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Abstract

The weighted histogram analysis method (WHAM) has become the standard technique for the
analysis of umbrella sampling simulations. In this paper, we address the challenges (1) of
obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of
quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible
systematic errors, and (4) of optimal allocation of the computational resources. Traditionally, the
WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence
and possible numerical inaccuracies in the solutions. Here we instead solve the mathematically
equivalent problem of maximizing a target likelihood function, by using superlinear numerical
optimization algorithms with a significantly faster convergence rate. To estimate the statistical
errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely
spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be
approximated by a coarse-grained free energy obtained by integrating the mean restraining forces.
The statistical errors of the coarse-grained free energies can be estimated straightforwardly and
then used for the WHAM results. A generalization to multidimensional WHAM is described. We
also propose two simple statistical criteria to test the consistency between the histograms of
adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees
of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors
and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the
efficient allocation of computational resources in free energy simulations.

INTRODUCTION

The calculation of free energies is one of the main quantitative applications of molecular
dynamics or Monte Carlo simulations of molecular systems. In umbrella sampling
simulations,1 a free energy profile (or potential of mean force, PMF) G(x) along a chosen
physical or virtual coordinate x is obtained by performing a series of simulations with
biasing potentials applied that act as local restraints on x. The weighted histogram analysis
method (WHAM)2,3 has become the standard method to combine the results from the
different simulations,4 and has accordingly been implemented in major simulation software
packages.5 Variants of WHAM can be used for the analysis of replica exchange
simulations,6,7 or in conjunction with the string method.8 Here we present methods (1) to
obtain faster and more accurate solutions of the coupled nonlinear WHAM equations, (2) to
quantify the statistical errors of the estimated free energies, (3) to diagnose possible
systematic errors in the free energies that result from inadequate sampling of motions
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orthogonal to x, and (4) to optimize the allocation of computational resources in free energy
calculations.

Traditionally, the free energy profile in WHAM is computed by direct iteration of a set of
coupled equations until self-consistency is achieved. It was long acknowledged that in
practical applications the convergence of the WHAM equations may require more than
100,000 iterations.9 More seriously, the convergence is typically judged by the variation of
the free energy between iterations, which turns out to be only a poor estimator of the actual
deviation from the true solution. When each WHAM iteration results in only a small change
in the free energy, it may incorrectly appear as if convergence has been achieved. The
traditional fixed-point iteration scheme normally has a linear convergence rate, which means
that a constant number of iterations is required to gain one more significant digit in the
precision of the solution.

To overcome this slow convergence, we note that the WHAM solution corresponds to a
maximum likelihood estimate of the free energy parameters,6,10 and solving the WHAM
equations is thus equivalent to finding the maximum of the likelihood function. A variety of
numerical techniques with superlinear convergence rate have been developed for such
optimization problems,11 including the Newton-Raphson, trust region, and nonlinear
conjugate gradient methods. In these methods, the rate of convergence typically improves as
the exact solution is approached. For quadratic objective functions, they can find the exact
solution within a finite number of iterations.11 In this study, we demonstrate that by
adopting these superior numerical methods, both the speed and the accuracy in solving the
WHAM equations can be significantly improved.

Estimating the statistical errors in the WHAM results is more challenging than solving the
WHAM equations. In the original method,2,3 the error is determined from the expected
statistical uncertainty in each bin of the histogram, after properly accounting for correlation
effects in the sampling. However, this method ignores the uncertainty in the normalization
factor (or equivalently, the free energy) for each umbrella window,6 and therefore fails to
account for the accumulation of errors over multiple intermediate windows, which,
unfortunately, is typically the major source of error in practical applications. A more reliable
approach is to divide the simulation data into a certain number of blocks, to use WHAM to
calculate a PMF from the data in each block, and then to determine the statistical uncertainty
from the variance of the PMFs. One may further use the bootstrap strategy to generate new
random data according to the estimated distribution, and then determine the uncertainty by
comparing the PMFs calculated from these hypothetical trajectories or histograms.5 In a
novel method6 based on Bayesian statistics, the underlying free energy profile is taken as the
unknown quantity, and the histograms as the given observed data. The uncertainty in the
free energy is then determined from the posterior likelihood of the parameters. Although the
method is conceptually rigorous, the uncertainty cannot be obtained analytically, and in
practice has to be obtained from statistical sampling in the parameter space under proper
approximations.6

In this study we propose a simple method for the error estimation in umbrella sampling
simulations, based on the statistical error of the free energy gradient, or the mean force, in
each individual umbrella window. For a PMF G(x) along a reaction coordinate x sampled
with a series of harmonic biasing potentials K(x − ri)2 / 2 spaced evenly at ri =r0+iΔr, and a
reference value of G(r0) = 0 in the leftmost umbrella window by definition, we show that the
variance in the free energy estimator, given by the square of the cumulative statistical error,
is approximately
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(1)

Here var  is the squared error in the estimate of the mean position of x in window i which
can be obtained straightforwardly from block averages12 (see Eq. 36 below). Eq. (1) allows
us to use simple statistics to estimate the error of a PMF. Furthermore, it clearly reveals the
error propagation through multiple windows, and identifies the contribution of each
umbrella window to the overall statistical error, thus providing a basis for systematic
improvement of the accuracy with minimal computational effort.

