , P−1 exists and I − PT is nilpotent, then series

∞
∑

n=0

(I − PT )n P =
m−1
∑

n=0

(I − PT )n P

converges to T −1 by Theorem 1.1.14. Moreover, if T −1 exists, then P = T −1,
P−1 = T exists, and I − PT = I − T −1T = 0 is nilpotent.

The computational techniques to be considered later make use of the derivative
in the sense of Fréchet [125], [204].

Definition 1.1.17. Let F be an operator mapping a Banach space X into a Banach
space Y . If there exists a bounded linear operator L from X into Y such that
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lim
‖�x‖→0

‖F (x0 + �x) − F (x0) − L (�x)‖
‖�x‖ = 0, (1.1.19)

then F is said to be Fréchet-differentiable at x0, and the bounded linear operator

F ′ (x0) = L (1.1.20)

is called the first Fréchet derivative of F at x0. The limit in (1.1.19) is supposed to
hold independently of the way that �x approaches 0. Moreover, the Fréchet differ-
ential

δF (x0,�x) = F ′ (x0)�x (1.1.21)

is an arbitrary close approximation to the difference F (x0 + �x) − F (x0) relative
to ‖�x‖, for ‖�x‖ small.

If F1 and F2 are differentiable at x0, then

(F1 + F2)
′(x0) = F ′

1(x0) + F ′
2(x0). (1.1.22)

Moreover, if F2 is an operator from a Banach space X into a Banach space Z , and
F1 is an operator from Z into a Banach space Y , their composition F1 ◦ F2 is defined
by

(F1 ◦ F2)(x) = F1(F2(x)), for all x ∈ X. (1.1.23)

It follows from Definition 1.1.17 that F1 ◦ F2 is differentiable at x0 if F2 is differen-
tiable at x0 and F1 is differentiable at F2(x0) of Z , with (chain rule):

(F1 ◦ F2)
′(x0) = F ′

1(F2(x0))F ′
2(x0). (1.1.24)

In order to differentiate an operator F we write:

F(x0 + �x) − F(x0) = L(x0,�x)�x + η(x0,�x), (1.1.25)

where L(x0,�x) is a bounded linear operator for given x0,�x with

lim
‖�x‖→0

L(x0,�x) = L , (1.1.26)

and

lim
‖�x‖→0

‖η(x0,�x)‖
‖�x‖ = 0. (1.1.27)

Estimates (1.1.26) and (1.1.27) give

lim
‖�x‖→0

L(x0,�x) = F ′(x0). (1.1.28)

If L(x0,�x) is a continuous function of �x in some ball U (0, R) (R > 0), then

L(x0, 0) = F ′(x0). (1.1.29)

Higher-order derivatives can be defined by induction:
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Definition 1.1.18. If F is (m − 1)-times Fréchet-differentiable (m ≥ 2 an integer),
and an m-linear operator A from X into Y exists such that

lim
‖�x‖→0

∥
∥F (m−1) (x0 + �x) − F (m−1) (x0) − A (�x)

∥
∥

‖�x‖ = 0, (1.1.30)

then A is called the m-Fréchet derivative of F at x0, and

A = F (m) (x0) (1.1.31)

Higher partial derivatives in product spaces can be defined as follows: Define

Xi j = L(X j , Xi ), (1.1.32)

where X1, X2, . . . are Banach spaces and L(X j , Xi ) is the space of bounded linear
operators from X j into Xi . The elements of Xi j are denoted by Li j , etc. Similarly,

Xi jm = L(Xm, Xi j ) = L(Xm, L(X j , Xi )) (1.1.33)

denotes the space of bounded bilinear operators from Xk into Xi j . Finally, we write

Xi j1 j2··· jm = L
(

X jk, Xi j1 j2··· jm−1

)

, (1.1.34)

which denotes the space of bounded linear operators from X jm into Xi j1 j2··· jm−1 . The
elements A = Ai j1 j2··· jm of Xi j1 j2··· jm are a generalization of m-linear operators [10],
[125].

