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Convergence and Divergence of Féf Means of Fourier
Series on One and Two-Dimensional Walsh and Vilenkin
Groups

Gyorgy Gat

Abstract: It is a highly celebrated issue in dyadic harmonic analyisésgointwise
convergence of the Fejér (¢€,1)) means of functions on the Walsh and Vilenkin
groups both in the point of view of one and two dimensionaésa$Ve give a resumé
of the very recent developments concerning this mattepgse unsolved problems
and throw a glance at the investigation of Vilenkin-liketeyss too.
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1 Introduction

IRST, we give a brief introduction to the theory of Vilenkin syste. These
F orthonormal systems were introduced by N. Ja. Vilenkin id7l%see e.g.
[1, 2]) as follows.

Letm:= (m,k e N) (N:={0,1,... },P:= N\ {0}) be a sequence of inte-
gers each of them not less than 2. &t denote the discrete cyclic group of
ordermy. That is,Zy,, can be represented by the 4& 1,...,m¢ — 1}, with the
group operation addition mau. Since the group is discrete, then every subset
is open. The normalized Haar measureZay, L is defined byuk({j}) := 1/mg
(j €{0,1,...,mc—1}). Let

G [
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Then everyx € G, can be represented by a sequeree (x;,i € N) , where
Xi € Zm (i € N). The group operation ofsy, (denoted by+) is the coordinate-
wise addition (the inverse operation is denoted{)ythe measure (denoted by,
which is the normalized Haar measure, and the topology ar@tbduct measure
and topology. Consequentl®, is a compact Abelian group. If sppym, < o,
then we callG,, a bounded Vilenkin group. If the generating sequencis not
bounded, therGy, is said to be an unbounded Vilenkin group.nf = 2 for each
j, then we call the Vilenkin grous, as the Walsh group and denote By. A

Vilenkin group is metrizable in the following way:

d(X,y) = |X||V|_7yl| (X7y € Gm)
i= i+1
The topology induced by this metric, the product topology ghe topology given
by intervals defined below, are the same. A base for the nerglobbds ofG,, can
be given by the intervals:

lo(X) :=Gm, In(X) :={y=(Vi,i € N) € Gy :y; =xfori <n}

for x e Gy,n € P. Let 0= (0,i € N) € G, denote the nullelement @.
Furthermore, let P(Gy) (1 < p < «) denote the usual Lebesgue spadegy(
the corresponding norms) @y, <%, the o-algebra generated by the s&t&) (x €
Gm), andE, the conditional expectation operator with respectApn € N) (f €
LY.
Let a be a nonnegative real. We say that the functfos L1(G,) belongs to
the logarithm spack(log™ L)2(Gp,) if the integral

1l tog* Lye 1=/G ()] (log™ (| (1)) *du(x)

is finite.

Let X andY be eitherL(log* L)3(Gy,) or LP(Gp,) for some 1< p < o, and
a > 0 with norms||.||x and||.|ly. We say that operatoF is of type (X,Y) if there
exist an absolute consta@t> 0 for which ||T f|ly < C||f||x for all f € X. T is
said to be of weak typd.t, 1) if there exist an absolute constadt> 0 for which
(T f>A)<C|f|l1/A forall A > 0andf € LY(Gy).

Let Mg := 1, M1 := myM, (n € N) be the so-called generalized powers. Then
each natural numbercan be uniquely expressed as

n= Z;niMi (n€{0,1,....m —1}, i e N),
i=
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where only a finite number af; 's differ from zero. The generalized Rademacher
functions are defined as

(x) := exp(Zm%) (X€ GmneN,1:=+/-1).

0 ,ifx #£0,

i 0 (x € Gm, n€ N). Then™ Vilenkin
My, 1T Xy =

Itis known thaty ™ 1l (x) = {

function is

[ee]

Yn:i=T1r" (neN).
JI:LJ

The system) := (Y1, : n € N) is called a Vilenkin system. Eaadl, is a character
of G, and all the characters @&, are of this form. Define then -adic addition as

kén:= zo(kj +nj(modm;))M; (k,neN).
J:

Then , Yien = Yithh, Yn(X+Y) = Ga(X)hn(Y), Yn(—X) = Pn(X), [Yn| =1 (k€
N, X,y € Gp).

