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Abstract—This paper investigates the convergence properties
and consistency of Extended Kalman Filter (EKF) based simul-
taneous localization and mapping (SLAM) algorithms. Proofs
of convergence are provided for the nonlinear two-dimensional
SLAM problem with point landmarks observed using a range-
and-bearing sensor. It is shown that the robot orientation
uncertainty at the instant when landmarks are first observed
has a significant effect on the limit and/or the lower bound of
the uncertainties of the landmark position estimates. This paper
also provides some insights to the inconsistencies of EKF based
SLAM that have been recently observed. The fundamental cause
of EKF SLAM inconsistency for two basic scenarios are clearly
stated and associated theoretical proofs are provided.

Index Terms—Simultaneous localization and mapping
(SLAM), Extended Kalman Filter, Extended Information Filter,
Convergence, Inconsistency.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the

process of building a map of an environment while concur-

rently generating an estimate for the pose of the robot. Many

different techniques have been developed to solve the SLAM

problem (see [1] and the references therein). However, the

use of an Extended Kalman Filter (EKF) to estimate a state

vector containing both the robot pose (including position and

orientation) and the landmark locations (e.g. [2]) remains one

of the most popular strategies for solving SLAM.

While there have been numerous implementations, only very

few analytical results on the convergence and essential proper-

ties of the EKF SLAM algorithm are available. Dissanayake et

al. provided convergence properties of SLAM and lower bound

on the position uncertainty [2]. These results were extended

to multi-robots SLAM in [3]. Kim [4] provided some further

analysis on the asymptotic behavior for the one dimensional

SLAM problem. All the proofs presented in the literature ([2]-

[6]), however, only deals with simple linear formulations of

the SLAM problem.

Almost all practical SLAM implementations need to deal

with nonlinear process and observation models. The results

due to [2] are intuitive and many early experiments and

computer simulations appear to confirm that the properties of

the linear solution extends to practical nonlinear problems. In

the past few years, a number of researchers have demonstrated

that the lower bound for the map accuracy presented in [2]

is violated and the EKF SLAM produces inconsistent esti-

mates due to errors introduced during the linearization process

[7][8][9][10][11]. While some explanation of this phenomena

has been reported, mainly through Monte-Carlo simulations, a

thorough theoretical analysis of the nonlinear SLAM problem

is not yet available.

This paper provides both the key convergence properties

and the explicit formulas for the covariance matrices for some

basic scenarios in the nonlinear two-dimensional EKF SLAM

problem with point landmarks observed using a range-and-

bearing sensor. Some insights to, and theoretical proofs of the

EKF SLAM inconsistencies are also given. The results in this

paper demonstrate that:

• Most of the convergence properties in [2] are still true

for the nonlinear case provided that the Jacobians used

in the EKF equations are evaluated at the true states.

• The main reasons for inconsistency in EKF SLAM are

due to (i) the violation of some fundamental constraints

governing the relationship between various Jacobians

when they are evaluated at the current state estimate, and

(ii) the use of relative location information from robot

to landmarks to update the absolute robot and landmark

location estimates.

• The robot orientation uncertainty plays an important role

in both the EKF SLAM convergence and the possible

inconsistency. In the limit, the inconsistency of EKF

SLAM may cause the variance of the robot orientation

estimate to be incorrectly reduced to zero.

The paper is organized as follows. In Section II, the EKF

SLAM algorithm is restated in a form more suitable for

theoretical analysis. In Section III, some key convergence

properties are proved. The theoretical explanations of the

EKF SLAM inconsistency are given in Section IV. Section V

provides some discussions on related work and further research

topics. Section VI concludes the paper. Most of the proofs and

relevant background material are given in Appendices. 1

II. RESTATEMENT OF THE EKF SLAM ALGORITHM

In this section, the EKF SLAM algorithm is restated using

slightly different notations and formulas in order to clearly

1Details of the proofs omitted due to space constraints are available from
the first author.
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state and prove the results in this paper.

A. State vector in 2D EKF SLAM

The state vector is denoted as 2

X = (φ,Xr, X1, · · · , XN ), (1)

where φ is the robot orientation, Xr = (xr, yr) is the robot

position, X1 = (x1, y1), · · · , XN = (xN , yN ) are the positions

of the N point-landmarks. Note that the robot orientation φ
is separated from the robot position because it plays a crucial

role in the convergence and consistency analysis.

B. Prediction

1) Process Model: The robot process model considered in

this paper is




φ(k + 1)
xr(k + 1)
yr(k + 1)



 =





φ(k) + fφ(γ(k), v(k), δγ, δv)
xr(k) + (v(k) + δv)T cos[φ(k)]
yr(k) + (v(k) + δv)T sin[φ(k)]



 ,

and is denoted as
[

φ(k + 1)
Xr(k + 1)

]

= f(φ(k), Xr(k), γ(k), v(k), δγ, δv), (2)

where v, γ are the ‘controls’, δv, δγ are zero-mean Gaussian

noise on v, γ. T is the time interval of one movement step.

The explicit formula of function fφ depends on the particular

robot. Two examples of this general model are given below.

Example 1 A simple discrete-time robot motion model

φ(k + 1) = φ(k) + (γ(k) + δγ)T
xr(k + 1) = xr(k) + (v(k) + δv)T cos[φ(k)]
yr(k + 1) = yr(k) + (v(k) + δv)T sin[φ(k)]

(3)

which can be obtained from a direct discretization of the uni-

cycle model (e.g. [10])

φ̇ = γ
ẋr = v cos φ
ẏr = v sin φ

(4)

where v is the velocity and γ is the turning rate.

Example 2 A car-like vehicle model (e.g. [2])

φ(k + 1) = φ(k) + (v(k)+δv)T tan(γ(k)+δγ)
L

xr(k + 1) = xr(k) + (v(k) + δv)T cos[φ(k)]
yr(k + 1) = yr(k) + (v(k) + δv)T sin[φ(k)]

(5)

where v is the velocity and γ is the steering angle, L is the

wheel-base of the vehicle.

The process model of landmarks (assumed stationary) is

Xi(k + 1) = Xi(k), i = 1, · · · , N. (6)

Thus, the process model of the whole system is

X(k + 1) = F (X(k), γ(k), v(k), δγ, δv), (7)

where F is the function combining (2) and (6).

2To simplify the notation, the vector transpose operator is omitted. For
example, X, Xr, X1, · · · , XN are all column vectors and the rigorous
notation should be X = (φ, XT

r , XT

1
, · · · , XT

N
)T .