We also introduce consistency tests between histograms in adjacent umbrella windows, or
between observed and consensus histograms. In particular, we provide a diagnostic that uses
information entropy as a measure of deviation between the actual observed histogram

 in window i from the consensus histogram  expected from the WHAM
free energy:

(2)

Large values of this Kullback-Leibler divergence or relative entropy indicate that the free
energy surfaces sampled in different umbrella windows are inconsistent. Eq. (2) and an
additional pair-wise test for adjacent histograms may help identify potential problems of
insufficient equilibration of the degrees of freedom orthogonal to the chosen reaction
coordinate.

We thus suggest the following procedure to analyze umbrella sampling simulations: (1)
efficiently compute an accurate solution of the WHAM equations and obtain the PMF using
a superlinear optimization algorithm; (2) compute the variance of the average reaction
coordinate in each umbrella window by block averaging, and then estimate the statistical
errors in the PMF using Eq. (1) or its more precise forms discussed in this article; (3)
calculate the inconsistency coefficient in Eq. (2) or other similar measures discussed in this
study, and identify windows with potential problems of insufficient equilibration. We note
that all the analyses above are computationally inexpensive, and can be straightforwardly
implemented. Furthermore, on the basis of Eqs. (1) and (2), if one intends to extend the
sampling, the computational resources can be invested efficiently by concentrating on
regions that contribute most to statistical uncertainties and inconsistencies.

In this study we focus on one-dimensional PMFs in umbrella sampling simulations, which
have been widely adopted in a large body of studies on biological and synthetic channels as
well as many other important systems. We note that WHAM can also be used on
multidimensional histograms involving different state variables (such as temperature) or
collective coordinates. The numerical methods for solving the WHAM equations and the
consistency tests introduced in this study can be directly applied in such multidimensional
cases. A generalization of our estimate of the statistical error to higher dimensions is
outlined in Appendix A.
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METHODS

In this section, we first introduce the WHAM equations and propose new numerical
algorithms to solve the equations. Then we propose a new scheme to estimate the statistical
errors in the free energy obtained from WHAM, and consistency tests of the histograms to
help identify the potential problem of poor equilibration of the degrees of freedom
orthogonal to the chosen reaction coordinate. We conclude this section with a discussion of
strategies for the optimal allocation of computational resources in umbrella sampling
simulations.

WHAM Equations and Numerical Algorithms

Consider a set of S independent simulations at temperature T, each corresponding to an
“umbrella window” with a harmonic biasing potential

(3)

For each simulation i, the time series of x is binned into histograms, with {nil} representing

the counts in bin l centered at {xl} (l =1, …, M) and  the number of samples in
simulation i. If the data from a simulation are correlated, one can scale the counts by an
inefficiency factor (1+ 2τi)−1 determined from the correlation time τi of x in window i, as
measured in units of steps in its time series.6,7 We assume in the following that proper
scaling has been done so that the {nil} represent the equivalent number of effectively
independent samples.

Our objective is to construct the underlying unbiased free energy G(x) that is most consistent
with the observed simulation data. For this purpose we aim to determine the unbiased
equilibrium probability distribution {pl} (l =1, …, M), representing the probability of
finding the coordinate x in each bin when no biasing potential is applied. Then G(x) is given
by

(4)

where kB is the Boltzmann constant and Δl is the width of bin l. Given the {pl}, the expected
probability distribution {pil} in simulation i is also known:6

(5)

where cil is determined by the biasing potential at the center of each bin:

(6)

and fi is a normalization factor to ensure that {pil} sum to one:

(7)
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fi is thus the reciprocal of the partition function of simulation i,

(8)

Given the probabilities {pil} for simulation i, the likelihood of having {nil} counts in the
respective bins obeys the multinomial distribution:6

(9)

The overall likelihood for jointly observing the counts in the S independent simulations is
then given by

(10)

Substituting Eqs. (5) and (9) into Eq. (10) and then taking the logarithm, we obtain6