Define the Fourier coefficients, the partial sums of the Fowéries, the Dirich-
let kernels, the Fejér means, and the Fejér kernels witheet to the Vilenkin sys-
temy as follows

:/Gm f‘ﬁna
Sf = kz: Fu,

Dn(Y,X) = Dn(y —X) Z)wk y) k(X

1n1
Onf _—ZS(f

1n1
Kals) = Knly =) = | 5 Dily )

(neP,y,xe G, f / f,Sf =Dog=Ko=0, f € LX(Gp)).
It is well-known that
Sf(y / f(X)Dn(y —x)du(x),

G 1)= [ 100Ka(y—X0UX) (NEP,ye G, 1 LA (Gr).
JGm
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It is also well-known that

My ifxE14(0)
DM"(X)_{O if X ¢ 14(0)

:Mn/ f=Enf(x) (feLl(Gp)neN).
In(x)

It is known that the operator which maps a functiérto the maximal function
f* := sup|Sy, f| is of weak type(Lt,L1), and of type(LP,LP) for all 1 < p < o
(see e.g. [3]). Next, we introduce some notation with resfethe theory of two-
dimensional Vilenkin systems. Let be a sequence liken. The relation between
the sequencéi,) and(M,) is the same as between sequefrog) and (M,,). The
group Gy, x Gy, is called a two-dimensional Vilenkin group. The normalizédar
measure is denoted lpy, just as in the one-dimensional case. It will not cause any
misunderstood.

The two-dimensional Fourier coefficients, the rectangplartial sums of the
Fourier series, the Dirichlet kernels, the Fejer means, the Fejér kernels with
respect to the two-dimensional Vilenkin system are defirsefbdows:

e i= [ 100y 0 OE) OO ),
n—1nmp—-1

Sh-,”z f (ylv yZ) = kz—o kz—o f\(klv k2)wk1 (yl)wkz (y2)>
Dny n, (y> X) = Dn, (yl - Xl) Dn, (y2 - Xz)
1—1np—1

=SS B O B0,

ki=0k,=0
—1ny—

Oy f 1= — —— kz Z Sakfs

0ko,=0
n—1mp—1

K K D
N1,y (yv ) N1,y (y X n1n2 klzo kzz kg ko y X 7
= (yLy?),x = ) € Gmx Gm).

It is also well-known that

Orara 1) = [ F00Kanm(y X))

Sy, 100 = Mo, [ f = (% 9ER) (.

Jlny () x1ny (X2)
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The one and two-dimensionéC, o) means are defined as follows. DenoteKfy
the kernel of the summability methd@, a), and call it the(C, a) kernel, or the
Cesaro kernel foo € R:

Kn+1 Aj;c]r ZOAE{:\}DV? Aﬁ{ _ (or+1)(a +k|2)(a+k) (a ;é —k)

It is well-known [4, Ch. 3] that\d = R (AL AT A =AZ-1 AT~ n7
The (C,a) Cesaro means of the integrable functibis

o1 f(y): Ag% Skf—/ KR (y —x)dp(X).
The two-dimensional version is

ng
0n1+1n2+1f . Z Z Ag kzs(l-,ka'

2 k]_ Okz—

2 Some Known Results and Problems

One of the most celebrated issue in dyadic harmonic analy/#ie pointwise con-
vergence of the Fejér (diC,1)) means of functions on one and two-dimensional
unbounded Vilenkin groups.

Fine [5] proved every Walsh-Fourier series (in the Walsheaag= 2 for all
j € N)is a.e. (C,a) summable foro > 0. His argument is an adaptation of the
older trigonometric analogue due to Marcinkiewicz [6]. gh[7] gave a simpler
proof for the caser = 1, i.e. g,f — f a.e. f € LY(Gy)). Define the maximal
operator of the Fejér means of the integrable functioas o™ f := sup,cp |Onf|.
Schipp proved [7] that* is of weak type(L!,L'). Thato* is bounded fronH?
to L! was discovered by Fujii [8]. The Hardy spadé has several definitons. We
give the most common one as follows. We say that a fundtier_! belongs to the
Hardy spaceH? if its maximal functionf* := sup|Sy, f| belongs to the Lebesgue
spacell.

The theorem of Schipp are generalized to fhseries fields i = p for all
j € N) by Taibleson [9], and later to bounded Vilenkin systems Bydhd Simon
[10].