2) Prediction: Suppose at time k, after the update, the

estimate of the state vector is

X̂(k|k) = (φ̂(k), X̂r(k), X̂1, · · · , X̂N ),

and the covariance matrix of the estimation error is P (k|k).
The prediction step is given by

X̂(k + 1|k) = F (X̂(k|k), γ(k), v(k), 0, 0),
P (k + 1|k) = ∇FφXrXP (k|k)∇FT

φXrX + ∇FγvΣ∇FT
γv,

(8)

where Σ is the covariance of the control noise (δγ, δv), and

∇FφXrX ,∇Fγv are given by 3

∇FφXrX =

[

∇fφXr
0

0 I

]

,∇Fγv =

[

∇fγv

0

]

. (9)

Here ∇fφXr
and ∇fγv are Jacobians of f in (2) with respect

to the robot pose (φ,Xr) and the control noise (δγ, δv),
respectively, evaluated at the current estimate X̂(k|k).

For the system described by equation (2), the Jacobian with

respect to the robot pose is

∇fφXr
=





1 0 0
−vT sin φ 1 0
vT cos φ 0 1



 . (10)

The Jacobian with respect to the controls, ∇fγv , depends

on the detailed formula of function fφ in (2).

C. Update

1) Measurement Model: At time k + 1, the measurement

of i-th landmark, obtained using sensor on board the robot, is

given by range ri and bearing θi,

ri =
√

(yi − yr(k + 1))2 + (xi − xr(k + 1))2 + wri

θi = arctan
(

yi−yr(k+1)
xi−xr(k+1)

)

− φ(k + 1) + wθi

(11)

where wri
and wθi

are the noise on the measurements.

The observation model can be written in the general form

zi(k + 1) =

[

ri

θi

]

= Hi(X(k + 1)) + wriθi
. (12)

The noise wriθi
is assumed to be Gaussian with zero-mean

and covariance matrix Rriθi
.

2) Update: Equation to update the covariance matrix can

be written in the information form ([12]) as follows.

Ω(k + 1|k) = P (k + 1|k)−1,
Ω(k + 1|k + 1) = Ω(k + 1|k) + Ωnew,
P (k + 1|k + 1) = Ω(k + 1|k + 1)−1,

(13)

where Ω(·) is the information matrix, Ωnew is the new

information obtained from the observation given by

Ωnew = ∇HT
i R−1

riθi
∇Hi (14)

and ∇Hi is the Jacobian of function Hi evaluated at the

current estimate X̂(k + 1|k).
The estimate of the state vector can now be updated using

X̂(k + 1|k + 1) = X̂(k + 1|k) + W (k + 1)µ(k + 1) (15)

3In this paper, I and 0 always denote the identity matrix and a zero matrix
with an appropriate dimension, respectively.



3

where

µ(k + 1) = zi(k + 1) − Hi(X̂(k + 1|k))
W (k + 1) = P (k + 1|k)∇HT

i S−1(k + 1)
(16)

and

S(k + 1) = Rriθi
+ ∇HiP (k + 1|k)∇HT

i . (17)

Remark 2.1: Using (13), (14) and the matrix inversion

lemma (see equation (99) in Appendix B),

P (k + 1|k + 1) = P (k + 1|k) − P (k + 1|k)∇HT
i

·(Rriθi
+ ∇HiP (k + 1|k)∇HT

i )−1

·∇HiP (k + 1|k),
(18)

which is the typical EKF update formula.

The Jacobian of the measurement function Hi is

∇Hi =

[

0 −dx
r

−dy
r

dx
r

dy
r

−1 dy
r2 −dx

r2 −dy
r2

dx
r2

]

(19)

where
dx = xi − xr(k + 1)
dy = yi − yr(k + 1)

r =
√

dx2 + dy2.
(20)

Note that, in the above, all the columns corresponding to

landmarks that are not currently being observed have been

ignored.

III. CONVERGENCE PROPERTIES OF EKF SLAM

This section proves some convergence results for 2D non-

linear EKF SLAM. The first result is the monotonically

decreasing property which is the same as Theorem 1 in [2].

Theorem 3.1: The determinant of any submatrix of

the map covariance matrix decreases monotonically as

successive observations are made.

Proof: This result can be proved in a similar way to that

of Theorem 1 in [2]. The only difference is that the Jacobians

instead of the state transition matrix and observation matrices

will be used in the proof. The key point of the proof is “In

the prediction step, the covariance matrix of the map does not

change; in the update step, the whole covariance matrix is

non-increasing”. The details of the proof are omitted.

For 2D nonlinear EKF SLAM, general expressions for the

covariance matrices evolution can not be obtained. Therefore,

two basic scenarios are considered in the following: (1) the

robot is stationary and observes new landmarks many times,

and (2) the robot then moves but only observes the same

landmarks.

Suppose the robot starts at point A, the initial uncertainty

of the robot pose is expressed by the covariance matrix

P0 =

[

pφ pT
xyφ

pxyφ Pxy

]

(21)

where pφ is a scalar and Pxy is a 2 × 2 matrix.

The initial information matrix is denoted as

Ω0 = P−1
0 =

[

iφ bT

b Ωxy

]

. (22)

A. Scenario 1 - robot stationary

Consider the scenario that the robot is stationary at point A

and makes n observations.

1) Observe one landmark: First assume that the robot can

only observe one new landmark – landmark m. The Jacobian

in (19) evaluated at the true landmark position (xm, ym) and

the true robot position (xA, yA) is denoted as 4

∇HA = [−e − A A] , (23)

where

e =

[

0
1

]

, A =

[

dxA

rA

dyA

rA

−dyA

r2

A

dxA

r2

A

]

, (24)

with
dxA = xm − xA

dyA = ym − yA

rA =
√

dx2
A + dy2

A.
(25)

For convenience, further denote that

Ae =
[

A−1e I
]

(26)

where I denotes 2 × 2 identity matrix (see footnote 3).

Theorem 3.2: If the robot is stationary and observes a

new landmark n times, the covariance matrix of the robot

pose and the new landmark position estimates is

Pn
Aend

=

[

P0 P0A
T
e

AeP0 AeP0A
T
e

+ A−1RAA−T

n

]

(27)

where P0 is the initial robot uncertainty given in (21), A
is defined in (24), Ae is defined in (26), and RA is the

observation noise covariance matrix. In the limit when

n → ∞, the covariance matrix becomes

P∞

Aend
=

[

P0 P0A
T
e

AeP0 AeP0A
T
e

]

=

[

I
Ae

]

P0

[

I AT
e

]

.

(28)

Proof: See Appendix A.

The following corollary can be obtained from Theorem 3.2.

Corollary 3.3: If the robot is stationary and observes a new

landmark n times, the robot uncertainty remains unchanged.

The limit (lower bound) on the covariance matrix of the new

landmark is

P∞

Am
= AeP0A

T
e
, (29)

which is determined by the robot uncertainty P0 and the

Jacobian ∇HA. In the special case when the initial uncertainty

of the robot orientation pφ is 0, P∞

Am
is equal to the initial

robot position uncertainty Pxy in (21).

