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Convergence and Divergence of Fejér Means of Fourier
Series on One and Two-Dimensional Walsh and Vilenkin

Groups

György Gát

Abstract: It is a highly celebrated issue in dyadic harmonic analysis the pointwise
convergence of the Fejér (or(C,1)) means of functions on the Walsh and Vilenkin
groups both in the point of view of one and two dimensional cases. We give a résumé
of the very recent developments concerning this matter, propose unsolved problems
and throw a glance at the investigation of Vilenkin-like systems too.
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1 Introduction

FIRST, we give a brief introduction to the theory of Vilenkin systems. These
orthonormal systems were introduced by N. Ja. Vilenkin in 1947 (see e.g.

[1, 2]) as follows.
Let m := (mk,k ∈ N) (N := {0,1, . . .},P := N \ {0}) be a sequence of inte-

gers each of them not less than 2. LetZmk denote the discrete cyclic group of
order mk. That is,Zmk can be represented by the set{0,1, ...,mk − 1}, with the
group operation addition modmk. Since the group is discrete, then every subset
is open. The normalized Haar measure onZmk, µk is defined byµk({ j}) := 1/mk

( j ∈ {0,1, ...,mk −1}). Let

Gm :=
∞
×

k=0
Zmk.
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Then everyx ∈ Gm can be represented by a sequencex = (xi , i ∈ N) , where
xi ∈ Zmi (i ∈ N). The group operation onGm (denoted by+) is the coordinate-
wise addition (the inverse operation is denoted by−), the measure (denoted byµ),
which is the normalized Haar measure, and the topology are the product measure
and topology. Consequently,Gm is a compact Abelian group. If supn∈N mn < ∞,
then we callGm a bounded Vilenkin group. If the generating sequencem is not
bounded, thenGm is said to be an unbounded Vilenkin group. Ifmj = 2 for each
j, then we call the Vilenkin groupGm as the Walsh group and denote byG2. A

Vilenkin group is metrizable in the following way:

d(x,y) :=
∞

∑
i=0

|xi −yi |
Mi+1

(x,y∈ Gm).

The topology induced by this metric, the product topology, and the topology given
by intervals defined below, are the same. A base for the neighborhoods ofGm can
be given by the intervals:

I0(x) := Gm, In(x) := {y = (yi , i ∈ N) ∈ Gm : yi = xi for i < n}

for x∈ Gm,n∈ P. Let 0= (0, i ∈ N) ∈ Gm denote the nullelement ofGm.
Furthermore, letLp(Gm)(1 ≤ p≤ ∞) denote the usual Lebesgue spaces (‖.‖p

the corresponding norms) onGm, An theσ -algebra generated by the setsIn(x)(x∈
Gm), andEn the conditional expectation operator with respect toAn (n∈ N) ( f ∈
L1).

Let a be a nonnegative real. We say that the functionf ∈ L1(Gm) belongs to
the logarithm spaceL(log+ L)a(Gm) if the integral

‖ f‖L(log+ L)a :=
∫

Gm

| f (x)|
(

log+(| f (x)|)
)a

dµ(x)

is finite.
Let X andY be eitherL(log+ L)a(Gm) or Lp(Gm) for some 1≤ p ≤ ∞, and

a≥ 0 with norms‖.‖X and‖.‖Y. We say that operatorT is of type(X,Y) if there
exist an absolute constantC > 0 for which ‖T f‖Y ≤ C‖ f‖X for all f ∈ X. T is
said to be of weak type(L1,L1) if there exist an absolute constantC > 0 for which
µ(T f > λ ) ≤C‖ f‖1/λ for all λ > 0 and f ∈ L1(Gm).

Let M0 := 1,Mn+1 := mnMn(n∈ N) be the so-called generalized powers. Then
each natural numbern can be uniquely expressed as

n =
∞

∑
i=0

niMi (ni ∈ {0,1, ...,mi −1}, i ∈ N),
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where only a finite number ofni ’s differ from zero. The generalized Rademacher
functions are defined as

rn(x) := exp(2πı
xn

mn
) (x∈ Gm,n∈ N, ı :=

√
−1).

It is known that∑mn−1
i=0 r i

n(x) =

{

0 , if xn 6= 0,

mn , if xn = 0
(x∈Gm, n∈ N). Thenth Vilenkin

function is

ψn :=
∞

∏
j=0

r
nj
j (n∈ N).