Now, what about the Vilenkin groups with unbounded genegatiequences?
The methods known in the trigonometric or in the Walsh, baghdilenkin case are
not powerful enough. One of the main problems is that thefgron the bounded
Vilenkin groups (or in the trigonometric case) heavily use fact that thé.! norm
of the Fejér kernels are uniformly bounded. This is not theecif the groupgGn,
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is an unbounded one [11]. From this it follows that the ordjitheorem of Fejér
does not hold on unbounded Vilenkin groups. Namely, Pricweut [11] that for
an arbitrary sequenaa (sug, m, = ) anda € Gy, there exists a functiom contin-
uous onGp and o, f(a) does not converge té(a). Moreover, he proved [11] that
if 'Oﬂ — o0 , then there exists a functiohcontinuous orG,,, whose Fourier series
are not(C 1) summable on a s& C G, which is non-denumerable. On the other
hand, Nurpeisov gave [12] a necessary and sufficient conditi the uniform con-
vergence of the Fejer meaung, f of continuous functions on unbounded Vilenkin
groups. Namely, define the uniform modulus of continuity as

wn(f):=  sup |[f(x+h)—f(x)].
heln(0),xeGm

Nurpeisov proved [12]: A necessary and sufficient conditivet the meansy, f
of the Fourier series of the continuous functibrconverge uniformly tof on an
unbounded Vilenkin group for all such dnis that

an-1(f)log(my) = o(1).

Since the uniform modulus of continuity can be any noninsirga real sequence
which converges to zero (for the proof see [13, 14]), then esrsequence of this
it is possible to give a sequenceincreasing enough fast, and a function even in
the Lipschitz class Lifl), such that théM,th Fejéer means do not converge to the
function uniformly.

So, it seems that it is impossible to give a (Holder) funtiitass such that the
uniform convergence of the Fejér means would hold for aiictions in this class
if there is no condition on sequenoeat all.

On the other hand, mean convergence of the full partial sems® p > 1, is
known for the unbounded case. For the proof see [15]. Thimly implies the
norm convergence, f — f for all f € LP, where 1< p < .

Concerning the a.e. convergence we can say a bit more. Namdl999 the
author [16] proved that if € LP(Gy,), wherep > 1, theno, f — f almost every-
where. This was the very first “positive” result with resptxthe a.e. convergence
of the Fejér means of functions on unbounded Vilenkin geoyfYe could say that
it is a trivial consequence of the a.e. convergence of thiggbhaums of the Fourier
series of functions inf € LP(G), wherep > 1. The ,,only problem” with this
that the a.e. convergence of the partial sums is the greapest problem in the
Vilenkin-Fourier analysis in the unbounded case. This iknown even for the
Lebesgue spade?(Gp,).

In 2001 Simon proved [17] the following theorem with respaxtthe Fejér
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means oL! functions. A sequencmis said to be strong quasi-bounded if

1 n-1
%Mj—&-l < Clogm,.
J:

I\/ln-i-l

Then every boundenhis quasi-bounded, and there are also some unbounded ones.
Let m be strong quasi-bounded. Then for &k L(Gp)

om, T (X) — f(X) = o(max(logmy, .. .,logMmn_1)).

Later, in 2003, the author of this paper improved [18] thisule and gave a partial
answer forL! case. He discussed this partial sequence of the sequeriue fedjer
means. Namely, if € LY(Gy,), then he proved (see [18]) thai,, f — f almost
everywhere, wherenis any sequence. This is also interesting in the point of view
that if mis any unbounded sequence then there exists an integrataigoiu f such
thatay, f does not converge tbin theL! norm [11].

If there exists a consta andL € P such that for ali, j € P we have

mln(m ) M-H)
(Migg---- My j-1)t

<cC,

(the empty product is defined to be 1, and the consfantay depend on the se-
quencem - of course), then we call the Vilenkin grougn, a rarely unbounded
Vilenkin group. Every bounded Vilenkin group is a rarely ooinded Vilenkin
group. Unfortunately, not all unbounded ones are rarelyounbled, since for in-
stance the rarely unboundedness implies the inequalitymim;,;) < C. So, e.qg.
if (my) tends to plus infinity, thet®y, is not rarely unbounded. On the other hand,
there are many unbounded Vilenkin groups, which are rarelyounded ones.