Proof: See Appendix A.

Remark 3.4: Theorem 3.2 and Corollary 3.3 can be re-

garded as the nonlinear version of Theorem 3 in [2]. Moreover,

it is clear that the robot orientation uncertainty has a significant

effect on the limit of the landmark uncertainty. “When the

robot position is exactly known but its orientation is uncertain,

4For the theoretical convergence results, the Jacobians are always evaluated
at the true states. In the real SLAM applications, the Jacobians have to be
evaluated at the estimated states and this may cause inconsistency. A detailed
analysis of this is given in Section IV.
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even if there is a perfect knowledge about the relative location

between the landmark and the robot, it is still impossible to

tell exactly where the true landmark position is”.

Figures 1(a) and 1(b) show that the initial robot orientation

uncertainty has a significant effect on the landmark estimation

accuracy. In Figure 1(a), the initial uncertainty of the robot

pose is P0 = diag(0.03, 1, 1). Because the robot orientation

uncertainty is large (the standard deviation is 0.1732 radians

≈ 10 degrees), in the limit, the uncertainty of the landmark

position is much larger than the initial uncertainty of the robot

position. In Figure 1(b), the initial robot pose uncertainty

is P0 = diag(0.001, 1, 1). Because the robot orientation

uncertainty is very small (the standard deviation is 0.0316
radians ≈ 1.8 degrees), in the limit, the uncertainty of the

landmark position is very close to the initial uncertainty of

the robot position.

2) Observe two landmarks: Suppose the robot can observe

two new landmarks (landmark m and landmark m̄) at point A,

then the dimension of the observation function in (12) is four

(two ranges and two bearings), the Jacobian can be denoted

as:

∇ĤA =

[

−e −A A 0
−e −Ā 0 Ā

]

(30)

where Ā is similar to A in (24) but defined for landmark m̄.

Similar to (26), denote

Āe =
[

Ā−1e I
]

. (31)

The following theorem and corollary can now be obtained.

The proofs are similar to that of Theorem 3.2 and Corollary

3.3 and are omitted here.

Theorem 3.5: If the robot is stationary and observes two

new landmarks n times, the covariance matrix of the robot

pose and the two new landmark position estimates is

P̂n
Aend

=





P0 P0A
T
e

P0Ā
T
e

AeP0 Pn
Am

AeP0Ā
T
e

ĀeP0 ĀeP0A
T
e

Pn
Ām̄



 (32)

where
Pn

Am
= AeP0A

T
e

+ A−1RAA−T

n
,

Pn
Ām̄

= ĀeP0Ā
T
e

+ Ā−1RĀĀ−T

n
,

(33)

and RĀ is the observation noise covariance matrix for

observing landmark m̄. In the limit when n → ∞, the

whole covariance matrix is

P̂∞

Aend
=





P0 P0A
T
e

P0Ā
T
e

AeP0 AeP0A
T
e

AeP0Ā
T
e

ĀeP0 ĀeP0A
T
e

ĀeP0Ā
T
e





=





I
Ae

Āe



P0

[

I AT
e

ĀT
e

]

.

(34)

Corollary 3.6: If the robot is stationary and observes two

new landmarks n times, the robot uncertainty remains un-

changed. The limit (lower bound) of the covariance matrix

associated with the two new landmarks is

P∞

Amm̄
=

[

AeP0A
T
e

AeP0Ā
T
e

ĀeP0A
T
e

ĀeP0Ā
T
e

]

. (35)

In the special case when the initial uncertainty of the robot

orientation pφ = 0, the limit P∞

Amm̄
=

[

Pxy Pxy

Pxy Pxy

]

.

Remark 3.7: Theorem 3.5 and Corollary 3.6 are the ana-

logue of Theorem 2 in [2]. However, because Ae 6= Āe,

AeP0A
T
e
6= ĀeP0Ā

T
e

when pφ 6= 0. This means that the limits

of the uncertainties of the two landmarks are different when

the robot orientation uncertainty is not zero. This is different

from the linear results proved in [2], where the uncertainties

of all the landmarks (with similar landmark types) are the

same. This result is due to the nonlinearity of the observation

function, which makes the Jacobians to be different when

evaluated at locations of different landmarks.

Figure 2(a) shows that the difference between the uncertain-

ties of the two landmarks is large when the robot orientation

uncertainty pφ is large (pφ is the same as that in Figure 1(a)).

Figure 2(b) shows that the difference is very small when the

initial robot orientation uncertainty pφ is small (pφ is the same

as that in Figure 1(b)).

B. Scenario 2 – robot moves

Consider the scenario that the robot first remains stationary

at point A and makes observations n → ∞ times. Then the

robot moves to another observation point B in one time step,

and observes the same landmarks l times.

1) Observe one landmark: First assume that the robot

can only observe one new landmark (at points A and B) –

landmark m. The Jacobian in (19) evaluated at point B and

the true position of landmark m is denoted as

∇HB = [−e − B B] , (36)

where B is similar to A in (24) but defined for the robot pose

at point B. Similar to (26), denote

Be =
[

B−1e I
]

. (37)

The following lemma gives the relationship between the

Jacobians at point A and point B.

Lemma 3.8: The relationship between the Jacobians at

point A and point B is

Ae = Be∇fA
φXr

, (38)

where ∇fA
φXr

is the Jacobian of f in (2) with respect

to the robot orientation and position (see equation (10)),

evaluated at the robot pose A and the associated control

values.

Proof: See Appendix A.

The relationship given in Lemma 3.8 plays an important role

in deriving the following convergence results. Furthermore, it

will be shown in Theorem 4.2 in Section IV that the violation

of this relationship may cause inconsistency in EKF SLAM.

Theorem 3.9: If the robot first remains stationary at

point A and observes one new landmark n → ∞ times

before it moves to point B and observes the same landmark

l times, then the final covariance matrix is

P l
Bend

= P 0
Bstart

+ P l
B (39)
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(d) Inconsistency can be neglected when initial robot orientation uncer-
tainty is small

Fig. 1. The limits of landmark uncertainty when the robot is stationary and observes the landmark n → ∞ times (see Theorem 3.2, Corollary 3.3 and
Theorem 4.1): In Figure 1(a) and Figure 1(c), the initial uncertainty of the robot pose is P0 = diag(0.03, 1, 1). In Figure 1(b) and Figure 1(d), the initial
robot pose uncertainty is P0 = diag(0.001, 1, 1). For Figure 1(a) and Figure 1(b), the Jacobians are evaluated at the true robot and landmark locations. In
Figures 1(c) and 1(d), the solid ellipses are the limit of the uncertainties when the Jacobians are evaluated at the updated state estimate at each update step.

where

P 0
Bstart

=

[

∇fA
φXr

P0(∇fA
φXr

)T ∇fA
φXr

P0A
T
e

AeP0(∇fA
φXr

)T AeP0A
T
e

]

=

[

∇fA
φXr

0

0 I

]

P∞

Aend

[

(∇fA
φXr

)T 0

0 I

]

,

(40)

P l
B =

[

∇fA
γvΣl

B(∇fA
γv)T 0

0 0

]

, (41)

with

Σl
B = [Σ−1 + lHT

ABR−1
B HAB ]−1 ≥ 0 (42)

and

HAB = [e B]∇fA
γv. (43)

Furthermore, if the matrix HT
ABR−1

B HAB is invertible 5,

then the matrix P l
B → 0 when l → ∞. Here P∞

Aend
is

defined in (28), RB is the covariance matrix of the obser-

vation noise at point B, ∇fA
φXr

and ∇fA
γv are Jacobians of

5This depends on the process model and the direction of the robot
movement but this is true in most of the cases.

function f in (2) evaluated at point A and the associated

control values.