(11)

in which the negative log-likelihood A includes all the terms containing the {pl}:

(12)

where Ml is the total count in the l -th bin, summed over all simulations:

(13)

Finding the maximum likelihood estimates of {pl} is then equivalent to the minimization of
A. We note that general discussions of the maximum likelihood approach applied to biased
sampling can be found in the statistical literature.13–15

To obtain the minimum of A, we take the derivative of A with respect to each individual pl,
noting that in Eq. (12) fi is a function of the {pl} through Eq. (7):

(14)

By demanding these derivatives to be zero, we obtain
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(15)

for each bin. Eqs. (7) and (15) jointly form the set of coupled nonlinear WHAM equations,
which are traditionally solved by iteratively substituting {pl} and {fi} to obtain a new set of
values until self-consistency is achieved. This direct iteration method is numerically
inefficient. In the following we introduce techniques with superior convergence rate that
directly aim to minimize A, as given in Eq. (12). In addition, for a given problem, A can be
used to compare the accuracy of different results, with those closer to the exact solution
having smaller A values.

To reduce the dimensionality of the optimization problem, we rewrite the minimization of A
with respect to the {pl} into an equivalent minimization with respect to the {fi}. Since there
are typically far fewer simulations than bins, S < M, this reformulation reduces the
computational cost. Substitution of Eq. (15) into Eq. (12) results in a new function of the
{fi} alone:

(16)

By taking the gradient with respect to the {fi}, it is then straightforward to show that the
minimum of this new function coincides with the solution of the WHAM equations:

(17)

where we used Eq. (15) to rewrite the gradient in terms of the {pl}. At the minimum of 
these derivatives are zero, and we thus recover Eq. (7). Solving the WHAM equations is
equivalent to minimizing Eq. (16) with respect to the {fi}, which is numerically more
efficient than minimizing Eq. (12) with respect to the {pl} in typical cases.

One may also work on the logarithm of {fi} by a change of variables:

(18a)

(18b)

According to Eq. (8), the {gi} actually correspond to the total free energies of the system in
the presence of the biasing potential i. Using the {gi} as the free variables eliminates the
possibility of having (unphysical) negative fi values in the search of the minimum. The
optimization function becomes:
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(19)

Furthermore, it can be shown13 that  is a convex function with nonnegative
second derivatives everywhere, and thus has a single minimum.13 The derivatives of  with
respect to the {gi} are given by

(20)

Because multiplying all {fi} by a constant factor, or adding a constant to all {gi}, does not
alter the free energy profile G(x), we can set g1 to zero without loss of generality, and
minimize  with respect to g2, …, gS.

In typical umbrella sampling setups, the histogram of a particular umbrella window only
substantially overlaps with the histograms of neighboring windows. Consequently, the

derivative  for window i is predominantly determined by those values of {gj} with |j
− i| being small, and is hardly affected by distant windows. The derivative therefore mainly
reflects the local consistency of the free energy across a small range of umbrella windows,
but poorly indicates the real distance of gi to its true value in the exact solution. To improve
the performance of the optimization, one may use the incremental changes of the {gi} over
adjacent windows as free variables in the minimization:

(21a)

(21b)

The function  to be minimized and its derivatives with respect to the {Δgi} (i=1, …, S −1)
are then given by

(22a)

(22b)
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Our experimentation shows that the change of variables to {Δgi} makes the convergence
considerably faster, especially when the number of umbrella windows is large.

The target function  can be minimized using a variety of numerical algorithms.11 In the
Newton-Raphson algorithm,11 a quadratic expansion of the target function at the current
search position is obtained from the local gradient and Hessian matrix, and the minimum of
this approximate quadratic function is taken as the new search position. This algorithm was
used on a similar problem,16 and was found to be efficient yet slightly less reliable than the
direct iteration method.16 Some variants of the Newton-Raphson algorithm are both efficient
and reliable, and are thus more widely adopted in practice. Here we test two such variants,
the subspace trust region method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method11 with cubic line search, as implemented in the “fminunc” function in the Matlab17

Optimization Toolbox. In the trust region method, a two-dimensional subspace is identified
from the local curvature, and a trial move in the subspace is computed to minimize the
approximate quadratic function, subject to the constraint that the move must lie within a
given trust radius. If the trial move results in a higher value of the actual target function, the
trust radius will be decreased to ensure that the quadratic expansion is sufficiently accurate.
The quadratic approximation will become increasingly accurate upon approaching the true
minimum, and therefore the iterations will converge rapidly. In the BFGS method, the
Hessian matrix is not explicitly computed and is instead approximated and updated at each
iteration step, and a line search is performed to locate the minimum along a given direction.