In 2007 we proved [19] the following two theorems L@, be a rarely un-
bounded Vilenkin group. Then the operatof is of weak typg(L!,L1). A straight-
forward consequence of this theorem is: G be a rarely unbounded Vilenkin
group, andf € LY(Gy,). Then we have the a.e. relatiopf — f.

In my opinion, it is highly likely that the methods of the papgl16, 18, 19]
can be applied and improved in order to prove the a.e. relagjd — f for all
f € Llog" L andm - at least. Anyway, it is not an easy task...

Besides, | think that the original Fejér-Lebesgue thedhneids on all (bounded
or not bounded - not only rarely unbounded) Vilenkin grougewever, to prove it
seems to be much more difficult.

What can be said in the case of two-dimensional functionsi® i§Hanother
story”. For double trigonometric Fourier series Marcinkiez and Zygmund [20]
proved thato,nf — f a.e. agn,n — o provided the integral lattice poin{sn, n)



298 Gybrgy Gat:

remain in some positive cone, that is providgd! < m/n < 8 for some fixed
parameter > 1. It is known that the classical Fejer means are dominated b
decreasing functions whose integrals are bounded butatitstd hold for the one-
dimensional Walsh-Fejér kernels. This growth differeigexacerbated in higher
dimensions so that the trigonometric techniques are noepgoivenough for the
Walsh case.

In 1992 Moricz, Schipp and Wade [21] proved tlmat, » f — f a.e. for each
fe Ll(Gg), whenng, ny — oo, |n; — ny| < a for some fixedx. Later, Gat and Weisz
proved (independently, in the same year) this for the whetpusnce, that is, the
theorem of Marcinkiewicz and Zygmund with respect to the &NaPaley system
(see [22] and [23]). For the bounded Vilenkin case see themapWeisz [24],
and the paper of Blahota and the author [25]. In the paper@byeneralize this
theorem with respect to two-dimensional bounded Vilerlikia-systems.

If we do not provide a “cone restriction” for the indices dnf that is, we
discuss the convergence of this two-dimensional Fejéemséathe Pringsheim
sense, then the situation changes. In 1992 Moricz, Schpgp/éade [21] proved
with respect to the two-parameter Walsh-Paley systemdhat — f a.e. for each
f € Llog" L, when min{n,k} — . Later, in 2002 Weisz generalized [26] this with
respect to two-dimensional bounded Vilenkin systems.

In 2000 Gat proved [27] that the theorem of Méricz, Schipgl &/ade above
can not be improved. Namely, 16t: [0, +) — [0, +) be a measurable function
with property lim_.., &(t) = 0. Gat proved the existence of a functiére L such
that f € Llog" Ld(L), and ok f does not converge tb a.e. as mifin,k} — oo,
This result with respect to the bounded two-dimensiona¢nkin case is also due
to the author [28].

It is an interesting question that is it possible to weakemetwow the ,,cone
restriction” in a way that a.e. convergence remains for daohtion inL!. Maybe
for some ,,interim space” if not for spat¢é. The answer is negative both in the
point of view of space and in the point of view of restrictiddamely, in 2001 Gat
proved [29] the theorem below:

Letd: [0,40) — [0,+0) measurabled(+) =0 and letw: N — [1,+) be
an arbitrary increasing function such that

SUpw(X) = +-oo.

XeN
Moreover,vn:=max{ny,n2}, An:=min{ng,n2}. The, there exists a functiohin
the spacé.log™ Ld(L) such that

o N Ay

a.e. as\n — oo such that the restriction conditioff <w(An) is also fulfilled. That
is there is no ,,interim” space. Either we have splatmg™ L and ,,no restriction at
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all’, or the ,,cone restriction” and then the maximal cogesrce space is'. As a
consequence of this we have that

O, — f

a.e. for eachf € L1(G3) as min{ny,ny} — oo, provided that
vn
<
e w(AN)

if and only if
Supw(x) < co.

