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RICHARD N. BALL

Abstract. This paper employs the machinery of convergence and Cauchy struc-
tures in the task of obtaining completion results for lattice ordered groups. §§ 1 and
2 concern /-convergence and /-Cauchy structures in general. §4 takes up the order
convergence structure; the resulting completion is shown to be the Dedekind-
MacNeille completion. §5 concerns the polar convergence structure; the corre-
sponding completion has the property of lateral completeness, among others. A
simple theory of subset types routinizes the adjoining of suprema in §3. This
procedure, nevertheless, is shown to be sufficiently general to prove the existence
and uniqueness of both the Dedekind-MacNeille completion in §4 and the lateral
completion in §5. A proof of the existence and uniqueness of a proper class of
similar completions comes free. The principal new hull obtained by the techniques
of adjoining suprema is the type •?) hull, strictly larger than the lateral completion
in general.

As is nearly always true in the field of lattice ordered groups, this research
follows a path first trod by Conrad [10] and Holland [14]. The contributions of
Papangelou ([19], [20]) and Kenny [15] have also been important. But the novelty
of the present approach lies in the systematic application of convergence and
Cauchy structure techniques, significantly more powerful than topological and
uniformity techniques. These new techniques have been developed recently by
Kent and others ([16], [22]). The author owes a more personal debt of gratitude to
professors Gary Davis, G. Otis Kenny, and Darrell Kent for many stimulating
conversations on these topics.

A collection <5 of subsets of G is a filter if X D Y G ®s implies X G <5 and if X,
Y G f implies X n KEf.A collection 9H having only the second property is a

filter base and generates the filter {Y <Z G\Y D X G 911}. We shall not dis-
tinguish between filters and filter bases. For example, if 'S and 911 are both filters,
^ 911 is the filter with base {FM\F G f, M G 9H}, and similarly for S~\
S V 91L, S A g and so forth. As another example, if <5 is a filter on G and G G H
we shall often think of S as a filter on H. For g G G, g is { Y Q G\g G Y}, the
principal ultrafilter containing g.

If G is an /-group and X Q G then the convexification of X is X~ = {y\xx < y
< x2, x¡ G X). The lower {upper) bounds of X are LC(X) (UG(X)) = {y G G\y < x
(y > x) all x G X}. LG(X) and UG(X) are often written more simply L(X) and
U(X). The order closure of X, written ocl(X), is defined inductively. X0 = X,
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358 R. N. BALL

x«+\ = {VS|S C Xa) for « even and xa+i = {/\S\S Q XJ for a odd, and
Xß = U {Xja < ß} for limit ordinals /}. ocl(A') is X for some ordinal tj such that
-*I| =  ^7)+l  =  ^t) + 2-

A good deal of the material in §§1 and 2 applies to group convergence and
Cauchy structures as well as to /-convergence and Cauchy structures. Therefore
G < H is to be understood as meaning that G is a subgroup of H if G and H are
merely groups, but that G is an /-subgroup of H if both are /-groups. Likewise
G < H indicates that G is either a proper subgroup or a proper /-subgroup of H.

1. /-convergence structures. A convergence structure on a set G is obtained by
deciding which filter of subsets of G are to converge to which points of G subject
only to three very mild restrictions. We designate the convergence of the filter 'S on
G to the point g in G by 'S -> g. Specifically, (G, -») is a convergence space if g -» g
for all g G G, if 9 -> g and 91L -» g imply f n 91L -► g, and if S D 911 -» g
implies 'S -* g. The convergence space is Hausdorff if no filter converges to more
than one point. (G, —») is a convergence group if G is a group and -» makes the
group operations continuous, that is, if S —*f and 911 —» m imply Sr_1 —»/_1 and
?F91t ->fm. (G, -») is an l-convergence group, abbreviated lc-group, if it is a
convergence group and if —* also makes the lattice operations continuous. Every
/-topology gives rise to an /-convergence structure by defining 'S —> / whenever 'S is
finer than the neighborhood filter of /. An /-convergence structure which arises in
this fashion will be termed topological. As is true for topological /-groups, an
/-convergence structure is characterized by the filters which converge to the
identity.

Proposition 1.1. Suppose (G, ->) is an lc-group and that % is the set of filters
convergent to 1. Then

(a) i G <¥,
(b) <S D 9IL G % implies 'S G %,
(c) 9, 911 G % imply 9 n 9H G %,
(d)fef,g£G imply g-l9g G <¥,
(e) 9 G ^ í'wp/í'es fefwr'sf,
(f) ̂  e <¥ tMa A & - 1 imply 9a a 9b e <¥.

Conversely, if % is a collection of filters satisfying these conditions then the unique
l-convergence structure inducing ^lf is obtained by declaring 9 -* g if 9g~x G %.

Proof. All the conditions are clearly necessary, and the arguments for the
sufficiency of conditions (d) and (e) for the continuity of the group operations are
similar to those given for topological groups in Bourbaki [7, p. 222]. We prove only
that (f) is sufficient for the continuity of A- Assume 9 ->/ and 91L-* w. Let
9f~x n 91Lm_l = £ G <¥ and let/' =/(/Aw)"' and m' = m(f/\ni)-\ Since
/' A m' = 1 we have £/' A tm' G <¥. Therefore 9 A 91L D £/ A £w =
(tf'AtmyjAm)-*fAm,

All convergence features of an /c-group G can thus be discerned from eM". For
example, —» is Hausdorff if and only if | f) 9\ < 1 for all 9 G ^W. -» is topologi-
cal if and only if % contains a coarsest filter. —> is discrete if i is the only flter in
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CONVERGENCE AND CAUCHY STRUCTURES 359

6uf. If two convergence structures -» and => induce 6ISl and W2 then -> is finer
than =* (or =s> is coarser than -») if GliSl C 6HS2-

In any convergence space (G, -*) the closure of a subset Í ÇG, written cl^A")
or just cl(A'), is {g G G\X G 9 -^ g for some filter f}. The closure operator is
generally not idempotent, but in case cl(A') = Iwe say X is closed and G — A" is
0/>tvj. A subset X Q G is i/evwe if cl(A') = G.

For subsets X and T of an /-group G define X > Y to mean that every x G ^
lies above some y G F and that every y El Y lies below some x G A". For filters 9
and 9IL on G define 9 < 9IL to mean that for every F E. 9 there is an M G 91t
with F< M and also for every M G 9H there is an F G f with F< M.

Proposition 1.2. Suppose G is a sublattice of the Hausdorff lc-group H. For hx
and h2 in cl(G) the following are equivalent.

(a) A, < h2.
(b) For every 9x^>hx with G G f , there is an 92 -» h2 with G G 92 and

9X < 92.
(c) For every 92 -h> h2 with G G 92 there is an 9X -h» hx with G G 9X and 9X < 92.
(d) There are filters 9x^>hx and 92 -* h2 such that G G 9¡ and for each F¡ G 9¡

one may find f¡ G F¡ with /, < f2.

Proof, (a) implies (b). Suppose 9X -> hx and 9 -» h2 with (? 6 ï, n Î. Let
92 = 9X\J 9 -* h2. (a) implies (c) is similar while (b) implies (d) and (c) implies (d)
are clear. Condition (d) says that filters 9¡ may be found such that 9¡ —> h¡ and
% = {Y Q G\ Y D (Fx A F2) n Fx, F¡ E 9¡) is a proper filter. In a Hausdorff
/c-group the fact that % -^ hx A h2 and % -^ hx implies hx = hx A h2. The reader
is asked to observe that only in (d) implies (a) is the Hausdorff property used.

The next corollary implies that for any /-subgroup G of a Hausdorff /c-group H,
cl(G+) = cl(G)+.

Corollary 1.3. Suppose G is an l-subgroup of the Hausdorff lc-group H and that
g G G and h G cl(G). Then g < h (h < g) if and only if there is a filter 9 with
G E 9 —» h such that for every F G 9 there is an f G F satisfying f > g (/ < g).

Proof. In part (b) of Proposition 1.2 let 9X be g.

Proposition 1.4. Suppose G is a subset of the lc-group H.
(a) If G is a subgroup or a sublattice of H then so is cl(G).
(b) // C is a normal subgroup of the subgroup G of H then cl(C) is a normal

subgroup ofcl(G).
(c) If C is a convex sublattice of the sublattice G of H then cl(C) is a convex

sublattice of c\{G).
(d) If C is a prime subgroup of the l-subgroup G of H then cl(C) is a prime

subgroup of cl(G).

Proof, (a) follows directly from the continuity of the operations. To establish (b)
suppose that h E cl(G) and m E cl(C). There must be filters % and 911 such that
G G % -► h and C G 9IL -> m. Therefore 3C_19H0C -► h~xmh and is generated
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360 R. N. BALL

by sets A ~XBA for G D A G % and C D B e 911. Each such set must intersect C,
since for any a E A, a~xCa = C. Therefore h~lmh G cl(C). To prove (c), suppose
C is a convex sublattice of the sublattice G of H and that hx < h < h2 for
h¡ G cl(C) and A G cl(G). There must be filters 9¡ -> h¡ and 9 -* A such that
Cef, and G G S7. Let ÍP = (ÍF A $2) V 9X -+ h. Note that for an arbitrary
x = (g A c2) V Ci G (G A C) V C G f it is true that cx < x < cx\/ c2, implying
x G C. Therefore C E 9' and /i G cl(C). To establish (d) suppose that hx and /¡2
are disjoint members of cl(G) and that Cef,-» Ä,. Let 91L = (5F, A 'S^)-1 -» 1-
For any F, G 9- and any/ G F,, we have/' = /(/, A /2)"' S F/ = F^F, A FJ'1
G S/ = 9,\Vt -* h¡. Since G G S,' we may assume that F/ Ç G. Since/,' Afi= 1,
one of /, and /2 must be in C. It follows that either F[ Ç C or F2 ç C. This is,
either A, or A2 is in cl(C).

The next proposition implies that for G an /-subgroup of some Hausdorff
/c-group, cl(G) ç ocl(G~).

Proposition 1.5. // G is a subset of the Hausdorff lc-group H and if G E 9 —> h,
then for any F E 9, \J{F A h) = /\(F V h) = h in H.

Proof. Fix 9 and F as above and suppose x > F Ah for some x E H. Then the
filter 9 Ah and x satisfy Proposition 1.2(d) (with G there taken to be H here),
from which follows h < x.

An /-convergence structure —» is convex if 9 —» g implies iT" —» g. Here ?F~ is
the filter generated by sets F~ for F G 9. Given an /-convergence structure —>,
define 9 A g if 9 D 91t~ for some filter 9H —> g. The reader may satisfy himself
that A is the finest convex /-convergence structure coarser than —*. As is true in
the topological case, there is a rather close connection between —* and A ; for
example, each is Hausdorff only when the other is. For the next proposition the
reader should observe that in any /c-group G, cl{ 1} = U { D 9\9 —> 1}, an /-ideal
of G by Proposition 1.4.

Proposition 1.6. In any lc-group the closures of {1} with respect to —» and A
coincide.

Proof. Suppose 9 ^>\ and l<xGn^~. Then 9 A x -> 1 and x G
H (ÍF A *) since for all F G ^ there is some / G F with x < f.

Corollary 1.7. Any l-convergence structure —* is Hausdorff if and only if A is
Hausdorff.

It is slightly simpler to check part (f) of Proposition 1.1 in case -» is a convex
group convergence structure.

Proposition 1.8. A convex group convergence structure —» on an l-group is an
l-convergence structure if and only if 9 —> 1 implies 9 A 9 —» 1.

Proof. Suppose 9 -» 1 and a A b = 1. Let 911 = [(9 A 9) n (9 V 9)]~ -» I.
For any /„ f2 E F E 9, /, A /2 = (/. A fja A (/, A fàb < fxa A f2b <
(/, V f2)a A (/, V f2)b = /, V /2. That is, Fa A Fb Q [(F A F) u (F V F)]~ G
9lt. Therefore 9a A 9b D 91L -» 1 and 9a A 9b-^ 1.
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CONVERGENCE AND CAUCHY STRUCTURES 361

An /-convergence structure —» is order closed if 9 —> g implies oclCÍF) —» g. Here
oclCíF) is the filter generated by the sets ocl(F) for F G 9. Given an /-convergence
structure —>, define 9 => g if 9 2 ocl(3C) for some % —» g. It is easy to verify that
=» is the finest order closed /-convergence structure coarser than -». The point of
the next proposition is that if —* is order closed on G < H then even filters
convergent to objects in cl(G) must have a base of sets order closed in G.

Lemma 1.9. Suppose G is an l-subgroup of the lc-group H. Then —> is order closed
on G if and only if for every h G cl(G) and for every filter 9 with G G 9 —* h it is
true that oclG(^) -» h. Here oc\G{9) is { Y ç H\ Y D oclG(F n G) for some F G
9).

Proof. The condition certainly implies that -* is order closed on G. Now
suppose that -» is order closed on G and that G G 9 -* h. Let 91t = ocïG(9~19)
-» 1. The generating sets for 91L look like MF = oclG(F_1F) for F G 9, F Ç G.
From each F E 9 choose f E F and let £ be the filter generated by the sets fMF.
Since F ç fMF ç FA^, f D £ D <<F91t ^> /i. Since /Mf is an order closed subset
of G, oclG(^) D £ -> h.

Proposition 1.10. Suppose G is an l-subgroup of the Hausdorff lc-group H. If —»
is order closed on G then G is order dense in cl(G).