Error Estimation

Eq. (15) indicates that the statistical error in pl obtained from WHAM can be formally
attributed to two uncertainties: (1) in the observed counts in bin l, and (2) in the
normalization factors {fi}. Although the former uncertainty can be readily estimated, the
latter is much more complicated to quantify. In typical umbrella sampling setups, only
histograms of neighboring windows have substantial overlap, and the free energy difference
between two distant windows can only be determined through a relay of intermediate
windows. Consequently the uncertainties in the histograms of these intermediate windows
contribute to the statistical errors in the {fi}, and in turn to the errors in G(x). In practice, the
sampling within narrow windows is usually quite efficient, and the cumulative errors in the
{fi} thus tend to dominate the error in the estimated free energy profile.

To estimate the statistical errors in the {fi}, we first define the total free energy of the system
in the presence of a harmonic biasing potential K(x − r)2 / 2 centered at r:

(23)

Using Eq. (8), we have

(24)

with gi defined in Eq. (18). Therefore the {fi} or {gi} are determined by the values of Gr(r)
at the discrete points {ri}.

Furthermore, taking the derivative of Gr(r), we have:
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(25)

This derivatives at the {ri} are thus given by

(26)

where Fi = K(ri − x) is the restraining force arising from the harmonic potential wi(x) in Eq.
(3), and 〈〉i denotes the ensemble average in the presence of the biasing potential wi(x). The i
-th umbrella simulation actually represents such an ensemble, and thus can be used to obtain
the ensemble averages:

(27)

where  and  are the mean position of x and the mean restraining force in the simulation,
respectively. If the biasing potentials are not harmonic, the estimators of the free energy
gradient have to be modified appropriately (see Appendix B). We can integrate the gradients
at the {ri} using the trapezoidal rule:

(28)

Eqs. (24) and (28) show that the {fi} or {gi} can be obtained approximately by integrating

the gradients of Gr(r), or the mean restraining forces  from the simulations,18 analogous
to thermodynamic integration. This method can also be conveniently applied in
multidimensional cases, and therefore has been adopted in conjunction with the string
method19 to obtain a free energy profile in a high-dimensional coordinate space. For the
one-dimensional PMFs considered in this study, the method is expected to give similar
results as WHAM does, if Gr(r) varies smoothly as a function of r between windows.
Whereas the systematic errors arising from discretization of the chosen coordinate are
expected to be smaller in WHAM than in the gradient-based method, the statistical errors in
the latter can nonetheless be taken as reasonable estimates of the statistical errors in the
WHAM result. We expect the quality of this approximation to decrease when the windows
are spaced too far compared to features in Gr(r) .

Because the {fi} or {gi} can be expressed as functions of the , their statistical errors can

also be calculated from the variances of the , which according to Eq. (27) are

determined by the variances of the mean coordinates :
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(29)

If the {ri} are equally spaced, i.e.,

(30)

Eq. (28) can be simplified into

(31)

The resulting variance of the estimator for the free energy difference over repeated
measurements is then given simply by

(32)

The corresponding standard deviation, given by the square root of the variance, is typically
taken as the statistical error of the free energy difference above. Here we assumed that the

errors in the  are uncorrelated. For some simulation protocols, the  of different
windows are correlated and one should then include their covariances in addition to the
variances. In Hamiltonian replica exchange simulations20 the {xi} of different windows are
statistically independent of each other in the joint probability distribution. For sufficiently
long Hamiltonian replica exchange simulations that fully explore the combined phase space,

the covariances of the  are thus expected to vanish, and Eq. (32) approximately holds in
such cases.

If the harmonic springs are relatively stiff (with large K), as is often the case in umbrella
sampling simulations, p(x) would vary little within a narrow umbrella window. In such cases
we have

(33)

Gr(r) in Eq. (23) can then be simplified into

(34)

Therefore under the stiff spring approximation,21 the {Gr(ri)} directly represent the PMF,
and thus also share the same statistical errors as the PMF.
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The variance var  can be estimated from the trajectory of x in simulation i. For a
correlated trajectory, this variance depends on the autocorrelation function of the data. By

block averaging, however, var  can be estimated without explicitly computing the
autocorrelation function.12 In this method the time series xiα of the x - coordinate in window
i is divided into n blocks of sufficiently large size m, so that the averages of the n blocks are

independent of each other, and then var  is estimated from the variance of these
averages:12

(35)

For small n, this estimate tends to be noisy; for large n, the blocks are correlated. While n
between 5 and 10 are typically used in practice, for accurate estimates it is advisable to plot
Eq. (35) as a function of log(n) to identify a plateau12 at small n and use that for the estimate

of var .