What can be said in the two-dimensional case with respectntmunded
Vilenkin systems? In 1997 Wade proved [30] the following. tLl&; =
max{ M, ...,M1,Mo,...,M_1}. The sequencen is called d-quasi bounded,
0<d <1, ifthe sums

n—1
3 m/ (M)
J:

are (uniformly) bounded. Let the generating sequemagh be d-quasi bounded.
Then for allf € LY(Gp, x Gg) we have

GMkaf(X) —f(x) = O(Bﬂ,kBrﬂ-l’,k-H’)?

asn,k — oo, provided thatn—k| < a, wherea, r € N are some constants for almost
everyx € Gy x Gp.
On the other hand, there was nothing concerning the poiataisivergence
before the following manuscript of the author.
In [31] we proved the following theorem. Lédte (Llog™ L)(Gn x Gy). Then we
haveoMnl,anf — f almost everywhere, where mfny,np} — oo provided that the
distance of the indices is bounded, thatms,— n,| < a for some fixed constart >
0. Here it is necessary to emphasize that in this papércan be any sequences.
Another question. What is the situation with t€,a) summation of 2-
dimensional Walsh-Fourier series? What is this?
a 1 < & a—-1 po-1
Onyt1miaf = W z ZOAnlfklAnszzsﬁ-,sz'

1 2 k]_:Okz:

In 1999 Weisz proved [32], that
Or?l,nzf — f

a.e. as mifing,ny} — oo for eachf € Llog" L(G3) anda > 0.
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The question is that is it possible to give a ,,larger” cogeece space for the
(C,a) summability methodq > 0)? Is there such an? If a < 1, then not.
Because for théC, 1) method one can not give such a ,,larger” space.

Problem.

e What is the situation with théC, a) methods, foor > 1? We mean the Walsh
and bounded Vilenkin case.

e The is no divergence result with respect to two-dimensiondlounded (any
of the two generating sequence is unbounded) Vilenkin gg@imll. May
be this is surprising, since it is very usual that to congtdimergence exam-
ples on unbounded Vilenkin groups is easier. But, | thinkinahis issue.
The construction of our example of divergence in [28] doeswark in this
situation.

What can be said in the case of the Walsh-Kaczmarz system?t ié/tds
Walsh-Kaczmarz system? This is nothing else, but a reagraegt of the Walsh-
Paley system. Introduce it as follows.

If n> 0, then letn| := max(j € N:n; # 0). Then-th Walsh-Kaczmarz function
is

Kn(X) =y () (—1) 2400 M
asifn> 0, Ko(X) := 1,x € G,. Then the elements of the a Walsh-Kaczmarz system
and the Walsh-Paley system is a dyadic blockwise rearraegenof each other.
This means as follows:

{Kn:2¢<n< 21} = {ay: X< n< 21

In 1998 Gat proved [33] the Fejér-Lebesgue theorem foMtaésh-Kaczmarz sys-
tem. Thatisg,f — f a.e. for eacH € L(G,). In 2004 Simon [34] generalized the
result of Gat above fofC, a) summation methods. The Fejér-Lebesgue theorem
with respect to the character system of fieeries fields (Vilenkin groups with a
constanim) in the Kaczmarz rearrangement is verified by the author aagiyN35].

What is the situation with the Cesaro summation of 2-direered Walsh-
Kaczmarz series? In 2001 Simon proved [36], tiogin,f — f a.e. as if
min{ny,n;} — oo (in the Pringsheim sense) for evefye Llog" L(G3). He also
proved the restricted ,,cone” convergence for functiorleriging toL*(G2). With
respect to this | propose the following unsolved problems.

Problem.

e What is the maximal convergence space of the two-dimenki¢@al)
summability method taken in the Pringsheim sense?Lkiy" L(G3) again,
as in the case of the two-dimensional Walsh-Paley system?
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e Does not exist an ,,interim” space like in the Walsh-Palese®a
e What can be said in the case(@f,a) summation?

e The whole 2-dimensional story with respect to the charasystem of the
p-series fields in the Kaczmarz rearrangement is open.