The systemψ := (ψn : n∈ N) is called a Vilenkin system. Eachψn is a character
of Gm, and all the characters ofGm are of this form. Define them -adic addition as

k⊕n :=
∞

∑
j=0

(k j +n j(modmj))M j (k,n∈ N).

Then ,ψk⊕n = ψkψn, ψn(x+ y) = ψn(x)ψn(y), ψn(−x) = ψ̄n(x), |ψn| = 1 (k,n ∈
N,x,y∈ Gm).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirich-
let kernels, the Fejér means, and the Fejér kernels with respect to the Vilenkin sys-
temψ as follows

f̂ (n) :=
∫

Gm

f ψ̄n,

Sn f :=
n−1

∑
k=0

f̂ (k)ψk,

Dn(y,x) = Dn(y−x) :=
n−1

∑
k=0

ψk(y)ψ̄k(x),

σn f :=
1
n

n−1

∑
k=0

Sk f ,

Kn(y,x) = Kn(y−x) :=
1
n

n−1

∑
k=0

Dk(y−x),

(n∈ P,y,x∈ Gm, f̂ (0) :=
∫

Gm

f , S0 f = D0 = K0 = 0, f ∈ L1(Gm)).

It is well-known that

Sn f (y) =
∫

Gm

f (x)Dn(y−x)dµ(x),

σn f (y) =
∫

Gm

f (x)Kn(y−x)dµ(x) (n∈ P, y∈ Gm, f ∈ L1(Gm)).
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It is also well-known that

DMn(x) =

{

Mn if x∈ In(0)

0 if x /∈ In(0)
,

SMn f (x) = Mn

∫

In(x)
f = En f (x) ( f ∈ L1(Gm),n∈ N).

It is known that the operator which maps a functionf to the maximal function
f ∗ := sup|SMn f | is of weak type(L1,L1), and of type(Lp,Lp) for all 1 < p ≤ ∞
(see e.g. [3]). Next, we introduce some notation with respect to the theory of two-
dimensional Vilenkin systems. Let ˜m be a sequence likem. The relation between
the sequence(m̃n) and(M̃n) is the same as between sequence(mn) and(Mn). The
groupGm×Gm̃ is called a two-dimensional Vilenkin group. The normalizedHaar
measure is denoted byµ , just as in the one-dimensional case. It will not cause any
misunderstood.

The two-dimensional Fourier coefficients, the rectangularpartial sums of the
Fourier series, the Dirichlet kernels, the Fejér means, and the Fejér kernels with
respect to the two-dimensional Vilenkin system are defined as follows:

f̂ (n1,n2) :=
∫

Gm×Gm̃

f (x1,x2)ψ̄n1(x
1)ψ̄n2(x

2)dµ(x1,x2),

Sn1,n2 f (y1,y2) :=
n1−1

∑
k1=0

n2−1

∑
k2=0

f̂ (k1,k2)ψk1(y
1)ψk2(y

2),

Dn1,n2(y,x) = Dn1(y
1−x1)Dn2(y

2−x2)

:=
n1−1

∑
k1=0

n2−1

∑
k2=0

ψk1(y
1)ψk2(y

2)ψ̄k1(x
1)ψ̄k2(x

2),

σn1,n2 f :=
1

n1n2

n1−1

∑
k1=0

n2−1

∑
k2=0

Sk1,k2 f ,

Kn1,n2(y,x) = Kn1,n2(y−x) :=
1

n1n2

n1−1

∑
k1=0

n2−1

∑
k2=0

Dk1,k2(y−x),

(y = (y1,y2),x = (x1,x2) ∈ Gm×Gm̃).

It is also well-known that

σn1,n2 f (y) =

∫

Gm×Gm̃

f (x)Kn1,n2(y−x)dµ(x),

SMn1 ,M̃n2
f (x) = Mn1M̃n2

∫

In1(x1)×In2(x2)
f = (E1

n1
⊗E2

n2
) f (x).
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The one and two-dimensional(C,α) means are defined as follows. Denote byKα
n

the kernel of the summability method(C,α), and call it the(C,α) kernel, or the
Cesàro kernel forα ∈ R:

Kα
n+1 =

1
Aα

n

n

∑
ν=0

Aα−1
n−ν Dν , Aα

k =
(α +1)(α +2) · · · (α +k)

k!
(α 6= −k).