From the variances of  in each individual simulation, the uncertainty in the {gi} (assuming
g1=0) can be obtained via Eqs. (24) and (32):

(36)

This estimate is the central result of the second part of this paper, and clearly shows the
accumulation of the statistical error over the intermediate umbrella windows. Under the stiff
spring approximation discussed earlier, Gr(ri) or {gi} directly represent the PMF (Eq. 34),
and therefore Eq. (36) also gives the error estimate for the PMF, thus leading to Eq. (1)
except for minor differences arising from the first and last windows.

Additionally, the effective number of independent samples in the trajectory, Ni, can be
estimated from the variance of :

(37)

where var(xi) is the variance of the coordinate x in trajectory i, and ni the length of the
trajectory. We note that with this relation and var(xi) ≈ kBT / K (ignoring additional
curvature effects) one can rewrite Eq. (1) in terms of the correlation time τi :

(38)
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WHAM Consistency Tests

The free energy profile G(x) obtained from WHAM is a function of the reaction coordinate
x, with all coordinates orthogonal to x integrated out. The determination of an accurate G(x)
requires that these orthogonal coordinates be sufficiently sampled in the simulations. In each
individual simulation, although the reaction coordinate x is restrained to a reference position,
the subspace formed by the orthogonal coordinates may feature multiple metastable states or
local minima, and infrequent transitions between these states will result in long
autocorrelation in the trajectory. If the simulation is not long in comparison to the
corresponding correlation time τi, the true error in  will be underestimated by block
averaging or other methods based on the autocorrelation function. In extreme cases, the
system may stay in a single state without ever visiting other states in the subspace
orthogonal to x during the entire simulation i, resulting in a severe underestimation of the
errors in  and the free energy. In such cases the trajectory of the single simulation alone
will show no indication of the insufficient sampling; however, if other states are visited in
the simulations of neighboring windows, the problem can be inferred by a comparison of the
simulation results. If different states of the orthogonal coordinates are sampled in two
adjacent umbrella windows, the two simulations will normally produce inconsistent
probability distributions of x. The problem of insufficient sampling of the orthogonal
degrees of freedom, therefore, can be detected by checking the consistency of the histograms
in neighboring windows, as described below.

Consider two simulations in adjacent umbrella windows centered at r1 and r2. From the
simulation trajectories, we obtain the probability distributions p1(x) and p2(x), and aim to
test whether they are consistent with a common underlying unbiased probability distribution
p(x). In principle, we may reconstruct p(x) from either p1(x) or p2(x), and then compare the
two resulting distributions for consistency. In practice, however, the p(x) obtained from pi

(x) is only accurate in the vicinity of ri, and will bear increasingly large statistical
uncertainties at increasing distances from ri. Indeed, in the WHAM equations p1(x) and
p2(x) primarily contribute to the shape of p(x) around the region between r1 and r2, and the
comparison should therefore also be focused on this range. For this purpose, we imagine a
virtual umbrella window at the midpoint r* =(r1 + r2) / 2, with the biasing potential given by

 as in Eq. (3). The probability distribution of x in this virtual umbrella
window can be estimated from either p1(x) or p2 (x):

(39)

If p1(x) and p2 (x) indeed arise from a common unbiased probability distribution, (x) and
(x) should be identical within statistical uncertainties. Furthermore, (x) and (x) are

peaked in the region where p1(x) and p2 (x) have maximum overlap, and could be compared
on the same footing. A significant disagreement of (x) and (x) would then indicate that
the two simulations are probably sampling different free energy surfaces.

Several statistical methods can be applied to test (x) and (x). In this study we adopt a
simple protocol based on the Kolmogorov-Smirnov test. The method uses the maximum
difference between the two respective cumulative distribution functions to quantify the
deviation between (x) and (x). For two histograms arising from a common probability
distribution, the expected value of this maximum difference asymptotically approaches zero
following the inverse square root of the sample size, as the latter approaches infinity.
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Therefore we define an inconsistency coefficient, θ1,2, as an empirical measure for the
discrepancy between (x) and (x):

(40)

Note that N1 and N2 above should be the effective number of independent samples, which
can be estimated from Eq. (37) for correlated data. An abnormally high θ1,2 indicates
inconsistency between the results of the two simulations. For any pair of adjacent umbrella
windows i and i +1, we can similarly calculate an inconsistency coefficient θi,i+1. We note
that other methods, such as Pearson's χ2 test, can also be used to examine (x) and (x).