Consider an operator Fi from space

X =
n
∏

p=1

X jp (1.1.35)

into Xi , and that Fi has partial derivatives of orders 1, 2, . . . , m − 1 in some ball
U (x0, R), where R > 0 and

x0 =
(

x (0)
j1

, x (0)
j2

, . . . , x (0)
jn

)

∈ X. (1.1.36)

For simplicity and without loss of generality we renumber the original spaces so
that

j1 = 1, j2 = 2, . . . , jn = n. (1.1.37)

Hence, we write
x0 = (x (0)

1 , x (0)
2 , . . . , x (0)

n ). (1.1.38)

A partial derivative of order (m − 1) of Fi at x0 is an operator

Aiq1q2···qm−1 = ∂(m−1)Fi (x0)

∂xq1∂xq2 · · · ∂xqm−1

(1.1.39)

(in Xiq1q2···qm−1 ) where
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1 ≤ q1, q2, . . . , qm−1 ≤ n. (1.1.40)

Let P(Xqm ) denote the operator from Xqm into Xiq1q2···qm−1 obtained from (1.1.39)
by letting

x j = x (0)
j , j �= qm, (1.1.41)

for some qm , 1 ≤ qm ≤ n. Moreover, if

P ′(x (0)
qm

) = ∂

∂xqm

· ∂m−1 Fi (x0)

∂xq1∂xq2 · · · ∂xqm−1

= ∂m Fi (x0)

∂xq1 · · · ∂xqm

, (1.1.42)

exists, it will be called the partial Fréchet derivative of order m of Fi with respect to
xq1 , . . . , xqm at x0.

Furthermore, if Fi is Fréchet-differentiable m times at x0, then

∂m Fi (x0)

∂xq1 · · · ∂xqm

xq1 · · · xqm = ∂m Fi (x0)

∂xs1∂xs2 · · · ∂xsm

xs1 · · · xsm (1.1.43)

for any permutation s1, s2, . . . , sm of integers q1, q2, . . . , qm and any choice of points
xq1 , . . . , xqm , from Xq1 , . . . , Xqm respectively. Hence, if F = (F1, . . . , Ft ) is an
operator from X = X1 × X2 × · · · × Xn into Y = Y1 × Y2 × · · · × Yt , then

F (m)(x0) =
(

∂m Fi

∂x j1 · · · ∂x jm

)

x=x0

(1.1.44)

i = 1, 2, . . . , t , j1, j2, . . . , jm = 1, 2, . . . , n, is called the m-Fréchet derivative of F
at x0 = (x (0)

1 , x (0)
2 , . . . , x (0)

n ).
We now state results concerning the mean value theorem, Taylor’s theorem, and

Riemannian integration. The proofs are left out as exercises [125], [186].
The mean value theoremfor differentiable real functions f :

f (b) − f (a) = f ′(c)(b − a), (1.1.45)

where c ∈ (a, b), does not hold in a Banach space setting. However, if F is a differ-
entiable operator between two Banach spaces X and Y , then

‖F(x) − F(y)‖ ≤ sup
x̄∈L(x,y)

‖F ′(x̄)‖ · ‖x − y‖, (1.1.46)

where
L(x, y) = {z .. z = λy + (1 − λ)x, 0 ≤ λ ≤ 1}. (1.1.47)

Set
z(λ) = λy + (1 − λ)x, 0 ≤ λ ≤ 1, (1.1.48)

and
F(λ) = F(z(λ)) = F(λy + (1 − λ)x). (1.1.49)

Divide the interval 0 ≤ λ ≤ 1 into n subintervals of lengths �λi , i = 1, 2, . . . , n,
choose points λi inside corresponding subintervals and as in the real Riemann inte-
gral consider sums
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∑

σ

F(λi )�λi =
n
∑

i=1

F(λi )�λi , (1.1.50)

where σ is the partition of the interval, and set

|σ | = max
(i)

�λi . (1.1.51)

Definition 1.1.19. If
S = lim

|σ |→0

∑

σ

F (λi ) �λi (1.1.52)

exists, then it is called the Riemann integral from F (λ) from 0 and 1, denoted by

S =
∫ 1

0
F (λ) dλ =

∫ y

x
F (λ) dλ. (1.1.53)

Note that a bounded operator P (λ) on [0, 1] such that the set of points of dis-
continuity is of measure zero is said to be integrable on [0, 1].