Proof. Suppose G G 9 -* h > 1 and let Sr' be oclGCiF V »)• The previous
proposition asserts G+ G 9' ^> h. Therefore one may find F G 9' such that
1 G F Ç G+ and F is order closed. It follows that there is some g G G with
1 < g < F for the only alternative is that /\F = 1, contrary to the assumption that
1 G F g < h by Corollary 1.3.

An interesting unsettled question is whether, under the hypothesis of Proposition
1.10, —> need be order closed on cl(G). The next proposition follows directly from
Proposition 1.5.

Proposition 1.11. If a convex sublattice C of an l-group G is order closed then it is
closed with respect to any Hausdorff l-convergence structure —» .

A convergence structure is regular if 9 —> g implies cl(9) —» g. Here cl(9) is the
filter generated by the sets cl(F) for F G 9. The reader is asked to recall that every
topological group convergence structure is regular. The point of the next two
results is that convex Hausdorff order closed /-convergence structures are also
regular.

Proposition 1.12. Suppose -+ is a convex order closed l-convergence structure on
the l-group G. Then for any Hausdorff l-convergence structure =>, 9 —> g implies
9!t —» g where 911 is the closure of 9 with respect to =>.

Proof. Suppose 9 -» 1. Then oc\(oc\(9)~) -» 1. The latter is generated by sets
ocl(ocl(F)~). But ocl(F)~ is a convex sublattice, so that ocl(ocl(F)~) is an order
closed convex sublattice [1]. By Proposition 1.11, ocl(ocl(F)~) is closed with respect
to =>.
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362 R. N. BALL

Corollary 1.13. Every convex Hausdorff order closed l-convergence structure is
regular.

A strong semantic link between G and cl(G) exists. Let c„ c2, . . . , cm be
constants from a convergence group (/c-group) H and let Wx, W2, . . . , W„ be
words built up from the c,'s and from the variables vx, v2, . . . ,vk using group (and
lattice) operations. Let us agree to term any formula obtained by joining the atomic
formulas "W¡ = 1" by conjunction or disjunction a disjunctive formula. For any
formula t// having free variables among o,, v2, . . . , vk, abbreviate its universal
closure Vt>,, v2, . . . , vk\p by Vu^. Finally, let <A> be the subgroup (/-subgroup) of
H generated by X Ç H.

Theorem 1.14. Suppose G is a subgroup (l-subgroup) of the Hausdorff convergence
group (lc-group) H. Let ^ be a disjunctive formula mentioning constants
c„ c2, . . . ,cm in H. Then <G, c„ .. ., cm> 1= Vw// // and only if <cl(G), c„ . . ., cm>
1= V«^.

Proof. Since implication from right to left is clear, suppose <cl(G), c,, . . . , cm>
N Vt>^. We may assume \p to be of the form " Wx = 1 or W2 = 1 or . . . or Wn = 1."
Thus we are assuming we have elements h¡ G <cl(G), c,, .. . , cm> such that
W(hx, . . . , hk) =?*= 1 for 1 < j < ». The continuity of the operations implies that
<cl(G), cx, . . . , cm> ç cl<G, c,, . . . , cm>. For each / let 9¡ be a filter such that
<G, c„ . . . , O £f^ A,.. Because Wj(9x, 92, . . ., 9k) -* Wj(hx, ..., h¿ ¥* 1, it
follows that one may find F, E 9¡ such that 1 £ Wj(Fx, F2, . .., Fk) for 1 < j < n.
We may assume each F, Q <G, c,, . . . , cm>. Choosing / G F¡, one obtains
WS(/i. ...,/*)* 1 for 1 < j < n. That is, <G, c„ . . . , cm> i/ Vta//.

Suppose (G, -») is a convergence group (/c-group) with normal subgroup (/-
ideal) R and corresponding natural map 9: G —* G/R. The quotient convergence
structure => on G/R is defined as follows. For 9 a filter on G/R and C a coset in
G/R, 9 ^>C providing 9 D 9110 for some filter 9IL on G such that 9lt -> c for
some c G C. A map \p: G —» // between convergence spaces (G, —>) and (//, =») is
continuous if 9 -* I implies 99 =* 1. It is clear that => is the finest convergence
structure on G/R with respect to which 9 is continuous.

Proposition 1.15. Suppose (G, —») is a convergence group (lc-group) with normal
subgroup (¡-ideal) R. The quotient convergence structure => is a group convergence
structure (l-convergence structure). =s> is Hausdorff if and only if M is closed. => is
discrete if and only if M is open.

Proof. Suppose => is not Hausdorff. There must be some filter 9 on G/R such
that 9 => 1 but 1 ¥= C E n 9. We may assume 9 to be of the form 91L0 for some
9IL -> r E R. Choose a particular c G C. Then 9ltc-1 -» rc~l & R. But for any
M E 91L, C G M9 implies Mc~l n R ¥* 0, so that R cannot be closed. If R is not
closed then there is a filter 91L such that R E 911 -► m G R. Hence 9110 -> (w)0
^ 1 but 1 G n 9H0. That is, => is not Hausdorff.

Suppose {(Ga, -»)|a G A} is a set of convergence spaces, that G ç IIGa, and
that ira: G —* Ga is the projection map for each a. The product convergence structure
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CONVERGENCE AND CAUCHY STRUCTURES 363

=> on G is defined by declaring 9 => g if 9ira -* gTra for all a G A. It is clear that
the product convergence structure is the coarsest convergence structure on G with
respect to which all the wa's are continuous.

Proposition 1.16. Suppose {(Ga, —*)\a E A) is a set of convergence groups
(lc-groups). Then the product convergence structure => is a group convergence
structure (l-convergence structure). => is Hausdorff if and only if each (Ga, —») is
Hausdorff. In the l-group case, => is convex if and only if each (Ga, —») is convex. If
G < IIGa then G is order closed if and only if each (Ga, —») is order closed.

2. /-Cauchy structures. A collection ß of filters on a set G is a Cauchy structure if
g G ß for every gGG, if ff D 9lt G ß implies 9 G ß, and if 9 n 91L G ß
whenever 9 and 91L are in ß and each set of 9 intersects each set of 911. A
natural equivalence relation -— is imposed on ß by declaring that 9 ~ 91L
whenever 9 n 91L G ß. It is convenient to designate the equivalence classes
(9It|ff ~ 911} by [9] and the set of all equivalence classes by Ge. With each
Cauchy structure ß is also associated its induced convergence structure -»,
obtained by declaring 9 —» g whenever 9 — g. Adjectives appropriate to a conver-
gence structure are often applied to the generating Cauchy structure; for example,
ß is said to be Hausdorff if gx n g2 G ß implies g, = g2.

A Cauchy structure 6 is a group Cauchy structure if 9, 91L G ß imply ff-1,
ff9n g e.

Proposition 2.1. If ß is a group Cauchy structure on group G, then for filters 9
and 9tt in 6, 9 ~ 91L if and only if ff_191t -* 1.

Proof. Let £ = 9 n 911. Now £ G ß implies ff-'9H D £"'£ G ß. Since
1 G L_1L for each L G £ it follows that £"'£ n Í G ß and that ff_19H -> 1.
Conversely, if ff-'91t n i G ß then ff n 9H D ^(^-'911 n Í) G ß.

A group Cauchy structure ß is an I-Cauchy structure if ff, 91L G ß imply
ff V 91L, 9 A 91L G ß. Define [ff][91L], [ff]"1, [ff] V M and [ff] A [9H] to be
respectively [ff 91t], [ff-1], [ff V 911], and [ff A 91L].

Proposition 2.2. A group Cauchy structure (l-Cauchy structure) ß on group G
(l-group G) induces a group convergence structure (l-convergence structure) on G. Ge
is a group (l-group) and the map ¡p: G —» Ge defined by (g)\p = [g] is a homomor-
phism (l-homomorphism). \p is 1-1 if and only if ß is Hausdorff.

G will be considered a subset of G e whenever ß is Hausdorff.
There seems to be no single method of extending the convergence or Cauchy

structures on G to Ge which is adequate for all our purposes. This is not an
obstacle, however, since in the later sections we endow every /-group with a
convergence structure ->, and it is necessary only to check whether -» on Ge
meshes nicely with -> on G. A reasonable definition of a convergence structure =>
on Ge meshing nicely with the induced convergence structure —» on G is the
following: for h E Ge and ff a filter on Ge containing G, 9 => h if and only if
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364 R. N. BALL

h = [ff]. Notice that if => is a convergence structure on Ge which meshes nicely
with -4onG then => reduces to —> on G and G is dense in (Ge, =»).

Among those convergence structures on G e which mesh nicely with —* on G, one
deserves special mention. For * C G let A'" = {[ff] G Ge|A" G ff}. For ff a filter
on G let ff~ be the filter on G e generated by the sets F ~ for F G ff. Notice that
for XqG, X~r\G = cl(A) with respect to the induced convergence structure on
G.

Proposition 2.3. Let G be a Cauchy structure on G inducing convergence structure
-» on G. For 9 a filter on Ge define 9 => h G G e if and only if 9 D 91L" for some
9H such that h = [911]. Then => meshes nicely with —» if and only if 9 E G implies
cl(ff) G G. If G is a group Cauchy structure (I-Cauchy structure) then => is a group
convergence structure (l-convergence structure).

Proposition 2.4. Let G be a group Cauchy structure inducing —» on G. Then -h> is
regular on G if and only if 9 G ß implies cl(ff) G ß.

Proof. If ff G ß implies cl(ff) G ß then -» is clearly regular. Suppose —» is
regular on G and that ff G ß. Since cl(ff"'ff) -> 1 it follows that ffcl(ff"'ff) G ß.
For each F G ff choose/ G F. Then F Ç cl(F) Ç cl(/F_1F) = /• cl(F_1F) C F-
cl(F-'F) so that cl(ff) D 9cl{9'l9) and cl(ff) G ß.

Because of Proposition 2.4 the formation of => by the definition in Proposition
2.3 will be termed the extension of —» by regularity.

Corollary 2.5. Suppose G is an I-Cauchy structure inducing convex Hausdorff
order closed l-convergence structure —» on G. Then =>, the extension of —* by
regularity, is a Hausdorff l-convergence structure on Ge which meshes nicely with —» .

Proof. Under the circumstances cl{ 1} is an /-ideal of Ge which, if non trivial,
must have nontrivial intersection with G by Proposition 1.10. But if 1 < g G cl{ 1}
for some g G G then g G H 9~ for some filter ff on G such that ff —> 1. But then
g G H clG(ff) and clG(ff) -» 1, contrary to the assumption that —> is Hausdorff on
G.

In case G and 9) are Cauchy structures on G and H respectively, a map \p:
G —> H is Cauchy continuous providing ff G ß implies ff»^ G 9). Every Cauchy
continuous map is continuous with respect to the induced convergence structures.
The next proposition sets forth the canonical extension of a Cauchy continuous
homomorphism from G to Ge.

Proposition 2.6. Suppose G and 9) are group Cauchy structures (l-Cauchy
structures) on G and H respectively and that \p: G—* H is a Cauchy continuous
homomorphism (I-homomorphism). Then the map \pA: Ge-* H*0 defined by [9\p =
[9\p] is a homomorphism (l-homomorphism) which extends \¡/ whenever both G and 9)
are Hausdorff. The kernel o/t|/A contains N ~ where N is the kernel ofxp. Suppose —»
/j a group convergence structure (l-convergence structure) on Ge such that 9 -» [ff]
for all 9 G ß and suppose that => is a group convergence structure (l-convergence
structure) on H^ such that H E 91L => m G H60 implies m = [911]. Suppose also
that G and 9) are Hausdorff. If 9: Ge —» H^ is a homomorphism (l-homomorphism)
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continuous with respect to —* and => which reduces to ^ on G then 9 is \pA. If G and
9) are regular then \pA is the unique extension ofxp which is continuous with respect to
the extensions of the convergence structures by regularity.

Proof. Suppose G, H, G, 9), \¡i, 9, -» and => are as above and that h G Ge. If
h = [ff] then ff -+ h so 99 => (h)9. But since 9 and $ agree on G, 99 = 9\p => [ff^]
= (h)\pA. That is, (A)0 = [fft/>] = (h)4>A. The rest of the proposition is equally
routine.

It is of interest to know when the map ipA of Proposition 2.6 is one-to-one. One
obvious sufficient condition is the following.

Proposition 2.7. Suppose G and 9) are group Cauchy structures (l-Cauchy
structures) inducing Hausdorff convergences structures —» and => on G and H
respectively, and suppose xp: G —> H is a Cauchy continuous monomorphism (l-mono-
morphism). If \p~l is continuous, the \pA: G   —* H    is one-to-one.

Proof. Consider 1 ^ [ff] G Ge. Then ffi/> ̂ 1 since otherwise ff = 9\¡np~x -* 1.
That is, [fftyA = [ff//] ¥= 1.

Corollary 2.8. Suppose G is a Hausdorff group Cauchy structure (l-Cauchy
structure) on H, suppose G < H, and let 9) be the restriction of G to G. Then the
extension \pA of the identity map \p on G is an isomorphism (I-isomorphism) from G*
onto G~ in He.

On account of Corollary 2.8, G^ will be considered a subgroup (/-subgroup) of
He.

The next proposition provides a more useful sufficient condition for \¡/A to be
one-to-one.