In addition to the pair-wise consistency test above, one can also check the agreement
between the actual observed histograms and the consensus histograms predicted from the
WHAM results. Given the {pl} and {fi} from the WHAM calculations, the consensus
histogram in each umbrella window, denoted by , can be obtained according to
Eq. (5) and then compared to the observed probability distribution pi (xl) in the same
window. Among various possible methods, in this study we adopt the relative entropy,
denoted by ηi, as a metric for the consistency between  and pi(x):

(41)

ηi is guaranteed to be non-negative, with smaller ηi values indicating better agreement
between the two probability distributions.

Optimal Allocation of Computational Resources in Umbrella Sampling

Assume that one sets up umbrella sampling simulations aiming to calculate the free energy
difference between the first and last umbrella windows. For simulation i, the variance of the

mean coordinate var  asymptotically depends on the simulation length ni as var ,
where vi is a constant for window i. To obtain an estimate of the {vi}, one could first
simulate each umbrella window for a short length n'. We caution that these initial
simulations should be sufficiently long to avoid significant systematic errors, which can be
indicated by the inconsistency coefficients as mentioned earlier. Under the constraint of a
fixed total length of all simulations Σini = N imposed by available computational resources,
we seek to optimally allocate the {ni} for the individual simulations to minimize the
statistical error, which according to Eq. (1) is determined by Σivi/ni. Utilizing the Cauchy-

Schwarz inequality , we have

(42)

The two sides above are equal if and only if , with λ a normalization constant. This
relation can also be derived by applying Lagrange multipliers. Therefore in the optimal
allocation scheme one should sample each umbrella window with the simulation length

proportional to , based on the variances of the mean position estimated
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from trial runs of equal length n'. We note that whereas the prescription above may serve as
a general guideline, in practice other technical factors also need to be considered. In the
replica exchange scheme, e.g., all simulations must have the same length. In such cases, one
could either first simulate all windows with replica exchange and then perform extension
runs for those windows that require further sampling, or introduce additional windows in
regions of poor statistics.

RESULTS

In this section, we present two tests for the numerical algorithms and the error estimation
scheme discussed in the Methods section. In the first test, we analyze data from a practical
application, a set of trial molecular dynamics (MD) simulations in our study of ion
conduction through a protein channel.22 Our focus in this test is on the performance of
different numerical algorithms to solve the WHAM equations. In the second test, we carry
out Monte-Carlo (MC) simulations on a simple potential designed to reproduce some
common problems (such as hysteresis) in practical applications. Moreover, with the true free
energy profile known, the absolute errors can be calculated, allowing us to assess the quality
of the estimated statistical errors.

Umbrella Sampling of Na+ in an Ion Channel

As described in ref. 22, a total of 153 umbrella windows with a uniform spacing of 0.5 Å
were employed to determine the free energy for passage of a Na+ ion through the
transmembrane pore of the GLIC channel.22 In each window an umbrella potential with a
spring constant of 10 kcal/mol/Å2 was applied on the z -coordinate of the Na+ ion along the
membrane normal direction, and a lateral restraint on the xy plane was applied to confine the
ion in the bulk region.22 For the present study, we performed new calculations in which we
implemented Hamiltonian replica exchange20 between neighboring windows. Here we
analyze data from a set of trial MD simulations of 1 ns in each window. We construct
histograms with a uniform bin width of 0.02 Å for each of the 1-ns trajectories as the input
for the WHAM calculation. We note that the resulting free energy has a considerable
entropic component, due to a significant variation in the lateral area accessible to the ion at
different z positions. The mean squared deviation of the ion in the xy plane from the axis
varies from ~0.6 Å2 at the narrowest portion of the pore to ~28 Å2 in the bulk region.

We first compare the performance of the superlinear (trust region and BFGS) algorithms and
the traditional direct iteration method in solving the WHAM equations. In all methods the
iterations start with given initial values of the probabilities {pl} or the normalization factors
{fi}. Although it is common practice to assign a constant initial value to all {pl} or {fi}, it
was shown that using more accurate estimates of the free energy as initial values can
significantly speed up the convergence in the direct iteration method.23 In fact, approximate
{fi} or {gi} can be calculated by integrating the gradients, or the mean restraining forces
(Eqs. 24, 31). Here we test each method, first for constant initial values, and then by using
the coarse-grained profile determined from the mean forces. In our implementation of the
direct iteration method, the convergence is deemed achieved when the relative change in
{pl} for any l by a WHAM iteration is smaller than a given threshold δ. We test each case
with a larger (10−3) and a smaller (10−6) δ value.