Proof: See Appendix A.

By Theorem 3.9, the lower bound of the covariance matrix

is P 0
Bstart

, which is the covariance matrix when the robot first

reaches point B if there is no control noise in moving from A

to B (Σ = 0 in (8)).

Figures 3(a), 3(b), 3(c), and 3(d) illustrate Theorem 3.9. The

initial robot uncertainty is the same as that used for Figure

1(a). Figures 3(a) and 3(b) show the case when there is no

control noise. Figure 3(a) shows the uncertainties after the

prediction step and Figure 3(b) shows the uncertainties after

the update using the observations at point B. It can be seen

that the observations at point B can not reduce the uncertainty

of the robot and landmarks. Figures 3(c) and 3(d) show the

case when control noise is present. In this case, the landmark

uncertainty cannot be improved by the observation at point B,

while the uncertainty of the robot can be reduced to the same

level as the case when there is no control noise. The limits
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(a) Initial robot orientation uncertainty is large

−10 −5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25
EKF SLAM for 2 landmarks: robot stationary

robot location

landmark 1 landmark 2

(b) Initial robot orientation uncertainty is small
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(c) Inconsistency of EKF SLAM for two landmarks
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(d) Inconsistency can be neglected when initial robot orientation uncer-
tainty is small

Fig. 2. The limits of the two landmark uncertainties when the robot is stationary and makes observation n → ∞ times: Figure 2(a) shows that the final
uncertainties of the two landmarks are different. See Theorem 3.5, Corollary 3.6, Remark 3.7, Theorem 4.1 and the caption of Figure 1 for more explanations.

of the uncertainties are independent of the extent of sensor

and control noises. The control noise only affect the robot

uncertainty after the prediction in Figure 3(c). The sensor noise

used are the same as those in Figure 1, the robot speed and

the control noises (in Figures 3(c) and 3(d)) are deliberately

enlarged, just to make the differences of the ellipses visible.

2) Observe two landmarks: Suppose the robot can observe

two new landmarks (landmark m and landmark m̄) at points A

and B, then the dimension of the observation function in (12) is

four (two ranges and two bearings), denote the corresponding

Jacobians as ∇ĤA given in (30) and

∇ĤB =

[

−e −B B 0
−e −B̄ 0 B̄

]

. (44)

Theorem 3.10: If the robot first remains stationary at

point A and observes two new landmarks n → ∞ times

before it moves to point B and observes the same two

landmarks l times, then the final covariance matrix is

P̂ l
Bend

= P̂ 0
Bstart

+ P̂ l
B (45)

where

P̂ 0
Bstart

=





∇fA
φXr

0 0

0 I 0
0 0 I



 P̂∞

Aend

·





(∇fA
φXr

)T 0 0

0 I 0
0 0 I





(46)

P̂ l
B =





∇fA
γvΣ̂l

B(∇fA
γv)T 0 0

0 0 0
0 0 0



 , (47)

with

Σ̂l
B = [Σ−1 + l(HT

ABR−1
B HAB + HT

AB̄
R−1

B̄
HAB̄)]−1 ≥ 0,

(48)

and

HAB̄ = [e B̄]∇fA
γv. (49)

Furthermore, if the matrix HT
ABR−1

B HAB +HT
AB̄

R−1
B̄

HAB̄

is invertible, then the matrix P̂ l
B → 0 when l → ∞. Here

P̂∞

Aend
is defined in (34), ∇fA

φXr
and ∇fA

γv are Jacobians of
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(a) no control noise – after prediction
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(b) no control noise – after update
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(c) with control noise – after prediction
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(d) with control noise – after update

Fig. 3. The limits of the robot and landmark uncertainties when the robot first remains stationary at point A and makes observation n → ∞ times and then
moves to B and observes the same landmark l → ∞ times (see Theorem 3.9)

function f in (2) evaluated at point A and the associated

control values, HAB is defined in (43), and RB , RB̄ are

the covariance matrices of the observation noise at point

B and for observing landmarks m and m̄, respectively.

Proof: The proof is similar to that of Theorem 3.9 and is

omitted.

Remark 3.11: Theorems 3.9 and 3.10 show that the only

effect of the observations made at point B is to reduce the addi-

tional robot uncertainty generated from the process noise. The

observations made at point B cannot reduce the uncertainty

of the landmark further if the robot had already observed the

landmark many times at point A. Theorems 3.9 and 3.10 can

be extended to the case when it takes more than one step to

move from A to B such as A → B1 → B2 → ... → Bn → B.

For example, for the one landmark case, the limit of the

covariance matrix satisfies

P∞

Bend
≥

[

FABP0F
T
AB FABP0A

T
e

AeP0F
T
AB AeP0A

T
e

]

, (50)

where

FAB = ∇fBn

φXr
· · ·∇fB1

φXr
∇fA

φXr
. (51)

Figures 4(b) and 4(d) illustrate the results.

IV. CONSISTENCY OF EKF SLAM

In all the theoretical convergence properties proved in the

previous section, it is assumed that the Jacobians are evaluated

at the true robot pose and the true landmark positions. In a

real-life SLAM, the true locations of the robot and landmarks

are not known, and the Jacobians have to be evaluated at the

estimated values. This section provides a proof that this may

result in over-confident (inconsistent) estimates.

A. Why inconsistency can occur in the nonlinear EKF SLAM?

A number of recent publications indicate that the key source

of EKF SLAM inconsistency is the error introduced during

the linearization process (e.g. [8][9]). While it is clear that

linearization is an approximation which can introduce errors in

to the estimation process, it is reasonable to expect that the in-

correct estimate is likely to be either too optimistic (estimated

uncertainty smaller than true uncertainty) or too pessimistic

(estimated uncertainty larger than true uncertainty). However,

the SLAM literature only reports estimator inconsistency as
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a result of optimistic estimates. No instances of pessimistic

estimates during EKF SLAM has been reported. Why?