It is well-known [4, Ch. 3] thatAα
n = ∑n

k=0Aα−1
n−k , Aα

n −Aα
n−1 = Aα−1

n , Aα
n ∼ nα .

The(C,α) Cesàro means of the integrable functionf is

σ α
n+1 f (y) :=

1
Aα

n

n

∑
k=0

Aα−1
n−k Sk f =

∫

Gm

f (x)Kα
n (y−x)dµ(x).

The two-dimensional version is

σ α
n1+1,n2+1 f (y) :=

1
Aα

n1

1
Aα

n2

n1

∑
k1=0

n2

∑
k2=0

Aα−1
n1−k1

Aα−1
n2−k2

Sk1,k2 f .

2 Some Known Results and Problems

One of the most celebrated issue in dyadic harmonic analysisis the pointwise con-
vergence of the Fejér (or(C,1)) means of functions on one and two-dimensional
unbounded Vilenkin groups.

Fine [5] proved every Walsh-Fourier series (in the Walsh case mj = 2 for all
j ∈ N) is a.e. (C,α) summable forα > 0. His argument is an adaptation of the
older trigonometric analogue due to Marcinkiewicz [6]. Schipp [7] gave a simpler
proof for the caseα = 1, i.e. σn f → f a.e. (f ∈ L1(Gm)). Define the maximal
operator of the Fejér means of the integrable functionf asσ ∗ f := supn∈P |σn f |.
Schipp proved [7] thatσ ∗ is of weak type(L1,L1). Thatσ ∗ is bounded fromH1

to L1 was discovered by Fujii [8]. The Hardy spaceH1 has several definitons. We
give the most common one as follows. We say that a functionf ∈ L1 belongs to the
Hardy spaceH1 if its maximal function f ∗ := sup|SMn f | belongs to the Lebesgue
spaceL1.

The theorem of Schipp are generalized to thep-series fields (mj = p for all
j ∈ N) by Taibleson [9], and later to bounded Vilenkin systems by Pál and Simon
[10].

Now, what about the Vilenkin groups with unbounded generating sequences?
The methods known in the trigonometric or in the Walsh, bounded Vilenkin case are
not powerful enough. One of the main problems is that the proofs on the bounded
Vilenkin groups (or in the trigonometric case) heavily use the fact that theL1 norm
of the Fejér kernels are uniformly bounded. This is not the case if the groupGm
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is an unbounded one [11]. From this it follows that the original theorem of Fejér
does not hold on unbounded Vilenkin groups. Namely, Price proved [11] that for
an arbitrary sequencem (supn mn = ∞) anda∈ Gm there exists a functionf contin-
uous onGm andσn f (a) does not converge tof (a). Moreover, he proved [11] that
if logmn

Mn
→ ∞ , then there exists a functionf continuous onGm whose Fourier series

are not(C,1) summable on a setS⊂ Gm which is non-denumerable. On the other
hand, Nurpeisov gave [12] a necessary and sufficient condition of the uniform con-
vergence of the Fejér meansσMn f of continuous functions on unbounded Vilenkin
groups. Namely, define the uniform modulus of continuity as

ωn( f ) := sup
h∈In(0),x∈Gm

| f (x+h)− f (x)|.

Nurpeisov proved [12]: A necessary and sufficient conditionthat the meansσMn f
of the Fourier series of the continuous functionf converge uniformly tof on an
unbounded Vilenkin group for all such anf is that

ωn−1( f ) log(mn) = o(1).

Since the uniform modulus of continuity can be any nonincreasing real sequence
which converges to zero (for the proof see [13, 14]), then as aconsequence of this
it is possible to give a sequencem increasing enough fast, and a function even in
the Lipschitz class Lip(1), such that theMnth Fejér means do not converge to the
function uniformly.

So, it seems that it is impossible to give a (Hölder) function class such that the
uniform convergence of the Fejér means would hold for all functions in this class
if there is no condition on sequencemat all.

On the other hand, mean convergence of the full partial sums for Lp, p > 1, is
known for the unbounded case. For the proof see [15]. This trivially implies the
norm convergenceσn f → f for all f ∈ Lp, where 1< p < ∞.