Proposition 2.9. Suppose G and 9) are group Cauchy structures (l-Cauchy
structures) inducing convergence structures -h> and => on G and H respectively, and
suppose x¡/\ G —» H is a Cauchy continuous homomorphism (l-homomorphism). If
9 EG implies (c\(9xP))\P~l G ß then »¿A Ge -> H^ is one-to-one.

Proof. Suppose 1 =t [ff] G Ge. Then (cl(9\p))4* ~ ' G [ff] ^ 1 so there is some
F E9 with 1 G (cl(Fi^))^-1. Therefore 1 g cl(F//), fft/^ 1 in H, and [ff]^A =
[ff/0 * 1.

A slight modification of the proof of Lemma 1.9 proves the following.

Lemma 2.10. Suppose G is an l-Cauchy structure inducing convergence structure —»
on G. Then -^ is order closed on G if and only if 9 E G implies ocl(ff) G ß. —* is
convex on G if and only if 9 E G implies ff~ G ß.

Proposition 2.11. Suppose G and 9) are l-Cauchy structures inducing convergence
structures —» and =s> on G and H respectively, and suppose \p: G —» H is a Cauchy
continuous l-monomorphism. If —* is convex and order closed and => Hausdorff then
xPA: Ge-*H6i> is one-to-one.

Proof. Propositions 1.11, 2.9, and 2.10.
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Suppose now that ß is a group Cauchy structure (/-Cauchy structure) on G and
that R is a normal subgroup (/-ideal) of G with corresponding natural map 9:
G -> G/R. The quotient Cauchy structure 9) on G/R is defined by declaring that
for a filter ff on G/R, 9 E 9) if ff D 9110 for some 9H G G. Clearly 9) is the
finest Cauchy structure on G/R with respect to which 0 is Cauchy continuous.

Proposition 2.12. Suppose that G is a group Cauchy structure (l-Cauchy struc-
ture) on G, that R is a normal subgroup (l-ideal) with natural map 9, and that 9) is
the quotient Cauchy structure. Then 9) is a group Cauchy structure (l-Cauchy
structure). The map 9A: Ge—>(G/R)cs> is an epimorphism (l-epimorphism) with
kernel R ~.

Proof. Suppose (h)9A — 1. By definition there is a filter ff G ß such that
h = [ff] and ff0 n i G 91, which means ff0 n i 3 91L0 for some 9IL G G. Let
[911] = m G Ge. For each M G 9IL there must exist F G ff such that F0 u {1} ç
M9. The fact that 1 G M9 implies each M G 911 intersects R, so m E R ~. The
fact that F0 Q M9 implies each FM ~ ' also intersects R and hm ~ ' G R ~. Since
R ~ is a subgroup, h E R~.

A version of Proposition 1.15 may be deduced from Proposition 2.12. If (G, —»)
is a Hausdorff convergence group (/c-group) with normal subgroup (/-ideal) R then
one obtains a group Cauchy structure (/-Cauchy structure) ß by putting in ß those
filters which converge to some point of G. The quotient Cauchy structure then
induces the quotient convergence structure on G/R.

Suppose that for each a E A, Ga is a Cauchy structure on Ga, that G ç IIGa,
and that tra: G —* Ga is the projection map for each a. The product Cauchy structure
G is defined by declaring that ff G ß if 9ira G Qa for each a E A. G is clearly the
coarsest Cauchy structure on G making each ira Cauchy continuous.

Proposition 2.13. Suppose that for each a E A, Qa is a group Cauchy structure
(l-Cauchy structure) on Ga, that G is a subgroup (l-subgroup) of UGa, and that ira:
G —» G0 is the projection map for each a. Then the product Cauchy structure G is a
group Cauchy structure (l-Cauchy structure) inducing the product convergence struc-
ture. The map it: Ge —* \IG„°, defined by declaring [ff]w = x where xma = [ffwj, is a
monomorphism (l-monomorphism) which is the identity on G whenever G Ç. G . If
2Ga is a subgroup (l-subgroup) of G then m is onto.

Proof. Suppose x E WG^". For each a E A choose a filter 9a on Ga such that
xira = [ffj. For each finite B <Z A and for each choice of Fa G 9a for o G B let
Y = H {Fair~x\a E B), a nonempty set providing 'ZGa <, G. Let ff be the filter
generated by all such T's. Then ff G ß and [9]tt = x.

Our methods require, for a given group convergence structure -» on G, the
production of a group convergence structure ß on G which induces —*. Although
in general there are a multitude of such Cauchy structures, a simple and natural
definition is the following: ff G ß if ff_1ff, ffff-1 -» 1. The reader should satisfy
himself that G is a Cauchy structure inducing -». In the remainder of this paper
the Cauchy structure G will always be related to the convergence structure -» in
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this way, unless otherwise explicitly specified. If -» is topological then ß is just the
collection of filters Cauchy with respect to the two-sided uniformity of —». This
definition of ß has the advantage that it provides a structure coarser than any
group Cauchy structure inducing -» and thus leads to larger completions in a sense
made precise in Proposition 2.15 and Corollary 2.16. It has the disadvantage that it
is not always clear that ß is itself a group Cauchy structure.

Proposition 2.14. Suppose (G, —*) is a convergence group. Then its Cauchy
structure G is a group Cauchy structure if and only if 9~x9, 99~x, 91L —> 1 imply
ff91tff~' -> 1 for arbitrary filters 9 and 9lt on G.

Proof. It is clear that ff G ß implies ff-1 G ß. Assuming the condition on —>
holds, consider ff, 91L G G. Then (ff9H)(ff9H)"' = ffgngitr'ff-1. But 9119RT'
-> 1 since 9H G ß and ff91t91t-1ff"1 -+ 1 by the condition. A similar argument
shows (ff91t)_1(ff91l)—» 1. Conversely, assume ß to be a group Cauchy structure
and consider 9 and 9IL satisfying ffff-1, ff~'ff, 9H -» 1. By definition ff, 9lt G
ß so that ff91t G ß. But this says that (ff91t)(ff91t)"1 -+ 1. Since it does no harm
to assume that 91t D i, we have (ff9H91L_1ff_1) ç ff91tff_1 -» 1.

A group convergence structure -^ satisfying Proposition 2.14 will be termed
strongly normal. Every topological group convergence structure is strongly normal
[7] and every group convergence structure on an abelian group is clearly strongly
normal. A very natural question is to characterize those group convergence
structures which are strongly normal. Perhaps they all are.

Proposition 2.15. Suppose (G, -^>) is a convergence group with corresponding
Cauchy structure G. If 9) is any group Cauchy structure on G inducing —» then
9) ÇZ G. Furthermore, if —» is strongly normal then G can be considered a subgroup
of G e by means of the map \pA of Proposition 2.8.

Proof. 9 E 9) implies ff"'ff, ffff-1 -> 1 so that ff G G.
Although it is more easily verified directly, the next proposition is a combination

of results 2.8 and 2.15.

Corollary 2.16. Suppose (H, -») is a Hausdorff convergence group and G is a
subgroup of H such that —> is strongly normal on G. Let Q be the Cauchy structure
corresponding to —> on G. Then the map xp: c\H(G) -^ Ge, defined by (h)ip = [ff]
where G E 9 —» h, is a group monomorphism over G.

Our choice of Cauchy structure has the advantage of uniting the concepts of
continuity and Cauchy continuity for group homomorphisms.

Proposition 2.17. Suppose (G, —») and (H, =>) are convergence groups such that
—* is strongly normal. Let 9) be any group Cauchy structure inducing —* and G the
Cauchy structure of ' =>. A homomorphism 9: G —> H is continuous if and only if it is
Cauchy continuous.

Proof. Suppose 0 is continuous and ff G G. Then ff~'ff -> 1 so (ff~'ff)0 =
(90y\99) -> 1. Likewise (ff0)(ff0)_1 ̂  1. Therefore 99 E 9).
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Our choice of Cauchy structure also makes it slightly easier to verify that a group
convergence structure =>onGe meshes nicely with —> on G.

Proposition 2.18. Suppose —* is a strongly normal Hausdorff group convergence
structure on G with corresponding Cauchy structure G. A group convergence structure
=> on Ge meshes nicely with -» on G if and only if 91L => [911]/or all 911 G ß and
=> reduces to —» on G.

Proof. Suppose G G ff =* h G Ge. Then h = [DC] for some % E G. By
assumption % => h so that £ = ff n DC => A. Therefore ££"', £-1£ => 1. Since
G G £~'£,££"' and since => reduces to -> on G it follows that ££~', £~' £ -> 1
and £ G ß. Therefore A = [DC] = [£] = [ff].

Suppose that ß is the Cauchy structure of a strongly normal /-convergence
structure -^. Even when —» is topological it is not always true that ff A 91L G ß
whenever ff, 91L G ß [21]. However, if —> is convex then all is well.

Proposition 2.19. The Cauchy structure of a strongly normal convex l-convergence
structure —» is an l-Cauchy structure.

Proof. Assuming ff, 91L G ß let £ = (ffff-1 n 91t 9RT1) and let 9L =
[(£ V £) n (£ A £)]~ -» 1- By showing that (ff A 91L)(ff A 9H)"1 D 91 and by
a similar argument for (ff A 91L)_1(ff A 911) one arrives at the desired conclusion.
For any R G <& there is an L G £ with [(L A¿)n(¿V L)]~ Ç Ä- For this L
there must be F G ff and M G 9H such that FF"1 u MM~X C L. For/„/2 G F
and mx, m2 G M,

(/./2"1 V/.m,"1) A («i/a"' V mxm2x) = (/, A «i)(/2 A m2)~x

= (/i/2_1 A mxf2x) y{fxm2x A mxm2x).

Therefore fjf1 A mxm2x < (/, A mx)(f2 A m2)~x < /,/T1 V mxm2x. Since
/,/,-', mxm2x G L, (/, A «,)(/2 A ^2)"' e Ä- This shows (F A M)(F A M)~x
C R and proves the proposition.

It is worth noting that the /-group versions of results 2.15, 2.16, 2.17 and 2.18 all
hold providing the hypotheses of convexity of —> is inserted appropriately.

The form of the preceding results most useful for our purposes is summarized in
the following corollary.

Corollary 2.20. Suppose -» is an order closed convex Hausdorff l-convergence
structure which is strongly normal on G and suppose G is its l-Cauchy structure. Then
G e is an l-group in which G is order dense. The extension of -» by regularity provides
a convex Hausdorff l-convergence structure on G which meshes nicely with —>. G and
G e satisfy the same disjunctive formulas.

Proof. To see that the extension of —> is convex on G e consider ff a filter on G
such that ff -> 1. Since (oclG(ff))~ has a base of convex sublattices of G and
converges to 1, ((oclG(ff))~)~ has a base of convex sets in G e by Proposition 1.4(c).
To see that the extension of -» is Hausdorff on Ge recall that cl{ 1} is an /-ideal of
G e which, if nontrivial, must intersect G non trivially. But clG{l} = 1.
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Suppose that a particular convergence, called x-convergence and written -*, is
defined so that on every group (/-group) G, -» is (convex) Hausdorff and strongly
normal. It is convenient to suppress mention of the Cauchy structure ß of —>,
writing G* in place of Ge. We are most interested in the following properties of —>.

Cl: If ip: G -» H is an isomorphism (/-isomorphism) and if ff is a filter on G
then ff -» 1 implies 9*p-> 1.

Property Cl may be put another way: every isomorphism (/-isomorphism) is
continuous. The next property is the only one which does not also apply to
convergence groups.

C2: If G is large in H then => , the restriction of -» on H to G, is coarser than —>
on G. In addition, for any filter ff on G, ff -> 1 implies 9H -* 1 where 91L is the
closure of ff with respect to => .

The reader should observe that whenever x-convergence satisfies Cl and C2
every /-monomorphism from one /-group onto a large /-subgroup of another is
x-continuous.

C3: -» on Gx meshes nicely with —> on G.
A consequence of the next proposition is that Gx < Hx whenever G is large in

H.

Proposition 2.21. Suppose x-convergence is a convex Hausdorff strongly normal
l-convergence structure defined on every l-group in such a way as to satisfy Cl, C2
and C3. If H is a l-group large in Hx and if \p: G —> H is an I-monomorphism such
that Gip is large in H then there is a unique ¡-isomorphism ipA mapping Gx onto
cl(Gt//) in Hx such that \pA extends \p.

Proof. The existence and uniqueness of \pA is asserted by Proposition 2.6. The
one-to-oneness comes from Proposition 2.9, whose hypotheses are built into C2.
Consider an arbitrary [ff] G Gx. By C3, ff -» [ff] so 9xPA = 9xp -» [ff]^A = [fffl
G Hx. Therefore [9]4>A G cl(Op) in Hx. On the other hand if A G cl(G^) in Hx
there must be a filter % on H* with Gp G % -» A. By C3, A = [%]. By Cl and
Proposition 2.17, %>p~x is Cauchy in G so [%xp~x] E Gx. Clearly [%*p~l]rpA =
[%] m A, proving (Gx)xPA = cl(G^) in Hx.

An /-group H is x-complete if Hx = H. Given /-groups G and H, H is said to be
an x-completion of G if G is large in H, if H is x-complete, and if G < M < H
implies M is not x-complete. If X C H for H a convergence space, the iterated
closure of X, written itcl^A) or simply itcl(A), is the smallest closed subset of H
containing A. itcl(A) may also be obtained by iterating the ordinary closure
operator transfinitely, taking unions at the limit ordinal stages.

Proposition 2.22. Suppose x-convergence satisfies the hypotheses of Proposition
2.21. An l-group G has an x-completion if and only if G is large in some x-complete
¡-group H, in which case the x-completion is itclw(G).