As shown in Table 1, the trust region and BFGS numerical algorithms yield more accurate
results than the traditional direct iteration method, indicated by smaller values of the target
function A. In fact, the direct iteration method with a convergence threshold of δ = 10−3

leads to a rather inaccurate free energy profile (Fig. 1A, blue dashed curve), with an error of
more than 2 kBT, when starting with uniform initial values. When the gradient-based
estimates of the {fi} are used as initial values, the direct iteration method indeed converges
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faster, with the threshold of δ = 10−3 almost satisfied already at the start of the iterations. To
achieve better accuracy with a more stringent threshold of δ = 10−6, however, a large
number of iterations is still required, taking a computational time at least an order of
magnitude longer than the trust region and BFGS methods. The example also demonstrates
that apparently small variations between WHAM iterations, on the order of δ, do not
necessarily mean that convergence at that level of accuracy has been achieved. At the end of
the WHAM iterations in our test, the free energies change by less than 10−6 kBT in a single
iteration, although their absolute errors are still on the order of 0.01 kBT, implying that to
gain one more significant digit in the result, one needs to perform thousands of iterations. In
contrast, the convergence rate of superlinear algorithms increases when approaching the
final solution; in our case only ~500 more equivalent iterations are required in the trust
region method when the termination tolerance is decreased from 10−6 to ~2×10−16 (the
minimum relative change that can be represented by a double-precision floating-point
number).

The results of the free energy calculation are shown in Fig. 1. The coarse-grained free
energy profile (red curve, Fig. 1A) obtained by integrating the mean forces (Eq. 31) indeed
closely overlaps with that (blue solid curve, Fig. 1A) obtained by solving the WHAM
equations. The statistical uncertainties in the average position  (Fig. 1B) are largest in the
region between x =−20 Å and x =0 Å, which is actually the narrow part of the channel where
the ion is coupled to the motions of the protein side chains. The flat baselines at the two ends
of the free energy curves (Fig. 1A) represent the bulk water regions at the two sides of the
channel, respectively. Although the MD simulations were performed under 3D periodic
boundary conditions, the umbrella windows do not span the entire length of the unit cell and
the windows at the two ends are still too far from each other to have an overlap across the
periodic boundary. Nonetheless, in the absence of a membrane potential, the two levels at
both ends of the ideal PMF should match, although in a calculated PMF they may not match
exactly due to the statistical errors in the finite sampling. Overall, the calculated statistical
errors of the free energy shown in Fig. 1A appear to be reasonable, and offer a faithful
estimate of the uncertainty in the baseline difference. However, as the true free energy
profile is not known in this case, we could not thoroughly calibrate the errors. To
systematically examine the validity of our error estimation method, in the following we
design a model potential that allows us to obtain the absolute errors of the calculation.

Umbrella Sampling of a Model Potential with Hysteresis

As illustrated in Fig. 2A and discussed earlier, when the reaction coordinate x is fixed at a
given value, a multidimensional system may still populate different metastable states
separated by high barriers in directions orthogonal to x. Insufficient sampling of the relevant
orthogonal coordinates (or “solvent degrees of freedom”) may give rise to systematic errors
in the obtained free energy and result in hysteresis. Here, we reduce the problem further and
assume fast relaxation in the orthogonal degrees of freedom (y) in each well of Fig. 2A, but
slow transitions between the wells. Analogous to the Marcus theory of electron transfer, we
can then collapse motion in y and treat the problem as a transition between two one-
dimensional surfaces, as shown in Fig. 2B. In addition to the continuous dimensionless
reaction coordinate x, our model includes an orthogonal y coordinate, which takes discrete
values of 1 or 2, representing two metastable states with different potentials Ei(x):

(43)

For simplicity, we use harmonic potentials
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(44)

in which a1 =−4 and a2 =4. The free energy as a function of x is then

(45)

as shown in Fig. 2C.

To sample the free energy, we carried out MC simulations in a total of 21 umbrella
windows, covering the range from r0 =−5 to r20 =5 with a uniform spacing of Δr=0.5. In
each simulation, an umbrella potential with a spring constant of K =17 kBT was applied. At
every MC step we made a random choice for either a y -move with a probability of 10−4, or
otherwise an x -move. In an attempted y -move, the y -coordinate is switched to the
alternative value (i.e., from 1 to 2 or vice versa). In an attempted x -move, the x -coordinate
is moved by a random displacement from a uniform distribution in [−0.24, 0.24]. In either
case the energy at the new coordinates is calculated, and the move is accepted or rejected
according to the Metropolis criterion. The center, or reference position, of each window was
used as the initial x -coordinate for the corresponding simulation. The initial y -coordinate
was set to 1 for the first 12 windows (at r0 =−5 to r11 =0.5), and to 2 for the remaining 9
windows (at r12 =1 to r20 =5).