Concerning the a.e. convergence we can say a bit more. Namely, in 1999 the
author [16] proved that iff ∈ Lp(Gm), wherep > 1, thenσn f → f almost every-
where. This was the very first “positive” result with respectto the a.e. convergence
of the Fejér means of functions on unbounded Vilenkin groups. We could say that
it is a trivial consequence of the a.e. convergence of the partial sums of the Fourier
series of functions inf ∈ Lp(Gm), where p > 1. The ,,only problem” with this
that the a.e. convergence of the partial sums is the greatestopen problem in the
Vilenkin-Fourier analysis in the unbounded case. This is unknown even for the
Lebesgue spaceL2(Gm).

In 2001 Simon proved [17] the following theorem with respectto the Fejér
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means ofL1 functions. A sequencem is said to be strong quasi-bounded if

1
Mn+1

n−1

∑
j=0

M j+1 < C logmn.

Then every boundedm is quasi-bounded, and there are also some unbounded ones.
Let mbe strong quasi-bounded. Then for allf ∈ L1(Gm)

σMn f (x)− f (x) = o(max(logm0, . . . , logmn−1)).

Later, in 2003, the author of this paper improved [18] this result, and gave a partial
answer forL1 case. He discussed this partial sequence of the sequence of the Fejér
means. Namely, iff ∈ L1(Gm), then he proved (see [18]) thatσMn f → f almost
everywhere, wherem is any sequence. This is also interesting in the point of view
that if m is any unbounded sequence then there exists an integrable function f such
thatσMn f does not converge tof in theL1 norm [11].

If there exists a constantC andL ∈ P such that for alli, j ∈ P we have

min(mi ,mi+ j)

(mi+1 · · · · ·mi+ j−1)L ≤C,

(the empty product is defined to be 1, and the constantC may depend on the se-
quencem - of course), then we call the Vilenkin groupGm a rarely unbounded
Vilenkin group. Every bounded Vilenkin group is a rarely unbounded Vilenkin
group. Unfortunately, not all unbounded ones are rarely unbounded, since for in-
stance the rarely unboundedness implies the inequality min(mi,mi+1)≤C. So, e.g.
if (mn) tends to plus infinity, thenGm is not rarely unbounded. On the other hand,
there are many unbounded Vilenkin groups, which are rarely unbounded ones.

In 2007 we proved [19] the following two theorems LetGm be a rarely un-
bounded Vilenkin group. Then the operatorσ ∗ is of weak type(L1,L1). A straight-
forward consequence of this theorem is: LetGm be a rarely unbounded Vilenkin
group, andf ∈ L1(Gm). Then we have the a.e. relationσn f → f .

In my opinion, it is highly likely that the methods of the papers [16, 18, 19]
can be applied and improved in order to prove the a.e. relation σn f → f for all
f ∈ L log+ L andm - at least. Anyway, it is not an easy task...

Besides, I think that the original Fejér-Lebesgue theoremholds on all (bounded
or not bounded - not only rarely unbounded) Vilenkin groups.However, to prove it
seems to be much more difficult.

What can be said in the case of two-dimensional functions? This is “another
story”. For double trigonometric Fourier series Marcinkiewicz and Zygmund [20]
proved thatσm,n f → f a.e. asm,n→ ∞ provided the integral lattice points(m,n)
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remain in some positive cone, that is providedβ−1 ≤ m/n ≤ β for some fixed
parameterβ ≥ 1. It is known that the classical Fejér means are dominated by
decreasing functions whose integrals are bounded but this fails to hold for the one-
dimensional Walsh-Fejér kernels. This growth differenceis exacerbated in higher
dimensions so that the trigonometric techniques are not powerful enough for the
Walsh case.

In 1992 Móricz, Schipp and Wade [21] proved thatσ2n1,2n2 f → f a.e. for each
f ∈ L1(G2

2), whenn1,n2 → ∞, |n1−n2| ≤α for some fixedα . Later, Gát and Weisz
proved (independently, in the same year) this for the whole sequence, that is, the
theorem of Marcinkiewicz and Zygmund with respect to the Walsh-Paley system
(see [22] and [23]). For the bounded Vilenkin case see the paper of Weisz [24],
and the paper of Blahota and the author [25]. In the paper [25]we generalize this
theorem with respect to two-dimensional bounded Vilenkin-like systems.