Proof. Suppose G is large in the x-complete /-group H. Let L be itclw(G). By
Proposition 2.21, Lx < c\H(L) = L, so L is x-complete. If G < M < L then
c\H(M) ¥= M. If \p is the identity map on M then the extension ^A: Mx -» c\H(M)
given by Proposition 2.21 is onto, implying M is not x-complete.
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Proposition 2.23. Suppose x-convergence satisfies the hypotheses of Proposition
2.21. H is an x-completion of G if and only if G is large in H, H is x-complete, and
any l-monomorphism \p from G onto a large l-subgroup of the x-complete l-group M
can be uniquely extended to an l-monomorphism \pA: H —» M.

Proof. Suppose H is an x-completion of G. The proof of Proposition 2.22 shows
that itcl^G) - H. Let G = G0 < G, < • • • < Ga < • • • < Gy = H be a
sequence of /-subgroups of H such that Ga+X = cl^G,,) and Ga = U {Gy\y < a}
for limit ordinals a. Extend ip from G to H through the chain of Ga's by repeated
use of Proposition 2.21. If 0: H —* M is any other /-monomorphism which agrees
with \p on G let y be the least ordinal such that 0 and \pA disagree on Gy. Then
y = a + 1 for some a and 9 and i^A agree on Ga. This situation contradicts the
uniqueness clause of Proposition 2.21.

Proposition 2.24. Suppose x-convergence satisfies the hypotheses of Proposition
2.21. If an l-group G has an x-completion H then it is unique up to an ¡-isomorphism
over G. G and H must satisfy the same disjunctive formulas.

The x-completion of G will be designated G'x, for iterated x. Let us write
G <XH to mean that G is a dense subgroup (/-subgroup) with respect to -» on H
and that —* on H reduces to —» on G.

C4: G < H < M and G <XM imply G <XH <XM.

Proposition 2.25. Suppose x-convergence is a (convex) Hausdorff strongly normal
group convergence structure (¡-convergence structure) defined on every group (l-group)
in such a way as to satisfy Cl, C3, and C4. Then for any groups (¡-groups) G and H,
G <XH if and only if there is a monomorphism (l-monomorphism) i//: H —» Gx over
G.

Proof. If G <XH then if is provided by Corollary 2.16 or its /-group analogue.
Conversely, if \p: H —» Gx is a monomorphism (/-monomorphism) which is the
identity on G then G < Hxp < Gx. By C3 and C4, G <xH\p. By C„ G <XH.

Proposition 2.26. Suppose x-convergence satisfies the hypotheses of Proposition
2.25. For any group (l-group) G there is an H such that G <XH and such that
H < M and G <XM imply H = M. Every such H is isomorphic (l-isomorphic) to Gx
over G. G and H satisfy the same disjunctive formulas.

The most tractable convergence of all are those which satisfy the converse of C4.
C5: G <XH <XM implies G <XM.

Lemma 2.27. Suppose x-convergence satisfies the hypotheses of Proposition 2.25 and
that \p: H —* Gx is a monomorphism (l-monomorphism) over G. Then \p is x-continu-
ous.

Proof. By Proposition 2.25 G <XH. Consider a filter 9 on H such that ff -h> 1.
By Cl, 9xp^> 1 in H>p. Now G < H\P < Gx, C3 implies G <XGX, and C4 yields
Hxp <XGX. Therefore ff»// -> 1 in Gx.
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Proposition 2.28. Suppose x-convergence is a (convex) Hausdorff strongly normal
convergence structure (l-convergence structure) defined on every group (l-group) in
such a way as to satisfy Cl, C3, C4 and C5. Then Gx is x-complete.

Proof. G <xGx <xGxx implies G <XGXX. By Proposition 2.25 there is a mono-
morphism (/-monomorphism) \p: Gxx —» Gx over G. In fact \p must be the identity
on Gx. To see this, consider A G Gx and let ff be a filter on Gxx such that
G G ff ->A in Gxx. By Lemma 2.27, 9xP~*(h)xp in Gx. Since Gx <XGXX, 9\P ->
(A)if in GXX. Since ff is generated by subsets of G and since ¡p is the identity on G,
ffif = ff. Since -> is Hausdorff, A = (A)t//. It follows that Gxx = G*.

Proposition 2.29. Suppose x-convergence is an l-convergence structure which
satisfies the hypotheses of Proposition 2.28 and that G is large in Gx for each l-group
G. Then every l-group has an x-completion and every such completion is l-isomorphic
to Gx over G.

Proposition 2.30. Suppose x-convergence satisfies the hypotheses of Proposition
2.28. Then for any group (l-group) G there is an H such that G <x H and such that
H <x M implies H = M. Every such H is isomorphic to Gx over G.

We close this section by considering the x-completions of products and
quotients.

C6: For every group (/-group) G and closed normal subgroup (/-ideal) R, —* is
coarser on G/R than the quotient convergence structure =>. Furthermore, for
every filter ff on G/R, 9 => 1 implies 91L => 1 where 9IL is the closure of ff with
respect to -».

The reader should observe that for Hausdorff group convergence structures
(/-convergence structures) which satisfy C6, an epimorphism (/-epimorphism) is
continuous if and only if its kernel is closed.

Proposition 2.31. Suppose x-convergence is a (convex) Hausdorff strongly normal
group convergence structure (l-convergence structure) defined on every l-group so that
C3 and C6 hold. Suppose R is a closed normal subgroup (l-ideal) on G with natural
map 9: G —» G/R and canonical extension 0A: Gx -^(G/R)x. Then the kernel of
9A is cl(R) so that Gx/c\(R) < (G/R)x.

Proof. 0a: GX^>(G/Rf is defined by [ff]0A = [ff0]. In turn, 0A may be
decomposed into 0, and 02, where 0,: Gx->(G/R)e and 02: (G/R)e^> (G/R)x,
where G is the quotient Cauchy structure. The kernel of 0, is R ~ by Proposition
2.12, and R ~ = cl(R) since C3 holds. 02 is one-to-one by Proposition 2.9. There-
fore the kernel of 0 is c\(R ).

C7: If {Ga\a E A} is a collection of groups (/-groups) and if 2Ga < G < IIGa
then the product convergence structure => on G is coarser than —» on G. Further-
more, ff -» 1 implies 911 —> 1 where 91c is the closure of ff with respect to =>.

Proposition 2.32. Suppose x-convergence is a (convex) Hausdorff strongly normal
group convergence structure (l-convergence structure) defined on every group (l-group)
in such a way as to satisfy Cl. Then for every collection {Ga\a G A] of groups
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(l-groups) and for every G with "ZGa < G < RGa, Gx < II G*. Suppose further that
for each a E A and each filter 9a on Ga such that 9a —* 1 /'/ follows that 911 -» 1,
where 91L is the filter on G generated by sets of the form { g G G | gira G Fa and
gmß=\for ß¥= a}, Fa G ffa, a G A. Then 2G* < Gx.

Proof. Proposition 2.9 provides a monomorphism (/-monomorphism) 9X: Gx —>
Ge where ß is the product Cauchy structure, while Proposition 2.13 provides an
isomorphism (/-isomorphism) 02: Ge—>IIG*. Now for each a E A choose [9a] E
Gx and define 9H as above. Since ffaff~\ 9~l9a -» 1 in Ga it follows that
91L91L-1, 911"'9H -»• 1 in G. Furthermore [91t]0,02 = x G IIGa, where x-na = [ffa]
and x-nß = 1 for ß ¥^ a.

3. Adjoining suprema. Ever since Dedekind constructed the real numbers by
adjoining cuts to the rational numbers there has been an interest in adjoining
suprema of particular subsets of a lattice ordered group to obtain a completing
structure. The Dedekind-MacNeille completion ([11], [13], [14]) is obtained in
exactly this way, adjoining a supremum for each (invertible) cut of an /-group G.
More recently Bernau [4] succeeded in constructing the lateral completion of an
arbitrary /-group by iteratively adjoining the suprema of pairwise disjoint subsets.
The general question becomes: for which types of subsets of G+ may suprema be
adjoined in a consistent way? The Cauchy completion machinery developed in the
preceding sections provides an opportunity to approach the adjoining of suprema
from a unifying and more general point of view. The lateral completion and the
Dedekind-MacNeille completion can then be gotten by parallel applications of the
same techniques; the existence and uniqueness of a proper class of previously
uninvestigated hulls will be proven as well.

Consider a predicate % on subsets of G+ for all /-groups G. That is, certain
subsets of G+ are of type %, certain are not. We shall refer to % as a type. The
properties of types in which we are interested are the following.

Tl: In any /-group G, for any g G G+ and any A Ç G+ of type % it is true
that 1 V Ag" ' is also of type %.

T2: Whenever \p: G —> H is an /-isomorphism and A is of type % in G, it follows
that Xxp is of type 9C in H.

T3: If G is large in H then every subset of type % in G remains type % in H.
A subset Y <Z G + is % order closed if for any subset A C Y of type 9C such that

V A = y it is true that v G Y. An /-subgroup C « G is % order closed if C + is %
order closed. The % order closure of Y in G, written 9CoclG(T) or simply 9Cocl(T),
is the smallest 9C order closed subset of G + containing Y. An /-homomorphism \p:
G —> H preserves type  %  suprema if  \/X = g for A Ç G of type  9C  implies

Some examples of types with which the reader may already be familiar are the
following: the type of all subsets of G+, the type of pairwise disjoint subsets of
G +, the type of all subsets bounded in cardinality by a particular cardinal, and the
type of all invertible cuts (defined in §4). Several other types will be useful
subsequently. Moreover, given two types % and % which have the properties set
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out above, the types formed by joining their predicates by conjunction and
disjunction will also have these properties. Thus is obtained, for example, the type
of all countable pairwise disjoint subsets.

The form of the next proposition which results from letting % be the type of all
subsets of G + is due to Byrd and Lloyd [8].

Proposition 3.1. If 9C is a type satisfying Tl then an l-epimorphism preserves type
9C suprema if and only if its kernel is 9C order closed.

Proof. Suppose \JX = g for A Ç G+ of type % and let R be an % order
closed /-ideal of G. Clearly Rg > Rx for all x G A. Suppose Ry > Rx for all
x G A. That implies 1 V xy~x = ( v V x)y~x G R for all x G A. But
V (1 V Av " ') = IV (VA)v " ' = 1 V gy ~ '• The hypotheses on % and R imply
1 V gy'1 G F so that Ry > Rg.

An /-group G is sup % complete if every type 9C subset of G has a supremum.
Given G, let us say that H is an %-hull of G providing G is large in H, H is sup 9C
complete, and G < M < H implies M is not sup 9C complete.

Proposition 3.2. Suppose % is a type satisfying T3. Then an l-group G has an %
hull if and only if G is large in some sup % complete l-group H. In this case
A = PI {M\G < M < H and M sup % complete) is the unique % hull of G in H.

Proof. Consider an arbitrary A ç A + of type %. T3 insures A remains type 9C
in all /-groups M with A < M < H. Let \J X = h E H. For any sup 9C complete
M with A < M < H there must be some m E M such that \JX = m. But since A/
is large in H, suprema must agree, so m = A. Therefore h E A and clearly
X/A' = A in A Having proved A sup 9C complete, the proposition follows.

In order to bring the Cauchy constructions to bear on the subject of hulls one
must make one more very strong assumption: that G'x is sup % complete
whenever it exists. In the subsequent sections we shall satisfy this requirement by
showing that each subset of G of type % has a supremum in Gx.

Proposition 3.3. Suppose that x-convergence is a convex Hausdorff strongly
normal l-convergence structure defined on every l-group in such a way as to satisfy
Cl, C2 and C3, and suppose that every l-group G has an x-completion G'x. Suppose
further that % is a type satisfying T2 and T3 and that G'x is sup % complete. Then
for any % hull H of G there is an l-monomorphism 9: H —» G'x over G.

Proof. Since G is large in H and H is large in H'x, G is large in H'x. Let \pA:
G'x -» H'x be the /-monomorphism of Proposition 2.23 which extends the identity
map on G. H, which is the unique % hull of G in H'x, must be contained in G'x\pA
since the latter is sup % complete. Let 9 be the inverse of \pA restricted to H.

Propositions 3.2 and 3.3 immediately yield the desired theorem.

Theorem 3.4. Suppose x-convergence and type % satisfy Proposition 3.3. Then
every l-group G has an % hull which is unique up to an ¡-isomorphism fixing G.

Under the circumstances described in Theorem 3.4 we shall write G% for the %
hull of G.
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4. Order convergence and the Dedekind-MacNeille completion. Suppose G is an
/-group. For A ç G let the lower (upper) bounds of A be designated LG(X)
(UG(X)) or simply L(X) (U(X)). It is easy to show that ULU(X) = U(X) and that
LUL(X) = L(A) for any X. A subset A ç G is a cut if A = ¿{/(A') and A * 0,
A 7^= G. It should be mentioned that for every g E G, L( g) is a cut. The purpose of
the next proposition is to point out which cuts ought not to have suprema.

Lemma 4.1. If X is any subset of an l-group G such that \J X = g G G, then X is
not the union of cosets of any nontrivial convex l-subgroup.

Proof. Suppose C is a nontrivial convex /-subgroup of G such that X =
U {Cx|x G A}. Then for 1 < c G C, ex < g implies x < c~xg < g for all x G A,

contradicting \/X = g.
For cuts A and Y define A * Y to be LU(XY) and define A < Y if A Ç T. The

collection of cuts with these operations can be seen to be a lattice ordered
semigroup with identity L(\). A cut having an inverse in this semigroup is an
invertible cut.