We now state the famous Taylor theorem [103].

Theorem 1.1.20. If F is m-times Fréchet-differentiable in U (x0, R), R > 0, and
F (m)(x) is integrable from x to any y ∈ U (x0, R), then

F(y) = F(x) +
m−1
∑

n=1

1
n! F (n)(x)(y − x)n + Rm(x, y), (1.1.54)

∥
∥
∥
∥

F (y) −
m−1
∑

n=0

1
n! F (n)(x)(y − x)n

∥
∥
∥
∥

≤ sup
x̄∈L(x,y)

∥
∥F (m) (x̄)

∥
∥
‖y − x‖m

m!
, (1.1.55)

where

Rm(x, y) =
∫ 1

0
F (m)

(

λy + (1 − λ) x
)

(y − x)m (1−λ)m−1

(m−1)! dλ. (1.1.56)

1.2 Divided differences of operators

This section introduces the fundamentals of the theory of divided differences of a
nonlinear operator. Several results are also provided using differences as well as
Fréchet derivatives satisfying Lipschitz or monotone-type conditions.

Let X be a linear space. We introduce the following definition:

Definition 1.2.1. A partially ordered topological linear space (POTL-space) is a lo-
cally convex topological linear space X which has a closed proper convex cone.
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A proper convex cone is a subset K such that K + K ⊂ K , αK ⊂ K for
α > 0, and K ∩ (−K ) = {0} . Thus the order relation ≤, defined by x ≤ y if
and only if y − x ∈ K , gives a partial ordering that is compatible with the linear
structure of the space. The cone K that defines the ordering is called the positive
cone as K = {x ∈ X | x ≥ 0} . The fact that K is closed implies also that intervals,
[a, b] = {z ∈ X | a ≤ z ≤ b}, are closed sets.

Example 1.2.2. Some simple examples of POTL-spaces are:

(1) X = En , n-dimensional Euclidean space, with

K = {

(x1, x2, ..., xn) ∈ En | xi ≥ 0, i = 1, 2, ..., n
} ;

(2) X = En with K = {(x1, x2, ..., xn) ∈ En | xi ≥ 0, i = 1, 2, ..., n − 1, xn = 0} ;
(3) X = Cn [0, 1], continuous functions, maximum norm topology, pointwise order-

ing;
(4) X = Cn [0, 1], n-times continuously differentiable functions with

‖ f ‖ =
n
∑

k=0

max
∣
∣
∣ f (K ) (t)

∣
∣
∣ , and pointwise ordering;

(5) C = L p [0, 1] , 0 ≤ p ≤ ∞ usual topology,

K = {

f ∈ L p [0, 1] | f (t) ≤ 0 a.e.
}

.

Remark 1.2.3. Using the above examples, it is easy to see that the closedness of the
positive cone is not, in general, a strong enough connection between the ordering
and the topology. Consider, for example, the following properties of sequences of
real numbers:

(1) x1 ≤ x2 ≤ · · · ≤ x∗, and sup {xn} x∗ implies lim
n→∞ xn = x∗;

(2) lim
n→∞ xn = 0 implies that there exists a sequence {yn} with y1 ≥ y2 ≥ · · · ≥ 0,

inf {yn} = 0 and −yn ≤ xn ≤ yn;
(3) 0 ≤ xn ≤ yn , and lim

n→∞ yn = 0 imply lim
n→∞ xn = 0.

Unfortunately, these statements are not true for all POTL-spaces:

(a) In X = C [0, 1] let xn (t) = −tn . Then x1 ≤ x2 ≤ · · · ≤ 0, and sup {xn} = 0,
but ‖xn‖ = 1 for all n, so lim

n→∞ xn does not exist. Hence (1) does not hold.

(b) In X = L1 [0, 1] let xn (t) = n for 1
n+1 ≤ t ≤ 1

n and zero elsewhere. Then
lim

n→∞ ‖xn‖ = 0 but clearly property (2) does not hold.