B. An intuitive explanation

In most cases, the measurement available for use in the

SLAM algorithms is the relative location between the robot

and landmarks, and the objective of the SLAM process is to

estimate the absolute robot and landmark locations.

Suppose x, y are two numbers and that two noisy measure-

ments of x − y are available:

x − y ≈ 99.8
x − y ≈ 100.1

(52)

Based on these measurements, although it is possible to say

“x − y is around 100”, nothing can be said about the true

values of x and/or y. However, if the measurement equation

is non-linear, the linearized version of this equation may look

like

1.01x − y ≈ 99.8
0.99x − y ≈ 100.1

(53)

From these two equations, the (approximate) absolute values

of x and y can be calculated. Obviously, this outcome is too

optimistic (inconsistent).

In the next two subsections, it will be shown that the

mechanism that causes overconfident estimates in SLAM is

similar to that presented above. Theoretical proofs are given

for two basic scenarios.

C. Scenario 1 – robot stationary

In EKF SLAM, the observation innovation (µ(k + 1) in

(16)) is used to update the previous estimate X̂ . Through

linearization, the innovation can be expressed as (see (23))

µ = z − H(X̂)

≈ H(X) − H(X̂)

≈ ∇HA(X − X̂)

= −e(φ − φ̂) − A(Xr − X̂r) + A(Xm − X̂m),
(54)

where φ̂, X̂r and X̂m are the estimates of the robot orientation,

the robot position, and the landmark position, respectively.

(54) is equivalent to

eφ + AXr − AXm ≈ −µ + eφ̂ + AX̂r − AX̂m. (55)

Suppose the robot is stationary at point A and makes two

consecutive observations to landmark m —- z1 and z2. After

the update using z1, the estimates of the robot orientation, the

robot position, and the landmark position will change from

φ̂, X̂r, X̂m to φ̂1, X̂1
r , X̂1

m, thus the Jacobian will be evaluated

at a different point in the state space when z2 is used for the

next update. The two innovations µ1, µ2 give

eφ + Ã1Xr − Ã1Xm ≈ −µ1 + eφ̂ + Ã1X̂r − Ã1X̂m,

eφ + Ã2Xr − Ã2Xm ≈ −µ2 + eφ̂1 + Ã2X̂
1
r − Ã2X̂

1
m,
(56)

where Ã1, Ã2 are defined in a manner similar to (24) but

computed at the estimated robot and landmark locations. Both

Ã1, Ã2 are non-singular matrices that are different but close

to A.

The above two equations are equivalent to

Ã−1
1 eφ + Xr − Xm ≈ −Ã−1

1 µ1 + Ã−1
1 eφ̂ + X̂r − X̂m,

Ã−1
2 eφ + Xr − Xm ≈ −Ã−1

2 µ2 + Ã−1
2 eφ̂1 + X̂1

r − X̂1
m.

(57)

So

(Ã−1
1 e − Ã−1

2 e)φ ≈ Ã−1
2 µ2 − Ã−1

1 µ1 + X̂r − X̂m

+Ã−1
1 eφ̂ − Ã−1

2 eφ̂1 − X̂1
r + X̂1

m.
(58)

By the special structure of Ã1, Ã2 (see (24)), if Ã1 6= Ã2,

then Ã−1
1 e 6= Ã−1

2 e and equation (58) provides some in-

formation on the value of φ. It is obvious that observing a

single new landmark will not improve the knowledge of the

robot orientation. Therefore, this apparent information on the

robot orientation is incorrect and will result in overconfident

estimates (inconsistency).

To examine the extent of the possible inconsistency, let the

robot be stationary at point A and observe a new landmark n
times. Let the estimate be updated after each observation using

Jacobians evaluated at the updated estimate at each time step.

Denote the different Jacobians as

∇HÃj
=

[

−e − Ãj Ãj

]

, 1 ≤ j ≤ n. (59)

Let RA denote the observation noise covariance matrix at point

A, and define

w(n,A) = neT R−1
A e − eT R−1

A (
∑n

j=1 Ãj)

·(
∑n

j=1 ÃT
j R−1

A Ãj)
−1(

∑n
j=1 ÃT

j )R−1
A e.

(60)

As before, suppose that the initial robot uncertainty is P0 given

by (21).

Theorem 4.1: In EKF SLAM, if the robot is stationary

at point A and observes a new landmark n times, the incon-

sistency occurs due to the fact that Jacobians are evaluated

at different state estimates. The level of inconsistency is

determined by the initial robot uncertainty P0 and the

w(n,A) defined in (60). When n → ∞, the inconsistency

may cause the variance of the robot orientation estimate

to be reduced to zero.

Proof: See Appendix A.

Figures 1(c), 1(d), 2(c), and 2(d) illustrate the results in

Theorem 4.1. In Figure 1(c), the initial uncertainty of the

robot pose is the same as that used in Figure 1(a), the solid

ellipse is the limit of the landmark uncertainty when the

Jacobian is evaluated at the updated state estimate at each

update step. This figure is generated by performing 1000
updates assuming that the range and bearing measurements are

corrupted by random Gaussian noise (the standard deviations

of range and bearing noise are selected to be similar to that

of a typical indoor laser scanner, 0.1m and 1o, respectively).

It can be seen that the uncertainty of the landmark is reduced

far below the theoretical limit (dashed ellipse), demonstrating

the inconsistency of EKF SLAM solution. In Figure 1(d), the

initial uncertainty of the robot orientation is much smaller (the

same as that used in Figure 1(b)). It can be seen that the extent
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of inconsistency is too small to be seen (the solid ellipse almost

coincides with the dashed one).

D. Scenario 2 – robot moves

Consider the scenario that the robot observes a new land-

mark at point A and then moves to point B and makes an

observation of the same landmark. Similar to (57), the two

innovations µA, µB give

Ã−1eφA + XA
r − Xm ≈ −Ã−1µA + Ã−1eφ̂A

+X̂A
r − X̂A

m,

B̃−1eφB + XB
r − Xm ≈ −B̃−1µB + B̃−1eφ̂B

+X̂B
r − X̂B

m.

(61)

From the process model (2) with appropriate linearization,

φB ≈ φA + fφ(γ̂, v̂, 0, 0),

XB
r ≈ XA

r +

[

v̂T cos(φ̂A)

v̂T sin(φ̂A)

]

+

[

−v̂T sin(φ̂A)

v̂T cos(φ̂A)

]

(φA − φ̂A).

(62)

Thus
(

Ã−1e − B̃−1e −

[

−v̂T sin(φ̂A)

v̂T cos(φ̂A)

])

φA

≈ B̃−1µB − Ã−1µA + Ã−1eφ̂A + X̂A
r − X̂A

m

−B̃−1eφ̂B − X̂B
r + X̂B

m + B̃−1efφ(γ̂, v̂, 0, 0)

+

[

v̂T cos(φ̂A)

v̂T sin(φ̂A)

]

−

[

−v̂T sin(φ̂A)

v̂T cos(φ̂A)

]

φ̂A.