Proposition 4.2. A cut X of an l-group G is invertible if and only if X is neither a
union of left cosets nor a union of right cosets of any nontrivial convex l-subgroup of
G.

Proof. Suppose X = U {xC|x G A"} for a nontrivial convex /-subgroup C of
G. If y is a cut of G such that Y * X = L(l) then YX < 1. Fix 1 < c G C. Then
yxc < 1 implies vx < c"1 for all v G Y, x G A. Therefore 1 g LU(YX) = Y * X
= L(l), a contradiction. Similarly, the existence of a right inverse for X implies
that X cannot be a union of right cosets of any nontrivial convex /-subgroup. Now
suppose A is a cut which is not invertible. In particular, suppose that X * L(X ~l)
¥= L(l) or, equivalently, that U(X) ■ (gX)~x or g2 > U(X) ■ X~x. Therefore A" is a
union of left cosets of the nontrivial convex /-subgroup {g G G | | g| < U(X) ■
X~x). Similarly, L(A_1) * A ^ L(\) implies A is a union of right cosets of the
nontrivial convex /-subgroup {gGG||g|<A_1- U(X)}.

The invertible cuts of G form a lattice ordered group which we will write GA.
The map g -» L(g) is an /-isomorphism from G into GA. Although the terminology
has sometimes been applied to the entire semigroup of cuts, we shall term GA the
Dedekind-MacNeille completion of G. GA has been well studied for archimedean G
[11] and for G totally ordered [14]. Our intention is to capture GA with a Cauchy
construction.

A filter ff on an /-group G order converges to 1 if /\{t G G + |/_l < F < t some
F G ff} = 1. For the remainder of this section —* will mean order convergence
while G° and <o will designate the corresponding completion and density. Order
convergence has been studied in the context of lattice theory ([12], [16]); it will
soon be seen to have every nice property mentioned in the first three sections. An
alternative definition is helpful. A set T Q G + is a dual ideal if f,, t2 G T implies
i, A h S T and if g > t E T implies g G T. For any a, b G G with a < b let
[a, b]G or simply [a, b] designate the interval {g G G\a < g < b). If T is a dual
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ideal let T^F), or simply 'Y(T), designate the filter generated by the intervals
[/"', t]G for t G T. Then ff -> 1 if and only if ff D 'Y(T) for some dual ideal T
with A^=l-

Proposition 4.3. Order convergence is a convex Hausdorff order closed l-conver-
gence structure on any l-group G.

Proof. The convexity and order closure follow from the convexity and order
closure of any interval [t~l, t). The Hausdorff property follows from the require-
ment that /\T = 1 if 'Y(T)^ 1. The remaining properties follow from the facts
that  T(F.) n T(F2) d T(F, n r2),  T(F) • °V(F) d T(F2), g~xcV(T)g =
^(g_17g). and 1~(T) acV(T) = T(F). Here we use the fact that if Tx and T2 are
dual ideals with /\TX = /\ T2 = I, then Tx n F2 satisfies 1 = (A^) V (A ^2) =
A (Tx V T2) = A (Tx n TJ. Similarly, A^ = 1 implies 1 • 1 = (A^XA^) =
AT2.

In a sense made precise in Proposition 4.7, order convergence is the finest convex
Hausdorff /-convergence structure whose (iterated) closure operator agrees with
ocl.

Lemma 4.4. Suppose \/S = x for an upper directed subset S of the l-group G
endowed with a convex Hausdorff l-convergence structure => . Then x is in the closure
of S with respect to => // and only if T(x5 ~x) => 1.

Proof. In this proof and the next only, let cl represent the closure operator of
=> . If °Y(xS - ') => 1 then clearly 1 G cl(xS ~]) so x ~ ' G c\(S ~ ') or x G cl(S). On
the other hand x G cl(S) implies 1 G c^xS1-1). In this case there must be a filter ff
such that xS "x E 9 => 1. But then ^(xS ~x) D (ff n 9'x)~ => 1.

Corollary 4.5. A sublattice S of an l-group G is order closed if and only if S is
closed with respect to order convergence.

One of the avowed goals (not fully attained) of §1 of [1] was to show that a
convex sublattice is order closed if and only if it is closed with respect to every
Hausdorff /-topology. By relaxing our standards to include convex Hausdorff
/-convergence structures the result becomes almost trivial.

Proposition 4.6. For a convex sublattice S the following are equivalent.
(a) 5 is order closed.
(b) S is closed with respect to any convex Hausdorff l-convergence structure.
(c) S is closed with respect to order convergence.

Proof. Proposition 1.11 and Corollary 4.5.

Proposition 4.7. Suppose =» is a convex Hausdorff l-convergence structure whose
closure operator, written cl, is idempotent on convex sublattices. Then => is coarser
than order convergence if and only if c\(S) = ocl(S) for all convex sublattices S.

Proof. If => is coarser than order closure, then cl(5) contains the closure of S
with respect to order convergence. In fact, since cl is idempotent and since all
mentioned closure  operations  preserve convex  sublattices,  cl(S) contains  the
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iterated closure of S with respect to order convergence, namely ocl(.S). But
cl(5) C ocl(S) by Proposition 1.11. Conversely assume cl(5) = ocl(S') for any
convex sublattice. In particular, if F is a dual ideal such that /\T = \ then
1 G cl(F). That is, 1 = V 7'~1 and 1 G cl(F) which implies by Lemma 4.4 that
T(F) => 1. Since T was arbitrary, => is coarser than order convergence.

An obvious question arises: how many times must the closure operator of order
convergence be applied to obtain ocl(S) for convex sublattice 5? The answer for S
a convex /-subgroup is of course once. Perhaps there is a complexity measure for
convex sublattices here.

Two disparate results from the theory of /-groups have ready proofs employing
order convergence. The first is a generalization of a result of Bernau [5].

Proposition 4.8. For any l-subgroup G of the l-group H and for any disjunctive
formula \p, G 1= Vw// if and only if ocl(G) N Vt>u\

Proof. Suppose G = G0 < Gx < G2 < ■ ■ ■ < Gx = oclH(G) where for each
ordinal y, Gy+X is the closure of Gy with respect to order convergence on H and
where unions are taken at limit ordinals. Theorem 1.14 guarantees that any
disjunctive formula \p holding in Gy must hold in Gy + 1. The persistence of \p
through limit stages is an obvious attribute of disjunctive formulas.

Proposition 4.10 is Lemma 3.3 from the classic paper [8] of Byrd and Lloyd. The
proof for the topological case of the next lemma given in [1] (Corollary 2.2) carries
over to /c-groups. It is due to Madell [18].

Lemma 4.9. In an lc-group, any convex l-subgroup properly containing a closed
prime subgroup is itself both open and closed.

Proposition 4.10. Any convex l-subgroup properly containing an order closed
prime subgroup must be prime and order closed.

Proof. If P is an order closed prime and Q is a convex /-subgroup containing it
then both P and Q are closed with respect to order convergence by Proposition
1.11 and Lemma 4.9. Therefore Q is order closed by Proposition 4.6.

We return now to the subject of the properties of order convergence.

Proposition 4.11. Order convergence is strongly normal.

Proof. Suppose ff, 911"'9IL, 9H91L"1 -► 1. We may assume ff = T(F) and
91L9H"1, 91L-'91L D T(S) for dual ideals S and F such that /\S= /\T=\.
Let U = {g G G\M < g for some M E 911} and L = {g G G|g < M for some
M G 911}. Since U is closed under infima and L is closed under suprema, UL~X
generates a dual ideal. It should be observed at this point that S2 C UL~X, for if
s E S then there is some M E 9H with s~x < MM~X u M~XM < s. For a
particular m G M, s~xm < M < sm, which implies sm G U, s~xm G L, and s2 =
sm(s~xm)~x G UL~X. The upshot of this observation is that /\UL~X = 1. Our
interest lies in the dual ideal Q generated by UTL~X. To show that /\Q = \
consider g > 1. Since A UL ~ ' = 1, there must be elements u G U and v E L such
that uv~x ^ g. Therefore uv~x V g > uv~x or (uv~x V g)vu~x > 1. Now the fact
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that /\uTu~x = 1 implies the existence of / G F with utu~x £ (uv~x V g)vu~x,
that is utv~l £ w€_1Vg- Since utv~x >uv~x, it follows that utv~x £ g. This
completes the argument that Aô = 1- The proof of the proposition is completed
by observing that (91Lff91L~* D 'Y(Q) since for utv~l G Q there are sets F G ff
and M E 9H with F Q[t~x,t] and « < M < m, from which it follows that
MFM~X C [(utv~x)~x, utv~x].

Proposition 4.12. For G < H the following are equivalent.
(a) For every A G //, A = V LG(h).
(b) For every A G 7/ +, A = V LG(h) = /\ UG(h).
(c) For every A G H+, 1 = A (l/c(*) • ¿oW-1).
(d) G <o//.

Proof. If (a) holds and A G H+ then not only is A = V LG(h) but also
A"1 = V ¿c(/""') so that A = (VMA-1))-1 = /\(LG(h~x))-x = A t/c(A). If
(b) holds then 1 = AA"1 = (At/e(Ä) • (VFG(A))"' = A {U0(h) ■ LG(hyx). (c)
clearly implies (b), since if A > m > LG(h) then 1 < hm~x < t/G(A) • LG(h)~x. To
show that (b) implies (a) consider A G H and let A+ = A V 1 and A ~ = A A 1 •
Part (c) implies that A+ = V FG(A+) and that (A")"1 = A UG((h~)~x). There-
fore A = A+A- = [V^ + )IAW")"')]"' = V (LG(h + ) ■ LG(h-)). But
LG(A + ) • LG(A") C LG(h+h-) = LG(h). So A = V LG(h). Thus far we have the
equivalence of (a), (b) and (c). Note that (a) implies that G is order dense in H so
that for any dual ideal T of G, AT = I in G if and only if AT = ! in H- These
conditions also imply that A(ß n G)= 1 in G whenever Aß = 1 in # Ior any
dual ideal Ö on //. Therefore order convergence on H must reduce to order
convergence on G. Consider an arbitrary h E H+ and let ff be the filter on H
generated by sets [v, u]H where v G LG(A) and u G UG(h). Then ffff-1 D %/(ß)
where ß={gG//|g>wü~\ u E LG(h), v G Í/G(A)}, a dual ideal, ffff"1 -> 1
since Aß = 1 by part (c). Hence ff D 99~xh -> A. Since each set of ff intersects
G, A G cl(G). Therefore G is dense in H and G <o H. Finally, to show (d) implies
(c) assume G <o H and A G 7/ +. Let ff be a filter on H such that G G ff ^ A and
let F be a dual ideal on G such that A^=l and ffff"1 D T(F). For each / G F
there is an F G ff with FF~X Q [t~x, t]. Choosing/ G F n G yields t~xf < F <
f/. By Corollary 1.3, Cxf < A < /F. Since í-1/ G LG(A) and // G VG(h), since
//(/"'/)""' = /2, and since A^2=l we can conclude that l = A(f/c(Ä)'
LG(A)-').

Proposition 4.13. Ori/er convergence has properties Cl, C2, C3, C4 and C5.

Proof. Cl is obvious while C4 and C5 follows from Proposition 4.12 by means
of a routine deduction. In order to show C3 we prove something stronger: that —>
on G° is the extension of —> on G by regularity. The first step is to show that
[t~\ tXG = ['"'> {Xg° for anv t E G+. For if A G [t~x, t]G then A = [ff] for some
filter ff on G containing [t~x, t]G. Since for every F G ff there is some/ G F with
/"' < / < /, it follows from Corollary 1.3 that t~x < A < /. Therefore for every
dual ideal F on G, ^(F)- = %<>(T). The second step is to show that G <0G°.
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Consider 1 < A G G0, say A = [ff] for some filter ff on G. The argument that (d)
implies (c) in Proposition 4.12 shows that 1 = A UG(h)LG(h)~x. From G <oG° it
follows that A(S n G) = 1 in G whenever AS = 1 in G° for a dual ideal S of
G°. Putting these steps together we get %o(F) -h> 1 in G° implies TG(F n G) -* 1
in G and %o(F) D T^F n G) = ^(F). This completes the proof that order
convergence satisfies C3. To establish C2 suppose G is large in H. Then suprema
and infima in G and H agree [6]. Therefore if F is a dual ideal of G then A T = 1
in G implies AT = 1 in // also. Consequently %,(F)-> 1. Since T^F) = ^(F)
n G, the restriction of order convergence from H to G must be coarser than order
convergence on G. Finally, since -» is order closed on G, ff -» 1 implies 91L -> 1
where 911 is the closure of ff with respect to the restricted order convergence
structure from H.

Proposition 4.14. G° = Ga.

Proof. For any A G G° we know A = V LG(h) = A UG(h) since G <0G°.
Observe that A = LG(A) satisfies U(X) = C/G(A) and LU(X) = LG(A) = X. Simi-
larly LG(A_1) is a cut of G. Since LG(A) * LG(A_1) is LGX\ LG(h) E GA. Define the
/-homomorphism \p: G° ^> GA by declaring hxp = LG(h). \p is clearly one-to-one
since A = V LG(h). To show \p is onto consider an arbitrary invertible cut X of G.
Let ff be the filter on G generated by the intervals [x, y]G where x G X, y G
UG(X). The argument that (b) implies (d) in Proposition 4.12 can be used to show
that [ff] = A G G°. Finally Corollary 1.3 shows that A < A < UG(X), so that
hxp = A.