If we do not provide a “cone restriction” for the indices inσn,k f that is, we
discuss the convergence of this two-dimensional Fejér means in the Pringsheim
sense, then the situation changes. In 1992 Móricz, Schipp and Wade [21] proved
with respect to the two-parameter Walsh-Paley system thatσn,k f → f a.e. for each
f ∈ L log+ L, when min{n,k}→ ∞. Later, in 2002 Weisz generalized [26] this with
respect to two-dimensional bounded Vilenkin systems.

In 2000 Gát proved [27] that the theorem of Móricz, Schipp and Wade above
can not be improved. Namely, letδ : [0,+∞) → [0,+∞) be a measurable function
with property limt→∞ δ (t) = 0. Gát proved the existence of a functionf ∈ L1 such
that f ∈ L log+ Lδ (L), andσn,k f does not converge tof a.e. as min{n,k} → ∞.
This result with respect to the bounded two-dimensional Vilenkin case is also due
to the author [28].

It is an interesting question that is it possible to weaken somehow the ,,cone
restriction” in a way that a.e. convergence remains for eachfunction inL1. Maybe
for some ,,interim space” if not for spaceL1. The answer is negative both in the
point of view of space and in the point of view of restriction.Namely, in 2001 Gát
proved [29] the theorem below:

Let δ : [0,+∞) → [0,+∞) measurable,δ (+∞) = 0 and letw : N → [1,+∞) be
an arbitrary increasing function such that

sup
x∈N

w(x) = +∞.

Moreover,∨n := max{n1,n2}, ∧n := min{n1,n2} . The, there exists a functionf in
the spaceL log+ Lδ (L) such that

σn1,n2 f 6→ f

a.e. as∧n→ ∞ such that the restriction condition∨n
∧n ≤w(∧n) is also fulfilled. That

is there is no ,,interim” space. Either we have spaceL log+ L and ,,no restriction at
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all”, or the ,,cone restriction” and then the maximal convergence space isL1. As a
consequence of this we have that

σn1,n2 f → f

a.e. for eachf ∈ L1(G2
2) as min{n1,n2} → ∞, provided that

∨n
∧n

≤ w(∧n)

if and only if
supw(x) < ∞.

What can be said in the two-dimensional case with respect to unbounded
Vilenkin systems? In 1997 Wade proved [30] the following. Let βk, j :=
max

{

m0, . . . ,mk−1,m̃0, . . . ,m̃j−1
}

. The sequencem is called δ -quasi bounded,
0≤ δ < 1, if the sums

n−1

∑
j=0

mj/(mj+1 . . .mn)
δ

are (uniformly) bounded. Let the generating sequencesm,m̃ beδ -quasi bounded.
Then for all f ∈ L1(Gm×Gm̃) we have

σMn,M̃k
f (x)− f (x) = o(βn,kβ 2r

n+r,k+r),

asn,k→∞, provided that|n−k|< α , whereα , r ∈N are some constants for almost
everyx∈ Gm×Gm̃.

On the other hand, there was nothing concerning the pointwise convergence
before the following manuscript of the author.
In [31] we proved the following theorem. Letf ∈ (L log+ L)(Gm×Gm̃). Then we
haveσMn1,M̃n2

f → f almost everywhere, where min{n1,n2} → ∞ provided that the
distance of the indices is bounded, that is,|n1−n2|< α for some fixed constantα >
0. Here it is necessary to emphasize that in this paperm,m̃ can be any sequences.

Another question. What is the situation with the(C,α) summation of 2-
dimensional Walsh-Fourier series? What is this?

σ α
n1+1,n2+1 f =

1
Aα

n1
Aα

n2

n1

∑
k1=0

n2

∑
k2=0

Aα−1
n1−k1

Aα−1
n2−k2

Sk1,k2 f .

In 1999 Weisz proved [32], that

σ α
n1,n2

f → f

a.e. as min{n1,n2} → ∞ for each f ∈ L log+ L(G2
2) andα > 0.
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The question is that is it possible to give a ,,larger” convergence space for the
(C,α) summability method (α > 0)? Is there such anα? If α ≤ 1, then not.
Because for the(C,1) method one can not give such a ,,larger” space.