(c) In X = C1 [0, 1] let xn (t) = tn

n , yn (t) = 1
n . Then 0Šxn ≤ yn, and lim

n→∞ yn = 0,

but ‖xn‖ = max
∣
∣
∣

tn

n

∣
∣
∣+ max

∣
∣tn−1

∣
∣ = 1

n + 1 > 1; hence xn does not converge to
zero.
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We will now devote a brief discussion of certain types of POTL-spaces in which
some of the above statements are true.

Definition 1.2.4. A POTL-space is called regular if every order-bounded increasing
sequence has a limit.

Remark 1.2.5. Examples of regular POTL-spaces are En and L p, 0 ≤ p ≤ ∞,
whereas C [0, 1] , Cn [0, 1] and L∞ [0, 1] are not regular, as was shown in (a) of the
above remark. If {xn} n ≥ 0 is a monotone increasing sequence and limn→∞ xn = x∗
exists, then for any k0, n ≥ k0 implies xn ≥ xk0 . Hence x∗ = limn→∞ xn ≥ xk0 , i.e.,
x∗ is an upper bound on {xn} n = 0. Moreover, if y is any other upper bound, then
xn ≤ y, and hence x∗ = limn→∞ xn ≤ y, i.e., x∗ = sup {xn} . This shows that in
any POTL-space, the closedness of the positive cone guarantees that, if a monotone
increasing sequence has a limit, then it is also a supremum. In a regular space, the
converse of this is true; i.e., if a monotone increasing sequence has a supremum, then
it also has a limit. It is important to note that the definition of regularity involves both
an order concept (monotone boundedness) and a topological concept (limit).

Definition 1.2.6. A POTL-space is called normal if, given a local base U for the
topology, there exists a positive number η so that if 0 ≤ x ∈ V ∈ U then [0, x] ⊆ ηU .

Remark 1.2.7. If the topology of a POTL-space is given by a norm then this space
is called a partially ordered normed space (PON)-space. If a PON-space is complete
with respect to its topology then it is called a partially ordered Banach space (POB)-
space. According to Definition 1.2.6. A PON-space is normal if and only if there
exists a positive number α such that

‖x‖ ≤ α ‖y‖ for all x, y ∈ X with 0 ≤ x ≤ y.

Let us note that any regular POB-space is normal. The converse is not true. For
example, the space C [0, 1] , ordered by the cone of nonnegative functions, is normal
but is not regular. All finite-dimensional POTL-spaces are both normal and regular.

Remark 1.2.8. Let us now define some special types of operators acting between two
POTL-spaces. First we introduce some notation if X and Y are two linear spaces
then we denote by (X, Y ) the set of all operators from X into Y and by L (X, Y )

the set of all linear operators from X into Y. If X and Y are topological linear
spaces, then we denote by L B (X, Y ) the set of all continuous linear operators from
X into Y . For simplicity, the spaces L (X, X) and L B (X, X) will be denoted by
L (X) and L B (X) . Now let X and Y be two POTL-spaces and consider an operator
G ∈ (X, Y ). G is called isotone (resp. antitone) if x ≥ y implies G (x) ≤ G (y)

(resp. G (x) ≤ G (y)). G is called nonnegative if x ≥ 0 implies G (x) ≥ 0. For lin-
ear operators, the nonnegativity is clearly equivalent with the isotony. Also, a linear
operator is inverse nonnegative if and only if it is invertible and its inverse is non-
negative. If G is a nonnegative operator, then we write G ≥ 0. If G and H are two
operators from X into Y such that H − G is nonnegative, then we write G ≤ H . If Z
is a linear space, then we denote by I = Iz the identity operator in Z (i.e., I (x) = x
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for all x ∈ Z). If Z is a POTL-space, then we have obviously I ≥ 0. Suppose
that X and Y are two POTL-spaces and consider the operators T ∈ L (X, Y ) and
S ∈ L (Y, X). If ST ≤ Ix (resp. ST ≥ Ix ), then S is called a left subinverse (resp.
superinverse) of T and T is called a right subinverse (resp. superinverse) of S. We
say that S is a subinverse of T if S is a left as well as a right subinverse of T .