(63)

If Ã−1e 6= B̃−1e +

[

−v̂T sin(φ̂A)

v̂T cos(φ̂A)

]

, then the above

equation contains information on φA, which is clearly incor-

rect as observations to a single landmark do not provide any

knowledge about the robot orientation.

Note that Ã−1e = B̃−1e+

[

−v̂T sin(φ̂A)

v̂T cos(φ̂A)

]

is actually the

relationship proved in Lemma 3.8. Therefore, the following

result can now be stated.

Theorem 4.2: When the robot observes the same land-

mark at two different points A and B, the EKF SLAM

algorithm may provide inconsistent estimates due to the

fact that the Jacobians evaluated at the estimated robot

positions may violate the key relationship between the

Jacobians as shown in Lemma 3.8.

Proof: See Appendix A.

Figures 4(a)-4(d) illustrate the extent of inconsistency under

scenario 2. The robot first keeps still at point A and makes

n = 10000 observations. The initial robot uncertainty is the

same as that used in Figure 1(a). The true Jacobians are used at

point A to guarantee the consistency of the estimate before the

robot moves. The robot then moves 500 steps to B and keeps

observing the same landmark while moving. The thin/solid

ellipses illustrate the estimate uncertainty after the observation

at point A. The dashed ellipses correspond to the uncertain-

ties at the intermediate points (every 100 steps) while the

thick/solid ellipses illustrate the final uncertainty. Figure 4(a)

shows that the extent of inconsistency is quite significant when

there is no control noise. Figure 4(b) shows the corresponding

results where true Jacobians are used. Figure 4(c) shows the

inconsistency when control noise is present. Figure 4(d) shows

the corresponding results where true Jacobians are used. In this

simulation, the sensor noise used were the same as that used

in Figure 1, the control noise were chosen to be similar to

that of Pioneer robots — standard deviations of velocity noise

and turn rate noise are 0.02m/s and 3o/s, respectively. The

similarity between Figures 4(b) and 4(d) is due to the relatively

small sensor noise where after the update, the uncertainty is

almost the same as that obtained when there is no control noise

(see Figure 3).

In the simulations presented in this paper, the magnitudes of

the sensor noise and control noise were selected to be similar

to those of a typical indoor-laser and Pioneer robots (except

for the control noise in Figure 3). The effects of the sensor

noise and control noise on the extent of inconsistency are

complex and need further investigation. In general, larger noise

may result in larger errors in the Jacobians but the amount of

“wrong information” contained in (58) or (63) is also less

when the noise are larger.

The inconsistency results in this paper only focus on the

covariance matrices. The inconsistent mean estimate naturally

results from the inconsistent covariance matrix because the

Kalman gain in the subsequent step will be incorrect once the

covariance matrix becomes inconsistent. See for example the

means in Figures 1(c), 2(c), 4(a), 4(c).

V. RELATED WORK AND DISCUSSION

A. Related work

Consistency issue in mapping was recognized as a funda-

mental problem as early as 1986 when estimation-theoretic

methods in robotic mapping became popular [13]. It took

some time before it was realized that the correlations between

landmarks are critical to guarantee convergence for SLAM

[14]. An EKF SLAM algorithm that keeps all the correlations

between robot pose and all the landmarks was described and

some key convergence properties were proved in 2001 by

Dissanayake et al. [2]. Since then, EKF SLAM has been

regarded as a theoretically sound approach and has been used

in many SLAM applications.

However, the convergence proofs given in [2] is only for

linear case and it has been shown recently by a number

of researchers that EKF SLAM can produce inconsistent

(over-confident) estimations [7][8][9][10][11]. The theoretical

analysis and the results presented in this paper further confirm

this claim.

Frese [9] and Bailey et al. [11] pointed out that the robot

orientation uncertainty is the main cause of the inconsistency

in EKF SLAM. Although extensive simulation results are

available to show that the inconsistency does exist, and almost

all of the related papers point out that linearization is the cause

of the inconsistency, the only theoretical explanation is given

by [7]. This work, however, only deals with the case when the

robot is stationary.
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(b) move 500 steps with no control noise – using true Jacobians
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(c) move 500 steps with control noise – inconsistency
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(d) move 500 steps with control noise – using true Jacobians

Fig. 4. The inconsistency of EKF SLAM when the robot moves (see Theorem 4.2): The robot first remains stationary at point A and makes observation
n = 10000 times. Then the robot moves 500 steps to B and keeps observing the same landmark while moving. The thin/solid ellipses are the uncertainty
after the observation at point A, the dashed ellipses are the uncertainties at the intermediate points (every 100 steps), the thick/solid ellipses are the final
uncertainties.

In fact, when the robot is stationary, Julier and Uhlmann

[7] proved that the state estimate of the robot will remain

unchanged if and only if the Jacobians satisfy a particular

equality (equation (9) in Theory 1 in [7]). The results presented

in Theorems 3.2 and 3.5 of this paper show that if all the

Jacobians are evaluated at the true states, then the equation

(9) in [7] always holds. Moreover, it is shown that when the

robot is in motion, there is another fundamental constraint on

the Jacobians (Lemma 3.8) which should be maintained in

order to guarantee consistency.

The common idea used in this paper and [7][8][11] is

that the consistency of SLAM estimate is evaluated based on

the fact “Keep observing new landmarks does not help in

reducing the robot pose uncertainty”. In [7], the inconsistency

is evidenced by the “incorrect update of the mean value of

the robot pose estimate”. The inconsistency is evidenced by

“incorrect reduction of the covariance matrix of the robot pose

estimate” in this paper (by deriving the explicit formula) and

in [8][11] (by extensive Monte-Carlo simulations).

B. Discussion

The assumptions made in deriving the results in this paper

are: (i) the map consists of point landmarks; (ii) observations

consist of ranges and the bearings from the robot to the

landmarks; (iii) data association is given; (iv) the process noise

and the measurement noise are zero-mean Gaussian; (v) the

process noise and sensor errors are all “small” such that EKF

is applicable. Note that there is no “linearity” assumption

as in [2] and [4]. The results in this paper show that some

convergence properties hold if all the Jacobians are evaluated

at the true states, but inconsistent estimates can result when the

Jacobians are evaluated using the estimated states, as the case

in practice. It is also shown that when the robot orientation

uncertainty is large, the extent of inconsistency is significant;

when the robot orientation uncertainty is small, the extent of

inconsistency is insignificant.