Problem.

• What is the situation with the(C,α) methods, forα > 1? We mean the Walsh
and bounded Vilenkin case.

• The is no divergence result with respect to two-dimensionalunbounded (any
of the two generating sequence is unbounded) Vilenkin groups at all. May
be this is surprising, since it is very usual that to construct divergence exam-
ples on unbounded Vilenkin groups is easier. But, I think notin this issue.
The construction of our example of divergence in [28] does not work in this
situation.

What can be said in the case of the Walsh-Kaczmarz system? What is this
Walsh-Kaczmarz system? This is nothing else, but a rearrangement of the Walsh-
Paley system. Introduce it as follows.

If n> 0, then let|n| := max( j ∈N : n j 6= 0). Then-th Walsh-Kaczmarz function
is

κn(x) := r|n|(x)(−1)∑|n|−1
k=0 nkx|n|−1−k,

as ifn > 0, κ0(x) := 1,x∈ G2. Then the elements of the a Walsh-Kaczmarz system
and the Walsh-Paley system is a dyadic blockwise rearrangements of each other.
This means as follows:

{κn : 2k ≤ n < 2k+1} = {ωn : 2k ≤ n < 2k+1}.

In 1998 Gát proved [33] the Fejér-Lebesgue theorem for theWalsh-Kaczmarz sys-
tem. That is,σn f → f a.e. for eachf ∈ L1(G2). In 2004 Simon [34] generalized the
result of Gát above for(C,α) summation methods. The Fejér-Lebesgue theorem
with respect to the character system of thep-series fields (Vilenkin groups with a
constantm) in the Kaczmarz rearrangement is verified by the author and Nagy [35].

What is the situation with the Cesàro summation of 2-dimensional Walsh-
Kaczmarz series? In 2001 Simon proved [36], thatσn1,n2 f → f a.e. as if
min{n1,n2} → ∞ (in the Pringsheim sense) for everyf ∈ L log+ L(G2

2). He also
proved the restricted ,,cone” convergence for functions belonging toL1(G2

2). With
respect to this I propose the following unsolved problems.

Problem.

• What is the maximal convergence space of the two-dimensional (C,1)
summability method taken in the Pringsheim sense? Is itL log+ L(G2

2) again,
as in the case of the two-dimensional Walsh-Paley system?
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• Does not exist an ,,interim” space like in the Walsh-Paley case?

• What can be said in the case of(C,α) summation?

• The whole 2-dimensional story with respect to the charactersystem of the
p-series fields in the Kaczmarz rearrangement is open.

It seems also to be interesting to discuss the almost everywhere convergence
of Marcinkiewicz means1n ∑n−1

j=0 Sj, j f of integrable functions on two-dimensional
unbounded Vilenkin groups. Although, this mean is defined for two-variable func-
tions, in the view of almost everywhere convergence there are similarities with
the one-dimensional case. It seems in a certain point of viewthat the one dimen-
sional Fejér means. For the trigonometric, Walsh-Paley, and bounded Vilenkin
case see the papers of Zhizhiasvili, Weisz and Gát [37, 38, 39]. With respect to
the Walsh case see also the papers of Goginava [40, 41]. The a.e. convergence of
Marczinkiewicz means of two-dimensional integrable functions with respect to the
two-dimensional Walsh-Kaczmarz system is due to Nagy [42].Some of the results
summarized in this paper (including the proofs) can also be found in [43]. For the
time being there is no result known with respect to this issueon unbounded case. I
think it possible to discuss the a.e. convergence

1
Mn

Mn−1

∑
j=0

Sj, j f

on unbounded Vilenkin groups for integrable functionsf . I think it can be done
with the methods written in the paper [18]. At this point we wrote about the
Vilenkin systems and one of its special cases, the Walsh-Paley system. Now, we
are going to have a look at a class of generalization of the Vilenkin systems.

3 Vilenkin-like Systems

DenoteGmk a set of cardinalitymk. Suppose that each (coordinate) set has the
discrete topology and measureµk which maps every singleton ofGmk to 1

mk

(µk(Gmk) = 1), k ∈ N. Let Gm be the compact set formed by the complete di-
rect product ofGmk with the product of the topologies and measures(µ). Thus
eachx∈ Gm is a sequencex := (x0,x1, ...), wherexk ∈ Gmk, k ∈ N. Gm is called a
Vilenkin space. That is, in this situation we do not have any algebraical operation
of the setGm. This is the main difference between a Vilenkin group and a Vilenkin
space.