We finally end this section by noting that for the theory of partially ordered linear
spaces, the reader may consult M.A. Krasnosel’skii [128], [129], Vandergraft [199],
or Argyros and Szidarovszky [43].

The concept of a divided difference of a nonlinear operator generalizes the usual
notion of a divided difference of a scalar function in the same way in which the
Fréchet derivative generalizes the notion of a derivative of a function.

Definition 1.2.9. Let F be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y , i.e., F ∈ (D, Y ) and let x, y be two points
of D. A linear operator from X into Y , denoted [x, y] , which satisfies the condition

[x, y] (x − y) = F (x) − F (y) (1.2.1)

is called a divided difference of F at the points x and y.

Remark 1.2.10. If X and Y are topological linear spaces, then we shall always as-
sume the continuity of the linear operator [x, y]. (Generally, [x, y] ∈ L (X, Y ) if
X, Y are POTL-spaces then [x, y] ∈ L B (X, Y )).

Obviously, condition (1.2.1) does not uniquely determine the divided difference,
with the exception of the case when X is one-dimensional. An operator [·, ·] .. D ×
D → L (X, Y ) satisfying (1.2.1) is called a divided difference of F on D. If we fix
the first variable, we get an operator

[

x0, ·
]

.. D → L (X, Y ) . (1.2.2)

Let x1, x2 be two points of D. A divided difference of the operator (1.2.2) at the
points x1, x2 will be called a divided difference of the second order of F at the points
x0, x1, x2 and will be denoted by

[

x0, x1, x2
]

. We have by definition

[

x0, x1, x2
] (

x1 − x2
)

=
[

x0, x1
]

−
[

x0, x2
]

. (1.2.3)

Obviously,
[

x0, x1, x2
] ∈ L (X, L (X, Y )) .

Let us now state a well-known result due to Kantorovich concerning the location
of fixed points, which will be used extensively later [125].

Theorem 1.2.11. Let X be a regular POTL-space and let x, y be two points of X
such that x ≤ y. If H.. [x, y] → X is a continuous isotone operator having the
property that x ≤ H (x) and y ≥ H (y) , then there exists a point z ∈ [x, y] such
that H (z) = z.
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We now assume that X and Y are Banach spaces. Accordingly we shall have
[x, y] ∈ L B (X, Y ) , [x, y, z] ∈ L B (X, L B (X, Y )) . As we will see in later chap-
ters, most convergence theorems in a Banach space require that the divided differ-
ences of F satisfy Lipschitz conditions of the form:

‖[x, y] − [x, z]‖ ≤ c0 ‖y − z‖ (1.2.4)

‖[y, x] − [z, x]‖ ≤ c1 ‖y − z‖ (1.2.5)

‖[x, y, z] − [u, y, z]‖ ≤ c2 ‖x − y‖ for all x, y, z, u ∈ D. (1.2.6)

It is a simple exercise to show that if [·, ·] is a divided difference of F satisfying
(1.2.4) or (1.2.5), then F is Fréchet-differentiable on D and we have

F ′ (x) = [x, x] for all x ∈ D. (1.2.7)

Moreover, if (1.2.4) and (1.2.5) are both satisfied, then the Fréchet derivative F ′ is
Lipschitz continuous on D with Lipschitz constant I = c0 + c1.

We shall also give an example of divided differences of the first and of the second
order in the finite-dimensional case. We shall consider the space |Rq equipped with
the Chebysheff norm, which is given by

‖x‖ = max {|xi | ∈ R .. 1 ≤ I ≤ q} for x = (

x1, x2, ..., xq
) ∈ Rq . (1.2.8)

It follows that the norm of a linear operator L ∈ L B (Rq) represented by the
matrix with entries Ii j is given by

‖L‖ = max
{
∑q

j=1

∣
∣Ii j

∣
∣ | |1 ≤ i ≤ q

}

. (1.2.9)

We cannot give a formula for the norm of a bilinear operator. However, if B is a
bilinear operator with entries bi jk , then we have the estimate