It seems also to be interesting to discuss the almost everngumtonvergence
of Marcinkiewicz meang 573 ; f of integrable functions on two-dimensional
unbounded Vilenkin groups. Although, this mean is definedm-variable func-
tions, in the view of almost everywhere convergence theeesanilarities with
the one-dimensional case. It seems in a certain point of thatvthe one dimen-
sional Fejér means. For the trigonometric, Walsh-Paleg bounded Vilenkin
case see the papers of Zhizhiasvili, Weisz and Gat [37, 9B, W/ith respect to
the Walsh case see also the papers of Goginava [40, 41]. €he@vergence of
Marczinkiewicz means of two-dimensional integrable fimes with respect to the
two-dimensional Walsh-Kaczmarz system is due to Nagy [82me of the results
summarized in this paper (including the proofs) can alsco@d in [43]. For the
time being there is no result known with respect to this issu@nbounded case. |
think it possible to discuss the a.e. convergence

on unbounded Vilenkin groups for integrable functiohs| think it can be done
with the methods written in the paper [18]. At this point weota about the
Vilenkin systems and one of its special cases, the WalséyPaistem. Now, we
are going to have a look at a class of generalization of thenih systems.

3 Vilenkin-like Systems

DenoteGp, a set of cardinalitym,. Suppose that each (coordinate) set has the
discrete topology and measupg which maps every singleton dBy, to %
(U(Gm,) = 1), ke N. Let Gy, be the compact set formed by the complete di-
rect product ofGn, with the product of the topologies and measufg$. Thus
eachx € G is a sequenceg := (Xo, X1, ...), Wherexx € G, , k€ N. Gy is called a
Vilenkin space. That is, in this situation we do not have dgglaraical operation
of the seiG,. This is the main difference between a Vilenkin group andlankin
space.

The complex valued functions which we call the generalizaddtnacher func-

tionsry : G,m — C have these properties:
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i. rlis o4.1 measurable (i.ef(x) depends only oRg, ...,k (X € Gm)), r0=1
forall k,n € N.

ii. If My is a divisor ofn andl and ifnkt1) = | (k1) (k | n e N), then

1if Nk = Ik,
Eu(rkrl) = {o if i £ Iy

(zis the complex conjugate aj.

ii. If M1 is a divisor ofn (that is,n = Ny 1Mk 1 + Nk 2Mi 2 + -+ Ny M),
then

M M 2

n
500 = m
J:

for all x € Gp.

iv. There exists & > 1 for which ||r/||e < /mMg/0.

Define the Vilenkin-like systenfy = (), : n € N) as follows.

(o)

®)
t,un::rLr{(‘, neN.
K=

We would like to mention some examples for Vilenkin-like ®ymss.

Example A, the Vilenkin and the Walsh system
Let Gy, 1= Zm, be them-th (2 < m, € N) discrete cyclic grougk € N). In this
case let(x) := (exp(2rmxc/my))™, wherel := /—1,x € Gp.

Example B, the group ofm-adic integers

Let Gy, :={0,1,...,m¢—1} for all k € N. Define onGp, the following (com-
mutative) addition: Lek y € Gy. Thenx+y =z &€ Gy, is defined in a recursive
way. Xo + Yo = tomp + 2o, where (of coursey € {0,1,...,mp — 1} andtp € N. Sup-
pose thatz, ...,z andtp,...,tx have been defined. Then wrixg 1 + Yki1 +tk =
tkr 1M1 + Zer1, Wherez g € {0,1, ..., my1 — 1} andty,1 € N. ThenGpy, is called
the group ofmadic integers (ifn, = 2 for all k € N, then 2-adic integers). In this
case let

re(x) == <exp<2m(%+ X1 +...+L))>nk.

MMk—1 MMk—1...Mo

Let ¢ := |‘|‘|;°:0r|’(‘(k) = |‘|‘|;°:0r|r(‘k'v'k. Then the systeng := (¢, : n € N) is the
character system of the group ofadic (if mg = 2 for eachk € N then 2-adic)
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integers. Sincéry| = 1,1, iii andiv are trivial.ii is also easy to see and well-known
[44, p. 91]. For more on the group ofadic (if my = 2 for eachk € N then 2-adic)
integers see e.g. [45, 46, 9].

Example C, noncommutative Vilenkin groups

Let o be an equivalence class of continuous irreducible unitypyasentations
of a compact grouf. Denote by> the set of all suclw. 2 is called the dual object
of G. The dimension of a representation?), o € =, is denoted byl and let

Ui(fjf)(x) = (U&,&)  ije{l,.. do}

be the coordinate functions for®), whereéy, ..., ¢4, is an orthonormal basis in the
representation space bf). (For the notations see [45, vol 2, p. 3].) According
to the Weyl-Peter’'s theorem (see e.g. [45, vol 2, p. 24]),sysem of functions
\/%ui(f), oeZ,i,je{L,..,dgs}is an orthonormal basis far?(G). If G is a finite
group, then is finite too. If = := {0y,..., s}, then|G| = d3 + ...+ d3..