The complex valued functions which we call the generalized Rademacher func-
tionsrn

k : Gm → C have these properties:
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i. rn
k is Ak+1 measurable (i.e.rn

k(x) depends only onx0, ...,xk (x∈Gm)), r0
k = 1

for all k,n∈ N.

ii . If Mk is a divisor ofn andl and if n(k+1) = l (k+1) (k, l ,n∈ N), then

Ek(r
n
k r̄ l

k) =

{

1 if nk = lk,

0 if nk 6= lk

(z̄ is the complex conjugate ofz).

iii . If Mk+1 is a divisor ofn (that is,n = nk+1Mk+1 + nk+2Mk+2 + ...+ n|n|M|n|),
then

mk−1

∑
j=0

|r jMk+n
k (x)|2 = mk

for all x∈ Gm.

iv. There exists aδ > 1 for which‖rn
k‖∞ ≤

√

mk/δ .

Define the Vilenkin-like systemψ = (ψn : n∈ N) as follows.

ψn :=
∞

∏
k=0

rn(k)

k , n∈ N.

We would like to mention some examples for Vilenkin-like systems.

Example A, the Vilenkin and the Walsh system
Let Gmk := Zmk be themk-th (2≤ mk ∈ N) discrete cyclic group(k∈ N). In this

case letrn
k(x) := (exp(2πıxk/mk))

nk, whereı :=
√
−1,x∈ Gm.

Example B, the group ofm-adic integers
Let Gmk := {0,1, ...,mk −1} for all k ∈ N. Define onGm the following (com-

mutative) addition: Letx,y ∈ Gm. Thenx+ y = z∈ Gm is defined in a recursive
way. x0 +y0 = t0m0+z0, where (of course)z0 ∈ {0,1, ...,m0−1} andt0 ∈ N. Sup-
pose thatz0, ...,zk and t0, ..., tk have been defined. Then writexk+1 + yk+1 + tk =
tk+1mk+1+zk+1, wherezk+1 ∈ {0,1, ...,mk+1 −1} andtk+1 ∈ N. ThenGm is called
the group ofm-adic integers (ifmk = 2 for all k ∈ N, then 2-adic integers). In this
case let

rn
k(x) :=

(

exp

(

2πı
( xk

mk
+

xk−1

mkmk−1
+ ...+

x0

mkmk−1...m0

)

))nk

.

Let ψn := ∏∞
k=0 rn(k)

k = ∏∞
k=0 rnkMk

k . Then the systemψ := (ψn : n ∈ N) is the
character system of the group ofm-adic (if mk = 2 for eachk ∈ N then 2-adic)
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integers. Since|rn
k|= 1, i, iii andiv are trivial. ii is also easy to see and well-known

[44, p. 91]. For more on the group ofm-adic (if mk = 2 for eachk∈ N then 2-adic)
integers see e.g. [45, 46, 9].

Example C, noncommutative Vilenkin groups
Let σ be an equivalence class of continuous irreducible unitary representations

of a compact groupG. Denote byΣ the set of all suchσ . Σ is called the dual object
of G. The dimension of a representationU (σ), σ ∈ Σ , is denoted bydσ and let

u(σ)
i, j (x) := 〈U (σ)

x ξi ,ξ j〉 i, j ∈ {1, ...,dσ }

be the coordinate functions forU (σ), whereξ1, ...,ξdσ is an orthonormal basis in the
representation space ofU (σ). (For the notations see [45, vol 2, p. 3].) According
to the Weyl-Peter’s theorem (see e.g. [45, vol 2, p. 24]), thesystem of functions√

dσ u(σ)
i, j , σ ∈ Σ , i, j ∈ {1, ...,dσ } is an orthonormal basis forL2(G). If G is a finite

group, thenΣ is finite too. IfΣ := {σ1, ...,σs}, then|G| = d2
σ1

+ ...+d2
σs

.