‖B‖ ≤ max
{
∑q

j=1

∑q
k=1

∣
∣bi jk

∣
∣ |1 ≤ i ≤ q

}

. (1.2.10)

Let U be an open ball of |Rq and let F be an operator defined on U with values
in Rq . We denote by f1, ..., fq the components of F . For each x ∈ U we have

F (x) = (

f1 (x) , ..., fq (x)
)T

. (1.2.11)

Moreover, we introduce the notation

D j fi (x) = ∂ f (x)

∂x j
, Dkj fi (x) = ∂2 fi (x)

∂x j∂xk
. (1.2.12)

Let x, y be two points of U and let us denote by [x, y] the matrix with entries

[x, y]i j = 1

x j − y j

(

fi
(

x1, ..., x j , y j+1, ..., yq
)− fi

(

x1, ..., x j−1, y j , ..., yq
))

.

(1.2.13)



14 1 Operators and Equations

The linear operator [x, y] ∈ L B (Rq) defined in this way obviously satisfies
condition (1.2.1). If the partial derivatives D j fi satisfy some Lipschitz conditions of
the form

∣
∣D j fi

(

x1, ..., xk + t, ..., xq
)− D j fi

(

x1, ..., xk, ..., xq
)∣
∣ ≤ pi

jk |t | (1.2.14)

then condition (1.2.4) and (1.2.5) will be satisfied with

c0 = max

{
1

2

∑q

j=1

(

pi
j j +

∑q

k= j+1
pi

jk

)

|1 ≤ i ≤ q

}

(1.2.15)

and

c1 = max

{
1

2

∑q

j=1

(

pi
j j +

∑ j−1

k=1
pi

jk

)

|1 ≤ i ≤ q

}

. (1.2.16)

We shall prove (1.2.4) only as (1.2.5) can be proved similarly.
Let x, y, z be three points of U . We shall have in turn

[x, y]i j − [x, z] =
q
∑

k=1

{[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j

− [

x
(

y1, ..., yk−1, zk, ..., zq
)]

i j

}

by (1.2.13). (1.2.17)

If k ≤ j then we have
[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j − [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

= 1

x j − z j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)}

− 1

x j − z j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)} = 0.

For k = j we have
∣
∣
∣

[

x,
(

y1, ..., y j , z j+1, ..., zq
)]

i j −
[

x,
(

y1, ..., y j−1, z j , ..., zq
)

i j

]∣
∣
∣

=
∣
∣
∣
∣

1

x j − y j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, yi , z j+1, ..., zq
)}

− 1

x j − y j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)}
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

{

D j fi
(

x1, ..., x j , y j + t
(

x j − y j
)

, z j+1, ..., zq
)

− D j fi
(

x1, ..., x j , z j + t
(

x j − z j
)

, z j+1, ..., zq
)}

dt

∣
∣
∣
∣
∣

≤ ∣
∣y j − z j

∣
∣ pi

j j

∫ 1

0
tdt = 1

2

∣
∣x j − z j

∣
∣ pi

j j

(by (1.2.14)).



1.2 Divided differences of operators 15

Finally for k > j we have using (1.2.13) and (1.2.17) again
∣
∣
∣

[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j − [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

∣
∣
∣

=
∣
∣
∣
∣

1

x j − y j

{

fi
(

x1, ..., x j , y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j−1, y j , ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j , y j+1, ..., yk−1, zk, ..., zq
)

+ fi
(

x1, ..., x j−1, y j , ..., yk−1, zk, ..., zq
)}
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

{

fi
(

x1, ..., x j−1, y j + t
(

x j − y j
)

, y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j−1, y j + t
(

x j − y j
)

, y j+1, ..., yk−1, zk, ..., zq
)}

dt

∣
∣
∣
∣
∣

≤ |yk − zk | pi
jk .

By adding all the above, we get

∣
∣[x, y]i j − [x, z]i j

∣
∣ ≤ 1

2

∣
∣y j − z j

∣
∣ pi

j j +∑q
k= j+1 |yk − zk | pi

jk

≤ ‖y − z‖
{

1

2

∑q
j=1

(

pi
j j +∑q

k= j+1 pi
jk

)}

.