Corollary 4.15. For G < H, any of the conditions of Proposition 4.12 is equiv-
alent to the existence of an l-monomorphism \p: H —* GA such that \p is the identity
on G.

Corollary 4.16. G and GA satisfy the same disjunctive formulas.

An /-homomorphism \p: G -* H is complete if it preserves all suprema and infima
that exist in G. Specifically, if \/S = g for some S Ç G then \/ S\p = gip.

Proposition 4.17. For an l-homomorphism \p: G —> H the following are equivalent.
(a) \p is order continuous.
(b) \p is complete.
(c) FAe kernel of \p is order closed and suprema and infima in Gip and H agree.

Proof. Suppose \p is order continuous and V S = g for S Q g. We may as well
assume that S is a sublattice of G, in which case gS ~ ' generates a filter F such that
AT=1. Therefore %(T)xP = %,(F»/,) -+ 1 implying AW = I. But then
A( g^)(S^py' = 1, or \/ Sip = g<p. That (b) implies (a) is clear. The equivalence of
(b) and (c) comes from an application of Proposition 3.1 to the type 9C of all
subsets of G +.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE AND CAUCHY STRUCTURES 379

Theorem 4.18. For G < H the following are equivalent.
(a) FAeve is an ¡-isomorphism xp: H —» G A over G.
(b) G <oH and if G <0M and H < M then H = M.
(c) G <oH and if H <0M then H = M.
(d) A = V LG(h)for every h E H, and every invertible cut of H has a supremum.
(e) Given any l-group M and any complete l-homomorphism \p: G —» M there is a

unique complete l-homomorphism \pA: H —> M A such that \pA extends \p.

G A can also be obtained by the methods of §3. Define A ç G to be of type 9)
(for Dedekind) if LU(X) is neither a union of right cosets nor a union of left cosets
of any nontrivial convex /-subgroup. That is, A is of type 9) if and only if LU(X) is
an invertible cut.

Lemma 4.19. Suppose X Q G+ is of type 9). Then for any y G G, y = V A if and
only if y = V LU(X).

Proof, v = V A implies y G U(X) so that y > LU(X). Since LU(X) D A, it
follows that y = V LU(X). On the other hand, y = V EU(X) implies y > A. If
z > A then-z G U(X) so z > LU(X) and z >y. Therefore y =-V X.

Lemma 4.20. A ç. G + is of type 9) if and only if there is some 1 < A G G A jmcA
that VA = A.

Lemma 4.21. If X Ç G is a union of the cosets of the convex l-subgroup C then so
is U(X)andso is L(X).

Proof. If A = U {Cx|x G A} for a convex /-subgroup C, and if u E U(X)
then u > c~'x for all c G C and x G A. Therefore eu G U(X). Similarly, L(X) =
U {Cü|ü G L(X)}. The proof for left cosets is analogous.

Proposition 4.22. Type 9) satisfies Tl, T2 and T3.

Proof. Property Tl is a consequence of Lemma 4.20 and property T2 is obvious.
Suppose now that G is large in H and that A C G + is type 9) in G. If LUH(X) is a
union of cosets of the nontrivial convex /-subgroup C of H then Y = LUH(X) n G
is a union of cosets of the nontrivial convex /-subgroup C n G of G. But since
A ç y ç LUG(X), it follows that LUG(Y) = LUG(X). Lemma 4.21 then implies
LUG(X) is a union of C n G cosets, contrary to assumption.

The next proposition adds one more link to the chain of equivalent conditions in
Theorem 4.18.

Theorem 4.23. Every l-group G has a 9) hull. Every such ÓD hull is l-isomorphic to
GA over G.

Proof. GA is sup 9) complete and G is large in GA. The result is thus an
application of Theorem 3.4.

We close this section with a consideration of the Dedekind-MacNeille comple-
tion of /-subgroups, quotients, and sums.

Proposition 4.24. // G is large in H then GA C HA.
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Proof. Proposition 2.16.

Proposition 4.25. Order convergence satisfies property C6.

Proof. Let R be an order closed /-ideal of G with natural map 0. Notice that for
any dual ideal F of G, A T = 1 implies A TO — 1 because R is order closed. The
quotient convergence structure on G/R is generated by filters "{(TO) for dual
ideals F on G such that A T — 1. Clearly this structure is finer than the full order
convergence structure on G/R. The rest of C6 follows from the fact that oclCY(F))
= T(F) for any dual ideal F, keeping in mind Proposition 1.12.

Proposition 4.26. // R is an order closed l-ideal of G then cl(F) is order closed in
GA and GA/c\(R) < (G/R)A. If R is large in G then GA/RA < (G/R)A.

Proof. Proposition 2.31 provides 0A: G A -> (G/R)A which is order continuous
because -> on GA and (G/R)A is gotten by extending —> on G and G/R by
regularity. Therefore the kernel of 0 A, namely cl(F ), must be order closed. The last
claim follows directly from Proposition 4.24.

Proposition 4.27. Order convergence satisfies property C7.

Proof. Let {Ga\a G A) be a collection of /-groups and suppose "ZGa < G <
l~[Ga. Consider a dual ideal F on G such that AT = i in G. Since infima agree,
A F = 1 in II Ga so that ATira = 1 for all a. For each t G F and each finite
B <Z A let Y(B, t) = {g G G\(tira)~' < gtra < tira all a E B}, a nonempty set. Let
ff be {Y Q G\ Y D Y(B, t) some finite B C A and some t E T). Then %(F) D
9 => 1 so "(G(T) => 1. The remainder of C7 follows from the order closure of order
convergence.

Proposition 4.28. For any collection {Ga\a E A] of I-groups and for any G such
that 2G„ < G < IIGa it follows that 2GA <GA < ÏIGA. Furthermore, (2Ga)A =
2GaA and (JlGa)A - EGA.

Proof. The first assertion follows from Proposition 2.32. The remaining asser-
tions are left as an exercise for the reader.

Suppose ty is any type finer than 9). That is, suppose every set of type ty is of
type 9). If ^ has properties T2 and T3, then every /-group has a type ty hull which
is unique up to /-isomorphism. For example, let A ç G + be of type ty if A" is of
type 9) and has cardinality less than or equal to k, for some fixed cardinal k. For
another example, let A C G + be of type ^ if A is of type 9) and A is pairwise
disjoint.

It is tempting to conclude this section with a description of GA in case G is
completely distributive. Such descriptive theorems follow readily from the fact that
completely distributive /-groups have an abundance of order closed prime sub-
groups and from Propositions 4.24, 4.26, and 4.28. These descriptive theorems,
however, are no sharper than the analogous representations of G", the completion
of G with respect to its a-convergence structure, which contains GA. These results
will be part of a forthcoming study of a-convergence.
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5. Polar convergence and completion. A filter ff on an /-group G p-converges to 1
if D {FXX|F G ff} = 1. The resulting convergence structure is the polar conver-
gence structure; the convergence structure, its corresponding completion, and its
density relation will be designated -», Gp, and <p, respectively. The fact that the
polars of an /-group form a complete Boolean algebra is of repeated usefulness in
this section. If ff is a collection of polars, Vff and fl 9 designate the supremum
and infimum of 9 in the Boolean algebra of polars.

Proposition 5.1. Polar convergence is a convex Hausdorff order closed l-conver-
gence structure on any l-group G.

Proof. Suppose ff-»l and 9H -> 1 and let £ = {Y C G\Y D (F u A/)xx,
F G ff, M G 91t}. In the complete Boolean algebra of polars, 1 = f) Fxx V
PI A/xx = fl (Fxx V M-1-1-) = D £• Since ff n 91L D £, part (c) of Proposi-
tion 1.1 holds. All the other parts of Proposition 1.1 together with the convexity
and order closedness of —» are direct results of the fact that F x x is an order closed
convex /-subgroup for any set F C G.

Proposition 5.2. Polar convergence is strongly normal.

Proof. Suppose ff and 91L are filters on G such that ffff"1, 9H-» 1 and
consider an arbitrary 1 < g G G. Choose F G ff such that g £ (FF-1)-1--1, say
1 < x < g and x G (FF~X)L. Choose a specific f E F and M G 9H such that
Kr'jt/ÍM11 or x g (fMf~x)±JL, say 1 < z < x with z G (fMf'Y. But
x A |/i/2_'I = 1 implies ■? A 1/1/2"'I = i so that z and/,/2_1 commute for all /,,
f2 E F. Therefore/2-V2 =/r1/,/2-1z/2/r1/1 -/f ty, for all/„/2 G F. From this
one may conclude that z G (/A//,-1)"1" for any/, G F. But since f) {(/î-^/i-1)"1"!/!
G F} = (FMF-Y, it follows at last that g g (FA/F-')XX. Therefore ff9Hff_1
-»1.

The next proposition is a folk theorem, proved here for completeness.

Proposition 5.3. Suppose G < H. The polars of G and H are in one-to-one
correspondence via the intersection map if and only if every nontrivial polar of H has
nontrivial intersection with G.

Proof. Suppose G < H and every nontrivial polar of H has nontrivial intersec-
tion with G. Given a set A Ç G let Ax designate (A G H\ |A| A |*| = 1 all
x G A} and, in this proof only, let A' designate A-1 n G. For polars F and Q of
H, P =£ Q implies either FnßxorgnFxisa nontrivial polar and hence
intersects G nontrivially. It follows that P n G ^ Q n G, so that the intersection
map is one-to-one. If F is a polar of H then FnGÇ.(FnG)xxÇ.F so
(F n G)xx n G = F n G. Therefore (F n G)"1-1- = F. It remains only to show
that F n G is a polar of G. To that end it is enough to show (FnG)' = FxnG.
Since (F n G)' D Fx n G is clear, consider 1 < x G (F n G)'. If x G Fx then
there must be some 1 <p E P with p < x. But since (F n G)' Ç (F n G)-1,
x G (F n G)', contradicting (F n G)xx = F.
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Corollary 5.4. If G < H and every nontrivial polar of H has nontrivial intersec-
tion with G then polar convergence on H reduces to polar convergence on G.

Proposition 5.5. —» on Gp meshes nicely with —» on G.

Proof. The previous corollary shows that —» on Gp reduces to —* on G. By
Proposition 2.18 it remains only to show that ff —» [ff] G Gp. To that end consider
a Cauchy filter ff on G and call [ff] = A G Gp. For each F G ff let QF be
(FF'Y n G. For fixed F G ff consider an arbitrary 1 < x G QF. For any/ G F,
\fh~x\ A x = [|/ff_1| A x], and |/ff_l|A* is generated by sets of the form
¡/F0"'| A x for F0 G ff. But for any /„ G F n F0, \ff0'x\ A* ■ 1. Therefore
\fh~x\ A x = 1 for every x G QF and / G F, which is to say FA-1 Ç £?/ =
(FF-')XX. Since ffff"1 -» 1, n{(FF-1)xx|F G ff} = 1 so that n{(Fh-x)±±\F
G ff} = 1. That is, ffA"1 -* 1 and ff -> A.

Proposition 5.6. Polar convergence satisfies Cl, C2 and C3.

Lemma 5.7. For G < H the following are equivalent.
(a) G <,#.
(b) Fue/y nontrivial polar of H has nontrivial intersection with G. Furthermore, for

every A G H + there is a filter 9 of polars of H such that (~1 9 = 1 and for every
F G ff there is some g E G with hg~x E P.

(c) There is an l-monomorphism \p: H —» Gp over G.

Proof. Assuming (a) holds, we know G is order dense in Gx and hence in H, so
the first part of (b) must hold. Consider 1 < A G H, let 91L be a filter such that
G G 91t -* A and let ff = {(Mh'Y^M E 911}. Since 9ILA-1 -* 1, fl ff = 1.
For each (A/A"')xx G ff there is a g G G n A/ such that (Ag~') = (gA_1)xx.
Now suppose (b) holds. By the previous corollary, polar convergence on H reduces
to polar convergence on G. Consider an arbitrary A G H + and let ff be a filter of
polars on H such that for each F G ff, M(P) = {g E G\hg~x G F} ^ 0. Notice
that A/(F,) n M(P2) = M(PX n PJ, so that the A/(F)'s generate a filter 911
containing G. Since 91LA-1 is generated by sets M(P)h~x Q P and since D ff = 1,
9ILA-1 -» 1. Therefore 91L -* A. Thus far we have proved the equivalence of (a)
and (b). The equivalence of (a) and (c) is Proposition 2.25, whose hypotheses
require the next corollary. Fortunately, the corollary depends only on the equiva-
lence of (a) and (b).

Corollary 5.8. Polar convergence satisfies C4.

An interesting open question is whether the extension by regularity of polar
convergence on G agrees with polar convergence on Gp. A related question is
whether cl(F) coincides with Fxx in Gp, where F is a polar of G. It is clear that
cl(F) c Fxx since the latter is order closed and hence closed. The point of the
following example is that cl(F) need not be all of F xx.

Let T be the set R X {0, 1} partially ordered by declaring (r, a) < (s, b) if and
only if r = s and a < b. Let H be V(T, R ) (see [9]) and let G be those members of
H continuous on the top copy of R. The polars of G and H are in one-to-one
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correspondence with the subsets of R and Gp = H. Let F be { g G G \(r, a)g = 0
for all r rational}, a polar of G. Then cl(F) = (A G H\(r, a)h = 0 for r rational or
a = 1} while Fxx = (A G H\(r, a)h = 0 for r rational}. Even in this example,
however, the extension by regularity of polar convergence on G agrees with polar
convergence on Gp.