It can be expected that similar results hold for other types

of landmarks such as lines, corners, etc. although generating

appropriate proofs will be more complicated. For example, the

inconsistency of EKF SLAM using line features is reported
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in [15]. When the world is observed using range-only or

bearing-only sensors, the linearization error will be much

larger and the resulting inconsistencies are expected to be more

significant. Non-Gaussian control noise and sensor noise may

also introduce errors in real SLAM applications, particularly

when the robot revisits old landmarks many times.

The insights on the fundamental reasons why EKF SLAM

can be inconsistent will help in deriving new variations of

EKF SLAM algorithms that minimize the extent of possible

inconsistency. For example, if a way to enforce the funda-

mental constraints of the Jacobians when performing EKF

SLAM is found, then the inconsistency of state estimate will

be greatly reduced. Since the robot orientation error is one of

the main causes of EKF SLAM inconsistency, for large scale

SLAM problems, the algorithms that use local submaps (e.g.

[16][17][18]), where the robot orientation uncertainties in each

local map are kept very small, have the potential to improve

consistency.

VI. CONCLUSION

In this paper, the convergence properties and inconsis-

tency issues of EKF based solution to the nonlinear two-

dimensional SLAM problem are examined. Explicit formulas

for the covariance matrices are provided for several scenarios.

It is shown that most of the convergence properties proved

by Dissanayake et al. [2] can be generalized to practical

nonlinear SLAM problems. It is also proved that inconsistency

may occur in EKF SLAM and when the robot orientation

uncertainty is large, the estimator inconsistency can result in

highly optimistic confidence limits.

The investigation of the limits/lower bounds of the covari-

ance matrices and the consistency analysis for more com-

plicated scenarios (such as closing loops) is the subject of

ongoing research. The next step of the research is devoted

to develop robust implementation methods of EKF SLAM to

minimize possible inconsistency.

APPENDIX A

PROOFS OF THE RESULTS

Proof of Theorem 3.2: Since the observation noise covari-

ance matrix is RA, the information gain from one observation

is (see (14)):

Ωnew = ∇HT
AR−1

A ∇HA. (64)

For convenience, denote

HA = [e A] . (65)

Thus

∇HA = [−HA A] .

The total information after the n observations is (see the

second equation in (13))

Ωn
Aend

=

[

Ω0 0
0 0

]

+ n

[

−HT
A

AT

]

R−1
A [−HA A]

=

[

Ω0 + nHT
AR−1

A HA −nHT
AR−1

A A
−nAT R−1

A HA nAT R−1
A A

]

.

(66)

By the matrix inversion lemma (equations (95),(97) in

Lemma B.1 in Appendix B)

Pn
Aend

= (Ωn
Aend

)−1

=

[

Ω−1
0 Ω−1

0 HT
AA−T

A−1HAΩ−1
0 Pn

Am

]

=

[

P0 P0H
T
AA−T

A−1HAP0 Pn
Am

]

(67)

where

Pn
Am

= A−1HAP0H
T
AA−T +

A−1RAA−T

n
. (68)

Equation (67) is the same as equation (27) because

A−1HA = [A−1e I] = Ae. (69)

When n → ∞, the second item in (68) goes to 0, so (28)

holds. The proof is completed.

Proof of Corollary 3.3: It is clear that the uncertainty of

the robot does not change in (27) (will always be P0). The

limit P∞

Am
in (29) can be computed further as

P∞

Am
= AeP0A

T
e

=
[

A−1e I
]

[

pφ pT
xyφ

pxyφ Pxy

] [

eT A−T

I

]

= Pxy + A−1epφe
T A−T

+A−1epT
xyφ + pxyφe

T A−T .

When pφ → 0 (then pxyφ → 0 because P0 is positive definite),

the limit P∞

Am
→ Pxy . The proof is completed.

Proof of Lemma 3.8: Since the robot moves from A to B

following the process model, the Jacobians ∇HA and ∇HB

are not independent. By (24),

A−1 =

[

dxA

rA
−dyA

dyA

rA
dxA

]

, A−1e =

[

−dyA

dxA

]

. (70)

Similarly,

B−1e =

[

−dyB

dxB

]

.

Note that the relationship between the positions of point A

and point B is:

xB = xA + vT cos(φA)
yB = yA + vT sin(φA).

(71)

Thus

dxB = xm − xB = dxA − vT cos(φA);
dyB = ym − yB = dyA − vT sin(φA).

So

A−1e − B−1e =

[

−vT sin(φA)
vT cos(φA)

]

.

From (10),

Be∇fA
φXr

= [B−1e I]





1 0
[

−vT sin(φA)
vT cos(φA)

]

I





=

[

B−1e +

[

−vT sin(φA)
vT cos(φA)

]

I

]

= [A−1e I]
= Ae.



12

The proof of the lemma is completed.

Proof of Theorem 3.9: Suppose the robot observed n times

(n → ∞ will be considered later) the landmark m at point

A. Before the robot moves to point B, the covariance matrix

is Pn
Aend

given by (27). By the prediction formula (8), the

covariance matrix when the robot reaches point B is

PBstart
=

[

Prr Prm

Pmr Pn
Am

]

(72)

where

Prr = ∇fA
φXr

P0(∇fA
φXr

)T + ∇fA
γvΣ(∇fA

γv)T

Prm = ∇fA
φXr

P0A
T
e

Pmr = AeP0(∇fA
φXr

)T

Pn
Am

= AeP0A
T
e

+ A−1RAA−T

n
.

(73)

Similar to (65), denote

HB = [e B] . (74)

Thus

∇HB = [−HB B] .

The total information after l observations at point B is

Ωl
Bend

= ΩBstart
+ l

[

−HT
B

BT

]

R−1
B [−HB B] (75)

where ΩBstart
= P−1

Bstart
and RB is the covariance matrix of

the observation noise.

Denote

CB = ∇HB = [−HB B] , DB =
RB

l
. (76)

Using the matrix inversion lemma (see (99) in Appendix

B), the covariance matrix after the observations at point B is

P l
Bend

= (Ωl
Bend

)−1

= Ω−1
Bstart

− Ω−1
Bstart

CT
B(DCPC)−1CBΩ−1

Bstart

= PBstart
− PBstart

CT
B(DCPC)−1CBPBstart

(77)

where

DCPC = DB + CBPBstart
CT

B . (78)

By direct computation,

CBPBstart
= [CP1 CP2] (79)

where

CP1 = ∆ABP0(∇fA
φXr

)T − HB∇fA
γvΣ(∇fA

γv)T

= ∆ABP0(∇fA
φXr

)T − HABΣ(∇fA
γv)T ,

CP2 = ∆ABP0A
T
e

+ 1
n
BA−1RAA−T ,

(80)

with

∆AB = BAe − HB∇fA
φXr

= B(Ae − Be∇fA
φXr

) (81)

and HB defined in (74) and HAB defined in (43).