Consequently, condition (1.2.4) is satisfied with c0 given by (1.2.15). If each f j

has continuous second-order partial derivatives that are bounded on U , we have

pi
jk = sup

{∣
∣D jk fi (x)

∣
∣ |x ∈ U

}

.

In this case pi
jk = pi

k j so that c0 = c1.

Moreover, consider again three points x, y, z of U . Similarly with (1.2.17), the
second divided difference of F at x, y, z is the bilinear operators defined by

[x, y, z]i jk = 1
yk−zk

{[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j

− [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

}

. (1.2.18)

It is easy to see as before that [x, y, z]i jk = 0 for k < j. For k = j we have

[x, y, z]i j j = [

x j , y j , z j
]

t fi
(

x1, ..., xi−1, t, z j+1, ..., zq
)

(1.2.19)

where the right-hand side of (1.2.19) represents the divided difference of fi
(

x1, ...,

x j−1, t, z j+1, ..., zq
)

as a function of t, at the points x j , y j , z j . Using Genocchi’s
integral representation of divided differences of scalar functions [154], we get
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[x, y, z]i j j =
∫ 1

0

∫ 1

0
t D j j fi

(

x1, ..., x j−1, x j

+ t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)

dsdt. (1.2.20)

Hence, for k > j we obtain

[x, y, z]i jk = 1

(yk − zk)
(

x j − y j
)
{

fi
(

x1, ..., x j , y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j , x j+1, ..., yk−1, zk, ..., zq
)

− fi
(

x1, ..., x j−1, y j , ..., yk, zk+1, ..., zq
)

+ fi
(

x1, ..., x j−1, y j , ..., yk−1, zk, ..., zq
)}

× 1

x j − y j

∫ 1

0

{

Dk fi
(

x1, ..., x j , y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dk fi
(

x1, ..., x j−1, y j , ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)}

dt

=
∫ 1

0

∫ 1

0
Dkj fi

(

x1, ..., x j−1, y j

+ s
(

x j − yi
)

, y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

dsdt. (1.2.21)

We now want to show that if

∣
∣Dkj fi

(

v1, ..., vm + t, ..., vq
)− Dkj fi

(

v1, ..., vm, ...vq
)∣
∣ ≤ qi j

km |t |
for all v = (

v1, ..., vq
) ∈ U, 1 ≤ i, j, k, m ≤ q, (1.2.22)

then the divided difference of F of the second order defined by (1.2.18) satisfies
condition (1.2.6) with the constant

c2 = max
1≤i≤q

q
∑

j=1

⎧

⎨

⎩

1

6
qi j

j j + 1

2

j−1
∑

m=1

qi j
jm + 1

2

q
∑

k= j+1

qi j
k j +

q
∑

k= j+1

j−1
∑

m=1

qi j
km

⎫

⎬

⎭
. (1.2.23)

Let u, x, y, z be four points of U . Then using (1.2.18), we can easily have

[x, y, z]i jk − [u, y, z]i jk =
q
∑

m=1

{[(

x1, ..., xm, um+1, ..., uq
)

, y, z
]

i jk

[(

x1, ..., xm−1, um, ..., uq
)

, y, z
]

i jk

}

. (1.2.24)

If m = j , the terms in (1.2.24) vanish so that using (1.2.21) and (1.2.22), we deduce
that for k > j
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∣
∣[x, y, z]i jk − [u, y, z]i jk

∣
∣

=
∣
∣
∣
∣
∣
∣

j−1
∑

m=1

∫ 1

0

∫ 1

0

{

Dkj fi
(

x1, ..., xm, um+1, ..., u j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dkj fi
(

x1, ..., xm−1, um, ..., u j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1zk + t (yk − zk) , zk+1, ..., zq
)}

dsdt

+
∫ 1

0

∫ 1

0

{

Dkj fi
(

x1, ..., x j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dkj fi
(

x1, ..., x j−1, y j + s
(

u j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)}

dsdt

∣
∣
∣
∣
∣
∣

≤ 1

2

∣
∣x j − u j

∣
∣ qi j

k j +
j−1
∑

m=1

|xm − um | qi j
km .