Suppose \p: G -+ H is a/»-continuous /-homomorphism. An open question central
to the study of Gp is whether the canonical extension \pA: Gp -» Hp is also
/»-continuous. Under stronger hypotheses ¡pA must be /»-continuous. Let us term an
/-homomorphism strongly p-continuous if for any filter of polars ff on G,
fl {(F^)XX|F G ff} = (n 9)xp±±. The restriction of this condition to filters ff on
G such that (~) 9 = 1 yields the apparently weaker definition of /»-continuity. The
question becomes: is every /»-continuous /-homomorphism strongly /»-continuous?
Notice that every /-monomorphism \p from G onto a large /-subgroup of H is
strongly /»-continuous.

Lemma 5.9. Suppose that \p: G —» H is a strongly p-continuous l-homomorphism
and that P is a polar of G. Then in Gp and H", (Fxx)v/-A ç (Fi//)xx.

Proof. Consider 1 < x G Fx x in Gp and let ff be a filter of polars on G
satisfying part (b) of Lemma 5.7. For each g G ff let M(Q) = (g G G|xg_1 G
ß} and let 911 be the filter generated by the A/(ß)'s. Observe that for ß G ff,
g G A/(g)impliesg = (xg-1)-'x G (ß V F)xx in G". Since (ß \/F)xx n G =
Q V F, it follows that ß V F G 911 and that x G cl(ß V F). Therefore 911^ -►
x\PA in Hp and xxPA G cl((F V ßWO Ç (F V Q)^±J-, an order closed convex
/-subgroup. Since fl 9 = 1 it follows that n{PVß|ßeff} = F. Since \p is
strongly/»-continuous, n {(F V Q)^±±\Q G ff} = Fii/xx. Therefore x G Ft|/Xx.

Proposition 5.10. Any strongly p-continuous l-homomorphism \p: G -» H has a
unique strongly p-continuous l-homomorphism \pA: Gp —* Hp extending \p.

Proof. Suppose ff is a filter of polars on G with intersection Q. By the previous
lemma, (F^A)XX = (F n G)^xx for all P E9. Therefore

D (F^A)XX = PI (P n G)^xx = (ß n G)^xx = (ß^A)xx.

Theorem 5.11. For any l-group G there is an l-group H such that G <PH and such
that H < K and G <PK imply H = K. Every such H is l-isomorphic to Gp over G.
Any strongly p-continuous l-homomorphism \p: G —» K has a unique strongly p-con-
tinuous extension \pA: H —» Kp. G and H satisfy the same disjunctive formulas.

The next proposition requires the following definition: G < H means G is order
dense in H and n{(Ag_1)xx|g G G} = 1 for all A G H+. This condition is
implied by G <PH but is not equivalent to it. For example, if G is any represent-
able /-group and H is its orthocompletion then G < H, though it is not generally
true that G <PH.

In the next proposition \A \ symbolizes the cardinality of A and AB symbolizes
the set of maps from A to B.
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Lemma 5.12. Suppose 9 is the collection of polars of an l-group G. Then G < H
implies \H\<\9G\.

Proof. Well order G and let * be some object not in G. With each A G H +
associate the map /,:ff—>Gu{*} defined by declaring (P)fh to be the first g
such that Ag~' G F. If no such g exists, then (P)fh is defined to be *. If A and k are
different members of H+ let ß be any polar such that hk~x £ ß and (Q)fh = g #
*. Such a ß is certain to exist since D {F|(F)/A =£ *} = 1 because D {(Ag~')xx|g
G G} = 1. If (Q)fk = g then hk~l = (hg-x)(kg~x)~x E Q, contrary to assump-
tion. Therefore/, andfk are different members of ®G.

Proposition 5.13. Every l-group is order dense in some p-complete l-group H.

Proof. Let G = G0, Ga+1 = Gp and Gy = U {Gja < y} for limit ordinals y. A
routine induction reveals that G < Ga for each ordinal a. Lemma 5.12 implies that
Ga = Ga+1 for some ordinal a. Therefore Ga is/»-complete.

Theorem 5.14. Every l-group G has a p-completion G'p which is unique up to an
¡-isomorphism over G. Every l-monomorphism from G onto a large l-subgroup of a
p-complete l-group K has a unique l-monomorphism \pA: G'p —» K extending \p. G and
G'p satisfy the same disjunctive formulas.

The most important open question involving /»-convergence is whether property
C5 holds. That is, whether Gp is always/»-complete or whether G'p = Gp. We shall
subsequently provide an affirmative answer for several important classes of /-
groups, but the general question remains. If, as seems likely, it develops that
Gp t^ G'p in general, then the most fetching question becomes: which /-groups H
are of the form Gp for some G < HI

To motivate the next definition requires an example. Let G be C(R), the
continuous real valued functions on R. Let A be any pairwise disjoint subset of G
and let Y be {/r|0 < r < 1}, where tr E G is defined by (s)tr = r all í G R. The
theory of lateral completions developed by Conrad and Bernau shows that sets like
A may have their suprema adjoined in a consistent fashion. Our contention is that
the reason that sets like X have a manageable theory is not exactly disjointness but
rather an attribute that may be roughly stated thus: for each r E R there is at most
one member x G A such that (r) V A = (r)x. The alert reader will object that
X/A" is not really a function on R, since the lateral completion of G may not be
represented inside RR (at least over G). Nevertheless, the intention of this definition
is to express this idea. A subset Z ç G+ is of type <% if I = f) {(Zz'x V x-)±±\z
G Z} = n {(z_1Z V l)xxk G Z}. The reader should check that A is of type <%
while Y is not.

Proposition 5.15. Every finite subset of G + and every pairwise disjoint subset of
G + is of type °H .

Proof. If D is a pairwise   disjoint  set  then   C\{(Dd~x \j l)±J-\d E D} =
n {¿>xx n dL\d e D) = z>xx n (n{¿x|¿ gz>}) = z>xx n z>x = 1.
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Proposition 5.16. Type ty has properties T2 and T3.

Proof. T3 follows directly from Proposition 5.3.
For brevity write xxx n (Ax-1 V l)x as ß(x). Notice that x"'ß(x)x = xxx

fl (x"'A V 1)X- For A Ç G+ let A' = {x G A|ß(x) =¿ 1}. We remark in passing
that X Q G+ is type <$ if and only if Axx = \/{Q(x)\x E A"} =
\/{x~xQ(x)x\x G A'}. The point of Proposition 5.18 is that for the purpose of
adjoining the supremum of A one may assume X = A'. The reader should keep in
mind that in any /-group, a > b if and only if Pa > Pb for all prime subgroups F.

Lemma 5.17. Suppose X Q G+ and that P is a prime subgroup such that Q(x)
(f F for a particular x E X. Then Px > Py for all y E X.

Proof. Consider 1 < t E Q(x) - P and arbitrary y G A. Since t A (yx~x V 1)
= 1 and t G F it follows that yx"1 V 1 G F so that Pyx~x < P or Py < Fx.

Proposition 5.18. Suppose X C G + is of type %. Then U(X) = U(X').

Proof. Suppose y G U(X), say y £ x G A. Then 1 * (xy~x V l)xx Q *xx Q
V {Q(z)\z e A'}. We may assume the existence of some t such that 1 < t < xy~'
V 1 with t G ß(x0) for some x0 G A'. Let F be any value of t. Since ß(x0) J F it
follows that Fx0 > Pz for all z G A. Since F < Pt < F(xy_1 V 1) = Fxy-1 V F
= Fxy ~ ' it follows that Pxy ~ ' > F or Fx > Fy. Therefore Fx0 > Fx > Fy, which
implies .y ^ x0 G A' so y G U(X').

Lemma 5.19. Suppose X Q G+ and that L and M are finite subsets of X'. Then
(\/L)(\/Myx G n {ßWx|x G L n M).

Proof. Suppose x G L n M. If (\JL)(\/M)~x G ß(x)x then there is some v
such that 1 < v < |(VF)(VA*)_1| and u G ß(x). If F is any value of v then
ß(x) $ F so by Lemma 5.17, P(\J L) = P(\JM) and (V-i-XN/AF)"' S F. This
contradicts v $ P.

Proposition 5.20. Every subset of G of type ^ has a supremum in Gp.

Proof. Let X ç G + be of type %. If A' is finite we are done, so suppose A"' is
infinite. For each finite M Q X' define F(M) = {\JL\M Q L E X', L finite} and
let ff be the filter generated by all F(M)'s. By Lemma 5.19, F(M)F(M)~X Ç
fl {Axx n ß(w)x|m G M}; since n{Axx n ß(x)x|x G A'} = 1, ffff-1 -^ 1.
An analogous argument, which involves proving the analogues of results 5.17 and
5.19, shows that ff-,ff-» 1. Therefore y = [ff] G Gp. The claim is that y = \J X'
and therefore y = \J X in Gp. That y > A' follows from Proposition 1.2. For a
particular finite M EX', 9(\/Myx -+ y(\jM)~x. But 9(\/M)~x contains
F(A/)(VA/)"\ a subset of n {ß(x)x in G|x G M) by Lemma 5.19. Since ß(x)x
in G is contained in ß(x)x in Gp, a closed convex /-subgroup, it follows that
y(\/Myx G fl {ß(*)x in G'lx G M). Since n{Axx n ß(x)x in G'|x G A'}
= 1, n{[y(VA/)_1]xx|A' D M finite} = 1 in G". It follows that y = \/ X',
since \JM < í < v for all finite M EX' implies yi"1 G n [v(V^)_1]XX-
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Theorem 5.21. Every lattice ordered group G has a ty hull G^ which is unique up
to a ¡-isomorphism over G. G^ is laterally complete and is (l-isomorphic to) an
l-subgroup of G'p. G and G^ satisfy the same disjunctive formulas.

A most interesting question is to determine under what circumstances G^ = G'p.
The author is willing to conjecture that this is always the case.

If 9C in the next corollary is taken to be the type of pairwise disjoint sets then
one obtains the existence and uniqueness of the lateral completion, a result due to
Bernau [4].

Corollary 5.22. // % is any type finer than ^ which satisfies T2 and T3 then
every l-group G has an % hull G^ which is unique up to an ¡-isomorphism over G.
G% is (l-isomorphic to) an l-subgroup of G'p. G and G% satisfy the same disjunctive
formulas.

Corollary 5.23. For every l-group G, G'p is sup ^ -complete, hence laterally
complete.

G^ is strictly larger than the lateral completion of G in general. For example, let
T be all finite sequences from N = {1, 2, 3, . . . } including the sequence A of zero
length. Order T by declaring a > ß whenever a is an initial segment of ß. Let V
designate the group of all functions from T into R ordered by declaring that / > g
if (ß)f < (ß)g implies the existence of some a > ß such that (a)f > (a)g. This
construction of V from T is an instance of a general construction of central
importance to the theory of abelian /-groups [9]. Let G be those g G V which
satisfy the following condition. For each a E T there is some k E N such that for
every m > k, (am)g = 0 and (ami)g = (ai)g for all i E N.

G is laterally complete. To see this let öbea pairwise disjoint subset of G and let
x be the supremum of D in V. The claim is that x is in G. Consider an arbitrary
a E T. Then there are at most finitely many elements d E D such that (an)d ^ 0
for some n E N. (In fact, if (an)d =£ 0 for some n and if k G N satisfies (ami)d =
(ai)d for all / and all m > k then there can be at most k other members d' E D
such that (an)d' =£ 0 for some n.) Label these elements dx, d2,.. ., dp. For each dj
let kj E N satisfy (am)dj = 0 and (ami)dj = (ai)dj for all i and all m > k}. Let
k = V kj- Then (am)x = 0 and (ami)x = (ai)x for all /' and all m > k. Therefore
x G G.

G is not sup ty -complete. To demonstrate this we need only pick out a type <ty
subset of G whose supremum in V is not in G. To that end let g„ be any member of
G such that (K)gn = 0 and (k)gn = 0 if k ^ n and (n)gn = 1. The collection of g„'s
is not a disjoint set but is type ^ . Furthermore, its supremum is not in G.

The reader may verify that G^ consists of those v E V which satisfy the
following condition. For each a ET there is some ß < a and some k E N such
that (ßm)v = 0 and (ßmi)v = (ßi)v for all /' and all m > k.

Proposition 5.20 makes it possible to prove that a convex /-subgroup is /»-closed
if and only if it is order closed.

Proposition 5.24. // C is a convex l-subgroup of G then cl(C) = ocl(C).
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Proof. Suppose 1 < A = V S where S = {c G C + |c < A}. If S can be shown
to be type ^, then the proof of Proposition 5.20 will provide a filter ff on C such
that ff -» A, proving the present proposition. Suppose S is not of type ^, that is,
suppose 1 < c G S satisfies c G [íxx n (Ss~x V l)x]x for all s E S. If it can be
proven that Se C S we will be done, since this condition contradicts \/S = h. To
that end suppose there is s0 E S with s0c \j h > A. Let s0c A h = sx E S. Since
(s0c V A)A_1 G cxx we may find í > 1 such that t < c A (-s0c V A)A_1. It follows
that t < sx. The proof is completed by showing that t E (Ssx~x \j l)x, which
contradicts c E [sxx n (Ssf1 V l)x]x. This can be accomplished by showing that
for any prime subgroup F and any s E S, Pt A F(.ssf ' V 1) = F. Therefore
assume that F is a prime subgroup with F < Fr. Then Pt < F(j0c V h)h ~x implies
Ps0c > Ph so that Psx = Ps0c A FA = FA. For any s E S, Ps < FA = Ps so
P(ss[x V 1) = P- This completes the proof.