By Lemma 3.8, ∆AB = 0, so from (79),

CBPBstart
=

[

−HABΣ(∇fA
γv)T 1

n
BA−1RAA−T

]

. (82)

Let n → ∞, then

CBPBstart
=

[

−HABΣ(∇fA
γv)T 0

]

, (83)

and

DB + CBPBstart
CT

B =
1

l
RB + HABΣHT

AB . (84)

So from (77), (78) and let n → ∞,

P l
Bend

= PBstart
−

[

−∇fA
γvΣHT

AB

0

]

·( 1
l
RB + HABΣHT

AB)−1

·
[

−HABΣ(∇fA
γv)T 0

]

= P 0
Bstart

+

[

∆l 0
0 0

]

(85)

where P 0
Bstart

is defined in (40) and

∆l = ∇fA
γvΣ(∇fA

γv)T −∇fA
γvΣHT

AB

·( 1
l
RB + HABΣHT

AB)−1HABΣ(∇fA
γv)T

= ∇fA
γv[Σ − ΣHT

AB(1
l
RB + HABΣHT

AB)−1

·HABΣ](∇fA
γv)T .

(86)

By matrix inversion lemma (equation (99) in Appendix B),

Σ − ΣHT
AB( 1

l
RB + HABΣHT

AB)−1HABΣ
= [Σ−1 + lHT

ABR−1
B HAB ]−1 ≥ 0.

(87)

Thus

∆l = ∇fA
γvΣl

B(∇fA
γv)T (88)

with Σl
B defined in (42). By (85), (39) holds.

It is easy to see from (42) that if the matrix HT
ABR−1

B HAB

is invertible, then Σl
B → 0 and hence P l

B → 0 as l → ∞. The

proof is completed.

Proof of Theorem 4.1: The initial robot information is Ω0

in (22). The final information after the n observations is

Ω1 =

[

Ω0 0
0 0

]

+
∑n

j=1 ∇HT
Ãj

R−1
A ∇HÃj

=





iφ bT 0
b Ωxy 0
0 0 0





+
∑n

j=1





−eT

−ÃT
j

ÃT
j



R−1
A

[

−e − Ãj Ãj

]

=

[

iφ1 bT
1

b1 Ωxy1

]

where

iφ1 = iφ + neT R−1
A e,

b1 =

[

b + (
∑n

j=1 ÃT
j )R−1

A e

−(
∑n

j=1 ÃT
j )R−1

A e

]

,

Ωxy1 =

[

Ωxy + ΩΣj
−ΩΣj

−ΩΣj
ΩΣj

]

(89)

with

ΩΣj
=

n
∑

j=1

ÃT
j R−1

A Ãj . (90)

Since Ωxy and ΩΣj
are all positive definite matrices, it can

be proved that

Ω−1
xy1 =

[

Ω−1
xy Ω−1

xy

Ω−1
xy Ω−1

xy + Ω−1
Σj

]
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and hence

bT
1 Ω−1

xy1b1 = bT Ω−1
xy b + eT R−1

A (
∑n

j=1 Ãj)

·Ω−1
Σj

(
∑n

j=1 ÃT
j )R−1

A e.

Now apply the matrix inversion lemma to Ω1,

P1 = Ω−1
1

=

[

(iφ1 − bT
1 Ω−1

xy1b1)
−1 ∗

∗ ∗

]

=

[

(iφ − bT Ω−1
xy b + w(n,A))−1 ∗

∗ ∗

]

(91)

where ∗ stands for a matrix that is not cared about, and

w(n,A) is defined in (60).

By the definition (60),

w(n,A) = neT We (92)

where

W = R−1
A − R−1

A (
∑n

j=1 Ãj)(n
∑n

j=1 ÃT
j R−1

A Ãj)
−1

·(
∑n

j=1 ÃT
j )R−1

A .

Using the inequality

n

n
∑

j=1

ÃT
j R−1

A Ãj ≥ (

n
∑

j=1

ÃT
j )R−1

A (

n
∑

j=1

Ãj), (93)

it can be shown that W ≥ 0 and thus

w(n,A) ≥ 0.

So in (91),

(iφ − bT Ω−1
xy b + w(n,A))−1 ≤ (iφ − bT Ω−1

xy b)−1 = pφ.

This means that the updated robot orientation uncertainty

cannot be greater than the initial robot orientation uncertainty.

Furthermore, if matrices Ãj , 1 ≤ j ≤ n are all the same,

then (93) becomes an equality and

w(n,A) = 0

and hence

(iφ − bT Ω−1
xy b + w(n,A))−1 = pφ.

However, if matrices Ãj , 1 ≤ j ≤ n are different, then

w(n,A) > 0

and

(iφ − bT Ω−1
xy b + w(n,A))−1 < pφ. (94)

It is obvious that the robot orientation uncertainty cannot

be reduced by observing a single new landmark. So this is

wrong (inconsistent). In general, if matrices Ãj , 1 ≤ j ≤ n
are different, then w(n,A) → ∞ when n → ∞, thus

(iφ − bT Ω−1
xy b + w(n,A))−1 → 0.

This means that the uncertainty of the robot orientation will

decrease to 0 after many observations. The proof is completed.

Proof of Theorem 4.2: The proof is only given for the

simple case when there is no control noise, i.e. Σ = 0. In this

case, if ∆AB = 0, then CP1 = 0 in (79); if ∆AB 6= 0, then

CP1 = ∆ABP0(∇fA
φXr

)T 6= 0. Now by (77) and (79), the

upper left submatrix of P l
Bend

is

∇fA
φXr

P0(∇fA
φXr

)T − CT
P1(DCPC)−1CP1

≤ ∇fA
φXr

P0(∇fA
φXr

)T .

This violates the lower bound proved in Theorem 3.9.

APPENDIX B

MATRIX INVERSION LEMMA

The following matrix inversion lemma is used frequently in

the proofs of the results in this paper. It can be found in many

textbooks about matrices or Kalman Filter (e.g. [19]).

Lemma B.1: [19] Suppose that the partitioned matrix

M =

[

A B
C D

]

is invertible and that the inverse is conformably partitioned as

M−1 =

[

X Y
U V

]

, (95)

where A,D, X and V are square matrices. If A is invertible,

then

X = A−1 + A−1B(D − CA−1B)−1CA−1,
Y = −A−1B(D − CA−1B)−1,
U = −(D − CA−1B)−1CA−1,
V = (D − CA−1B)−1.

(96)

If D is invertible, then

X = (A − BD−1C)−1,
Y = −(A − BD−1C)−1BD−1,
U = −D−1C(A − BD−1C)−1,
V = D−1 + D−1C(A − BD−1C)−1BD−1.

(97)

Thus if both A and D are invertible,

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.
(98)

When B = CT , equation (98) can be written as (substituting

D by −D)

(A+CT D−1C)−1 = A−1−A−1CT (D+CA−1CT )−1CA−1.
(99)
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