Similarly for k = j , we obtain in turn
∣
∣[x, y, z]i j j − [u, y, z]i j j

∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

∫ 1

0
t
{

D j j fi
(

x1, ..., x j−1, x j + t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)

− D j j fi
(

x1, ..., x j−1, u j + t
(

y j − u j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)}

dsdt

+
j−1
∑

m=1

∫ 1

0

∫ 1

0
t
{

D j j fi
(

x1, ..., xm, um+1, ..., u j−1,

x j + t
(

x j − y j
)+ ts

(

z j − y
)

j, z j+1, ..., zq
)

− D j j fi
(

x1, ..., xm−1, um, ..., u j−1,

x j + t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)}

dsdt

∣
∣
∣
∣
∣

≤ 1

6

∣
∣x j − u j

∣
∣ qi j

j j + 1

2

j−1
∑

m=1

|xm − um | qi j
jm .

Finally using the estimate (1.2.10) of the norm of a bilinear operator, we deduce
that condition (1.2.6) holds with c2 given by (1.2.23).

We make an introduction to the problem of approximating a locally unique so-
lution x∗ of the nonlinear operator equation F (x) = 0, in a POTL-space X . In
particular, consider an operator F .. D ⊆ X → Y where X is a POTL-space with
values in a POTL-space Y . Let x0, y0, y−1 be three points of D such that
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x0 ≤ y0 ≤ y−1,
[

x0, y−1
]

,

and denote

D1 =
{

(x, y) ∈ X2 | x0 ≤ x ≤ y ≤ y0

}

,

D2 =
{

(y, y−1) ∈ X2 | x0 ≤ u ≤ y0

}

,

D3 = D1 ∪ D2. (1.2.25)

Assume there exist operators A0.. D3 → L B (X, Y ) , A.. D1 → L (X, Y ) such
that:

(a)
F (y) − F (x) ≤ A0 (w, z) (y − x)

for all (x, y) , (y, w) ∈ D1, (w, z) ∈ D3; (1.2.26)

(b) the linear operator A0 (u, v) has a continuous nonsingular nonnegative left subin-
verse;

(c)
F (y) − F (x) ≥ A (x, y) (y − x) for all (x, y) ∈ D1; (1.2.27)

(d) the linear operator A (x, y) has a nonnegative left superinverse for each (x, y) ∈
D1

F (y) − F (x) ≤ A0 (y, z) (y − x) for all x, y ∈ D1, (y, z) ∈ D3. (1.2.28)

Moreover, let us define approximations

F (yn) + A0 (yn, yn−1) (yn+1 − yn) = 0 (1.2.29)

F (xn) + A0 (yn, yn−1) (xn+1 − xn) = 0 (1.2.30)

yn+1 = yn − Bn F (yn) n ≥ 0 (1.2.31)

xn+1 = xn − B1
n F (xn) n ≥ 0, (1.2.32)

where Bn and B1
n are nonnegative subinverses of A0 (yn, yn−1) n ≥ 0.

Under very natural conditions, hypotheses of the form (1.2.26) or (1.2.27) or
(1.2.28) have been used extensively to show that the approximations (1.2.26) and
(1.2.30) or (1.2.31) and (1.2.32) generate two sequences {xn} n ≥ 1, {yn} n ≥ 1 such
that

x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 ≤ yn+1 ≤ yn ≤ · · · ≤ y1 ≤ y0 (1.2.33)

lim
n→∞ xn = x∗ = y∗ = lim

n→∞ yn and F
(

x∗) = 0. (1.2.34)

For a complete survey on these results, we refer to the works of Potra [164] and
Argyros and Szidarovszky [42]–[44].

Here we will use similar conditions (i.e., like (1.2.26), (1.2.27), (1.2.28)) for two-
point approximations of the form (1.2.29) and (1.2.30) or (1.2.31) and (1.2.32).

Consequently, a discussion must follow on the possible choices of the linear op-
erators A0 and A.