Let Gy, be a finite group with ordemy, k € N. Let {rﬁ"’Ik :0<s< m} be the
set of all normalized coordinate functions of the gré and suppose tha@ =1.
Thus for every (< j < my there exist a € 2y, i, j € {1,...,ds} such that

= /AU 7% (xeGm),

re = r{(‘kMk. Let ¢ be the product system oﬁ namely

00

Yn(x) = k[LrL“” (%)  (x€Gm),

wheren is of the formn = S oMy and x = (Xo,X1,...). We should remark
that if G, is the discrete cyclic group of orden,k € N then Gy, coincides
with the Vilenkin group andy with respect to the corresponding order, is the
Vilenkin system [47, 44, 1, 2]. In [47] it is proved that thessgm ¢ satisfies

the properties, ii  iii . iv is satisfied becausen = |Gy | =dZ, +... + dgw, where
{oki 1i=1,...,ks} = 2 (the dual object oGy, ) anddy,; is the dimension oby;.

Hr|’(||oo <+/d, whered is one ofdg,; and sincel is a divisor ofmy [45, vol 2 p. 44],
[47] and since at least one df,, is 1, thend < /M. From this we have that there
exists ad > 1 (may depend on the sequermgsuch thatv holds for alln,k € N.
For more on this system and noncommutative Vilenkin gro@as[47, 48].

Example D, a system in the field of number theory

Let
00 n: k
re(x) :=exp| 2m LS xM
( JZkMHli;‘) |
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fork,ne N andx € G, Lety, .= |‘|‘|’(°:0r{<‘<k>, neN.

Then,y := (¢ : n € N) is a Vilenkin-like system (introduced in [49]) which is
a useful tool in the approximation theory of limit periodadmost even arithmetical
functions [49].i is trivial and sincdr| = 1, then so aréi andiv. Itis easy to prove
ii (see [49]). This system (on Vilenkin groups) was a new toariher to investi-
gate limit periodic arithmetical functions. For the defimit of these arithmetical
functions see also the book of Mauclaire [50, p. 25].

Example E, the UDMD product system

The notion of the UDMD product system was introduced by Ficfbl] on
the Walsh-Paley group. Let functiong : G, — C satisfy: |ax| = 1 anday is 2%
measurable. Let(x) := (—1)%™%ay(x). i is trivial and sincefr/| = 1, so areiii
andiv. The proof ofii is simple. Letyr, := |‘|§°:Or{<‘<k) = Me_ore™(neN). The
systemy := (Y : n€ N) is called an UDMD product system. For more on UDMD
product systems see [51, 46].

Example F, The Vilenkin-like diaphony

The special system called Vilenkin-like diaphony is defibgdsrozdanov [52]
on the group oftadic integers.

We mention some results and problems with respect to Vitelike systems
and Cesaro summability. The Fejér-Lebesgue theorentiéogtoup of 2-adic inte-
gers was proved by Gat [53] and for the general system alsgaiy54]. The only
result with respect to the gener@, a) is summation is available for the group of
2-adic integers proved also by Gat [55]. The general casetigliscussed yet. |
also feel it highly likely that the method of the papers [58] Bhake it easy to prove
the a.e.(C,a) summability of Vilenkin-like systems of integrable furmtis. The
two (more) dimensional situations have many unsolved probl The only result
available is that the author of this paper with Blahota pcoj25] the a.e. con-
vergence of cone restricted two-dimensional Fejéer medustegrable functions
with respect to Vilenkin systems, but only in the case whgh= 1 for all k,n.
(However, this obviously contains the case of UDMD prodystems, the char-
acter system ofm-adic integers.) Besides, there is no divergence resulvkrior
the two-dimensional Fejér means at all. Finally, we mentfee work of Volosivets
[56] in which - among others - he proved Efimov type inequaditiith respect to
the best approximation with Vilenkin-like systems. Theref we think it possible
to investigate the relationship of the best approximatiot the Fejér means.
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