Let Gmk be a finite group with ordermk, k∈ N. Let {rsMk
k : 0≤ s< mk} be the

set of all normalized coordinate functions of the groupGmk and suppose thatr0
k ≡ 1.

Thus for every 0≤ j < mk there exist aσ ∈ Σk, i, j ∈ {1, ...,dσ } such that

rsMk
k =

√

dσ u(σ)
i, j (x) (x∈ Gmk),

rn
k := rnkMk

k . Let ψ be the product system ofr j
k, namely

ψn(x) :=
∞

∏
k=0

rn(k)

k (xk) (x∈ Gm),

where n is of the form n = ∑∞
k=0 nkMk and x = (x0,x1, ...). We should remark

that if Gmk is the discrete cyclic group of ordermk,k ∈ N then Gm coincides
with the Vilenkin group andψ with respect to the corresponding order, is the
Vilenkin system [47, 44, 1, 2]. In [47] it is proved that the system ψ satisfies
the propertiesi, ii , iii . iv is satisfied because:mk = |Gmk|= d2

σk,1
+ ...+d2

σk,sk
, where

{σk,i : i = 1, ...,ks} = Σk (the dual object ofGmk) anddσk,i is the dimension ofσk,i .

‖r j
k‖∞ ≤

√
d , whered is one ofdσk,i and sinced is a divisor ofmk [45, vol 2 p. 44],

[47] and since at least one ofdσk,i is 1, thend <
√

mk. From this we have that there
exists aδ > 1 (may depend on the sequencem) such thativ holds for alln,k ∈ N.
For more on this system and noncommutative Vilenkin groups see [47, 48].

Example D, a system in the field of number theory
Let

rn
k(x) := exp

(

2πı
∞

∑
j=k

n j

M j+1

k

∑
i=0

xiMi

)
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for k,n∈ N andx∈ Gm. Let ψn := ∏∞
k=0 rn(k)

k , n∈ N.

Then,ψ := (ψn : n∈ N) is a Vilenkin-like system (introduced in [49]) which is
a useful tool in the approximation theory of limit periodic,almost even arithmetical
functions [49].i is trivial and since|rn

k|= 1 , then so areiii andiv. It is easy to prove
ii (see [49]). This system (on Vilenkin groups) was a new tool inorder to investi-
gate limit periodic arithmetical functions. For the definition of these arithmetical
functions see also the book of Mauclaire [50, p. 25].

Example E, the UDMD product system

The notion of the UDMD product system was introduced by F. Schipp [51] on
the Walsh-Paley group. Let functionsαk : Gm → C satisfy: |αk| = 1 andαk is Ak

measurable. Letrn
k(x) := (−1)xknkαk(x). i is trivial and since|rn

k| = 1 , so areiii

and iv. The proof ofii is simple. Letψn := ∏∞
k=0 rn(k)

k = ∏∞
k=0 rnkMk

k (n ∈ N). The
systemψ := (ψn : n∈ N) is called an UDMD product system. For more on UDMD
product systems see [51, 46].

Example F, The Vilenkin-like diaphony

The special system called Vilenkin-like diaphony is definedby Grozdanov [52]
on the group ofm-adic integers.

We mention some results and problems with respect to Vilenkin-like systems
and Cèsaro summability. The Fejér-Lebesgue theorem for the group of 2-adic inte-
gers was proved by Gát [53] and for the general system also byGát [54]. The only
result with respect to the general(C,α) is summation is available for the group of
2-adic integers proved also by Gát [55]. The general case isnot discussed yet. I
also feel it highly likely that the method of the papers [55, 54] make it easy to prove
the a.e.(C,α) summability of Vilenkin-like systems of integrable functions. The
two (more) dimensional situations have many unsolved problems. The only result
available is that the author of this paper with Blahota proved [25] the a.e. con-
vergence of cone restricted two-dimensional Fejér means of integrable functions
with respect to Vilenkin systems, but only in the case when|rn

k| = 1 for all k,n.
(However, this obviously contains the case of UDMD product systems, the char-
acter system ofm-adic integers.) Besides, there is no divergence result known for
the two-dimensional Fejér means at all. Finally, we mention the work of Volosivets
[56] in which - among others - he proved Efimov type inequalities with respect to
the best approximation with Vilenkin-like systems. Therefore, we think it possible
to investigate the relationship of the best approximation and the Fejér means.
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