Corollary 5.25. FAe p-closure operator is idempotent on convex l-subgroups.

The remainder of this section consists of descriptive results about Gp, G'p and,
hence, about G^. An element 1 < ¿> G G is basic if the convex /-subgroup gener-
ated by b is totally ordered, b E G + is basic if and only if ¿» > 1 and ¿>x is prime
[9]. An /-group G has a basis if each 1 < g G G exceeds a basic element. G has a
finite basis if there is a finite maximal pairwise disjoint set of basic elements. The
next result uses only the methods and terminology of §1 and could have been
proven there.

Proposition 5.26. Suppose G is an l-subgroup of the Hausdorff lc-group (H, =>).
If b is basic in G then b is basic in cl(G). If G has a basis and if G is order dense in
cl(G) then cl(G) has a basis.

Proof. Suppose ¿» is basic in G and let F = Z»x in G, ß = Ax in cl(G). Now
cl(F) ç ß, for if ff is a filter such that P E9 ^>h E H+ then {1} = (F V 0 A
b E (ff V 1) A b -^ (A V O A b = A A b, implying A A b = 1. Since cl(F) is a
prime subgroup of cl(G), ß must be prime in cl(G) so b is basic in cl(G).

In the next proposition (B, < , V> A» x, 0, 1) is a Boolean algebra. An element
b G B is an atom if b ^ 0 and if 0 < a < ¿> implies a = 0 or a = b. B is atomic if
every nonzero element exceeds an atom. F ç F is a filter if b > f E F implies
b E F and if /,,/2 G F implies fx A h G F. The inclusion order is assumed on
filters. The following result is jointly due to Otis Kenny and the author.

Proposition 5.27. A Boolean algebra B admits a minimal filter F such that
AF = 0 if and only if B is atomic and F = {b G B\b > ax A a2 A • • ■ Aa„x. a,
atoms}.

Proof. Suppose M is any filter such that A A/ = 0 and suppose a is an atom.
There must be some m E M such that a $, m so that a A m = 0 and m < ax,
putting ax in M. Therefore F Q M. Since \J{a\a an atom} = 1, AF = 0. Now
suppose that B has a coarsest filter F such that AF = 0, yet there is some
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0 ^ b E B exceeding no atom. Choose/ G F such that/ £ b. Notice that 1 ¥=f V
¿»x G F so that /x A b i= 0 and /x A b exceeds no atom. Let m0 be /x A b, let
wa+I satisfy 0 < ma+x < ma and let my satisfy 0 < my < ma for all a < y. Con-
tinue this process until at some limit stage no choice of my is possible. Let
M = {b E B\b > ma some a), a filter on B such that AA/ = 0. Since M D F
there must be some a such that / V b1- > ma. But this contradicts (/ V é1)1 =
m0 > ma > 0.

The connection between the last two results is provided by the observation that a
polar F is a prime convex /-subgroup if and only if F x is an atom in the Boolean
algebra of polars.

Proposition 5.28. Polar convergence is topological if and only if G has a basis. It
is discrete if and only if G has a finite basis.

Proposition 5.29. // G has a basis then Gpp = Gp and the extension by regularity
of —> on G coincides with —> on Gp.

Proof. In this case Gp is just the completion of G with respect to the two-sided
uniformity of the /»-topology on G and the canonical uniformity on Gp is just the
two-sided uniformity of the /»-topology on Gp. Hence Gp is /»-complete. The
statement about extension by regularity is also a standard feature of uniformities.

Theorem 5.30. Suppose G has a basis. For G < H the following are equivalent.
(a) H is the p-completion of G.
(b) H is p-complete and every p-continuous l-homomorphism from G into a

p-complete l-group M can be uniquely extended to a p-continuous l-homomorphism
xPA: H^M.

(c) G <PH, and H <PM implies H = M.
(d) G <PH, and H < M together with G <PH imply H = M.

Proposition 5.31. In a strongly projectable l-group G every 1 < x G Gp is a
supremum of a pairwise disjoint subset of G +.

Proof. For each polar P of G let itP: G -» F be the projection /-epimorphism
such that 77F is the identity of F and g = (g"nP)(g-rrP x) for all g G G and all polars
F. Consider an arbitrary 1 < x G Gp and a filter ff such that G+ G ff -> x.
Notice that for any F G ff with F Q G+ and for any polar ß of G containing
FF~X, /,7rßx = /27rßx for all /„ f2 E F. Let {Fja < «} be a well-ordering of
those sets in 9 which are subsets of G +. Define d0 = fnQ0 where / G F0 and
ßo = (FoF¿~ 1)"L. Having defined da and Qa for all a < ß let dß = firQß where
/ G Fß and Qß = il {(FaF~x)±-L\a < ß] n (FßFßxy. A simple induction shows
that da A dß = 1 for a < ß < k. We claim x = \J da. It is clear that x > da for
each a since for every / G Fa, f > firQa = da. Now observe that for each a,
9d~x -* xd~x > 1 and 9d~x contains Fad~x C ßax. Therefore xd~x E cl(ß0x) Ç
ß„x in Gp. It follows from fl {(FF-X)±JL\F G ff} = 1 that D {ß„x|« < k] = 1 in
G and that fl {ß0x in Gp\a < k) = 1. But then \Jda = x, for if da < t < x for all
a, then xf"1 G fl ßax = 1.
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Proposition 5.32. If G is strongly projectable then so is Gp.

Proof. Suppose 1 < x G Gp and ß is a polar of Gp. Bruising the notation of the
previous result a bit, let ttQ: G->öflG and ttQ x: G -> ß x n G be the projec-
tion maps. Let D be a pairwise disjoint subset of G + such that x = V D. Let
A = DttQ and B = Z)wßx, pairwise disjoint subsets of ß n G and ßx n G
respectively. By Proposition 5.20 there are elements a and b in Gp such that
a = \J A and b = \J B. Since ß and ß x are order closed, a E Q and b E Q x.
Finally, x > A and x > B implies x > a\J b = ab, and ab > D implies ab > x, so
ab = x.

Proposition 5.33. If G is strongly projectable then Gpp = Gp.

Proof. Consider 1 < x G Gpp. Since Gp is strongly projectable there is a
pairwise disjoint set X C Gp+ such that x = V A". For each 1 < d E X there is a
pairwise disjoint set Dd Q G + such that d = \J Dd. Since Z) = U {A/I0" G A} is
a pairwise disjoint subset of G, Proposition 5.20 guarantees x = V D E Gp.

Lemma 5.34. If G is strongly projectable then for any polar P of G, cl(F) = Fxx
in Gp.

Proof. Consider 1 < x G F x x and let D be a disjoint subset of G + such that
y D = x. Then D E Px x n G = F. For each finite M ED let F(A/) =
{\/L\M E LE D and L finite} and let ff be the filter generated by the F(A/)'s.
An argument like the proof of Proposition 5.24 shows that ff —» x. Therefore
x G cl(F).

Proposition 5.35. //" G is archimedean so is Gp.

Proof. Suppose 1 < a < b E Gp. We wish to show a" Jf. ¿»for some n. Let ff be
a filter such that G E 9 —> b and such that for all F G ff there is some/ G F with
f > a. We may assume that a G G and that a G (FF~')X for some F G ff such
that FEG. Fix / G F such that f > a. Since G is archimedean there is an integer
« such that a" ^ / We claim that actually a" ^ ¿».To establish this claim it is
enough to show that for any filter 91t such that G G 91t -* a" there is some
M G 91t such that no member of F exceeds any member of M. To that end
consider an arbitrary 91t with G G 91t -> a". Since 91ta-''-» 1, there must be
some M E 91t such that 1 < (a" V/)/_1 = a"f~x V 1 <2 (A/a_,,)xx. That is,
there exists t E (A/a~")x such that 1 < t < a"/-1 V 1. Let F be any value of
/. Then P < Pt < Pa"f~x \/P = Panf~x so Pa" > Pf. Since FF-1 Ç ax ç
(anf~x V l)x £ 'x and since í g F it follows that FF-1 Ç P and Pf = F/0 for all
/0 G F. Finally, (A/a"") ç /x implies Fm = Pa" for all m G M. Therefore for any
m E M and f0 G F, Fw = Fa" > Pf = F/0, so w ^ /0.

Theorem 5.36. Suppose G is archimedean or strongly projectable and suppose
G < H. Then the following are equivalent.

(a) H = G%.
(b) H is the lateral completion of G.
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(c) H is the orthocompletion of G.
(d) H is the p-completion of G.
(e) H is p-complete and every p-continuous l-homomorphism ¡p mapping G into a

p-complete l-group M can be uniquely extended to a p-complete l-homomorphism \pA:
H^M.

(f) g <PH, and H <PM implies H = M.
(g) G <PH, and H < M together with G <PM imply H = M.

Proof. Bernau [3] has shown that every laterally complete archimedean /-group
is strongly projectable. Therefore, by Proposition 5.24, an archimedean /-group is
/»-complete if and only if it is laterally complete.

Not all /»-complete /-groups are strongly projectable. Let T be as in the example
following Corollary 5.23 and let G = {g G V(T, R)|(a„)g = (ajg all n, m). Then
G is/»-complete but not projectable. Notice that G has a basis.

Proposition 5.37. // G is large in H then Gp < Hp. If, for some collection
{HX\X E A} of l-groups, 2HX < G < UHX then I,HP < Gp < ILr/£.

Proof. Corollary 5.8 and Proposition 2.25 establish the first claim. If "£HX < G
< RHX then the Boolean algebra of polars of G is the product of the individual
polar Boolean algebras on the Hxs. Therefore polar convergence on G is the
product of the polar convergences on the Hxs. C7 therefore holds and Proposition
2.32 proves the second statement.

Polar convergence does not have property C6. In particular, the conclusion of
Proposition 2.31 is invalid for polar convergence. As an example of this phenome-
non let T be a binary tree growing downwards. More precisely, let T be the set of
all finite strings of 0's and l's including the empty string X. For a, ß ET define
a > ß if a is an initial segment of ß. Let G = {g G V(T, R)| g has finite support}.
A good deal of cogitation is required, but one may show Gp = {g E V(T, R)| the
support of g has holes}. A set A ç T has holes if for every 8 E A there is some
a < Ô such that ß < a implies ß £ A. Let F = (g G G|(0")g = 0 for all n) and
ß = {g G Gp\(QT)g = 0 all «}. Then P(Q) is order and/»-closed in G(Gp) and in
fact ocl(F) = cl(F) = ß in Gp. However G/P is {g G V(N~, R)|g has finite
support} while Gp/Q is V(N~, R), where N~ = {..., —2, -I}. This is in spite
of the fact that (G/Py = G/P, since the latter has a finite basis.

Suppose G is a represen table /-group and {PX\X G A} a set of normal primes
intersecting to 1. For each X let Tx be the totally ordered group G/Px. We may
think of G as a subdirect product of the Txs. With each polar F associate
S(P) = {X G A|(A)g ¥= 0 for some g E P). Notice that S(PX n FJ = S(PX) n
S(P2) and S(PX V F2) = S(PX) u 5(F2), so that {S(P)\P a polar of G} is a
Boolean algebra of subsets of A. Let H be the collection of all A G II Tx satisfying
the following condition. There is a filter 9 of polars of G such that f) 9 = 1 and
for every F G ff there is some g G G with (X)g = (X)A for all X E S(P x). H is an
/-subgroup of II Tx containing G. Let N be the collection of all n E H satisfying the
following condition. There is a filter ff of polars of G such that D 9 = 1 and
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(X)n = 1 for ail X G U {S(PX)|F G ff }. N is an /-ideal of H such that N n G =
1.

Proposition 5.38. Let G, {Fx}, {Fx}, H and N be as above. Then the projection
map 0: G —» H/ N can be extended to an I-isomorphism 9 A from Gp onto H/N.

Proof. Given [ff ] G Gp let ff be {(FF-')XX|F G ff}. Note that n ff = 1, and
that /„/2 G F G ff implies (X)/ = (X)/2 for X G S^FF"1)-1). Define A G if as
follows: if X G ^((FF-1)-1-) for some F G ff let (X)A = (X)/ for any / G F;
otherwise, let (X)A = 1. Finally, let [ff]0A = A/A. The reader may verify that 0A is
an /-isomorphism extending 9.

This result is unsatisfactory for representing G'p, however, since the conclusion
of the theorem leaves in doubt how best to represent Gp. In particular, one might
ask: when can an /-monomorphism 0 from G onto a subdirect product of totally
ordered groups IITx be extended to an /-monomorphism 0A: G'p -*IIFX? A
minimal requirement is that the Fx's be /»-closed; hence G must be completely
distributive. The example following Proposition 5.37 shows that even in this case
Fx = G/'Px ¥= (Gp/cl(Px)). The alert reader will have noticed that in this example
Gp/cl(Px) = (G/ FX)A. It can be shown in general that if the Fx's are order closed
then Gip < II(FAA). But this is simply a representation of Ga, the completion of G
with respect to the uniformity of the a topology, a subject which will be taken up in
a forthcoming paper. Similar remarks apply to the analogous of Proposition 5.38
resulting from the other classical /-group representation theorems.
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