In Fig. 3, we examine the WHAM results and the error estimation from simulation data of
various lengths measured by the number of MC steps. We construct histograms with a
uniform bin width of 0.05 for the individual simulations, and then solve the WHAM
equations by the minimization technique described in Methods. The resulting coarse-grained
free energy profiles Gr(x) (red curves, Fig. 3A), calculated by integrating the local gradients
(Eq. 31), closely match the WHAM results G(x) (blue curves, Fig. 3A). Therefore, we
expect that the errors in G(x) can be determined from the errors in the mean x -coordinate 
in each simulation window, as described in Methods.

For short simulations (N =10,000), we find large systematic deviations in the free energy,
and significantly underestimated statistical errors. The reason for the deviations is that in
these short simulations the y -coordinate typically remains unchanged and undergoes no
transition to the alternative state during the entire simulation. This lack of equilibration gives
rise to particularly large errors in the windows at r10 =0, with equal expected probabilities of
the two states with y =1 and 2, and at r11=0.5, which sampled a different state (y =1) than
the expected most probable state (y =2) because of the biased initial condition. Consequently
both the barrier height and the relative difference between the two local minima deviate
considerably from those in the true free energy profile (green curve, Fig. 3A). As a result of

the inadequate statistics in y, the errors  in  are significantly
underestimated for the two windows, which in turn leads to an underestimation of the errors
in the free energy (Fig. 3A, N =10,000).

In principle, the discontinuity in y can be identified by a direct examination of the y -
coordinate in neighboring windows. In practice, however, this is not always possible in
simulations of complex biomolecular systems with an enormous number of degrees of
freedom, in which the states with slow transitions in the orthogonal subspace can probably
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only be described by collective order parameters. In such cases, the inconsistency
coefficient, obtained from the reaction coordinate x, can still be readily used to detect the
problem. For example, in Fig. 3C (N =10,000), the inconsistency coefficient θ for the two
problematic windows at r11 =0.5 and r12 =1 is found to be abnormally high, indicating that
the two corresponding simulations were not sampling a common unbiased distribution of x.
Indeed, the y -coordinate in these two simulations stays at 1 and 2, respectively, thus
resulting in the sampling of different potential surfaces.

As the simulations were extended to N =100,000 and N =1,000,000, multiple transitions of
the y -coordinate occur in the windows near r10 =0. As a result, the autocorrelation functions
of x decay slowly, and the block averaging method properly reports the large statistical
uncertainty of  in these windows, as shown in Fig. 3B. Consequently, the estimated
statistical error in the calculated free energy (Fig. 3A) is now consistent with the actual
absolute errors. The large variances in  for the windows near r10 =0 result in small and
more reasonable values of Ni, the effective numbers of independent samples (Eq. 37) in
these simulations. When these proper Ni values are used, the inconsistency coefficient θ (Eq.
40) for the two windows r11 =0.5 and r12 =1 is no longer high (Fig. 3C), indicating that the
discrepancy between the two histograms is not abnormally large in comparison to
expectations. Indeed, the infrequent transitions in the y -coordinate are already reflected in
the estimated variances of , and are thus accounted for in the error estimation of the free
energy.

As shown in Fig. 3D, the errors in the observed histograms are also reflected in the
consistency with respect to the consensus histograms. Insufficient sampling of the
orthogonal coordinate in an umbrella window usually results in higher values of the relative
entropy (η) in this window and in its neighboring windows. For example, for N =10,000, as
mentioned earlier, major inconsistencies occur near r11 =0.5 and r12 =1, and the η values are
indeed higher in the corresponding windows. For N =100,000 and N =1,000,000, relatively
large η values occur near the central window at r10 =0 which bears the largest uncertainty.
Overall, the η values decrease with longer simulation length N, indicating improved
consistency with more extensive sampling. We note that for a system characterized by two
local minima on the energy surface that are partially overlapping in projection, the resulting
free energy will typically feature a barrier at an intermediate location. In this barrier region,
the sampling is more challenging because this intermediate region tends to be of high energy
relative to the minima even within one well and, more seriously, both minima need to be
visited with the correct proportionality. Consequently, for such systems the barrier region
generally bears larger uncertainty in the free energy calculation, consistent with the results
for our model system here.

To further test the quality of the error estimation, we repeated the simulations 100 times
with identical initial coordinates as described above and different random seeds. When the
sampling size N is relatively small, the results are biased by the particular initial condition
and the systematic error in the free energy is significant due to hysteresis. As shown in Fig.
4, in this case the estimated errors are smaller than the absolute errors with respect to the
exact free energy. When N becomes larger, however, the systematic error arising from a
particular initial condition becomes insignificant in comparison to the statistical error, and
the latter becomes the main contributor to the actual error. When N is large enough so that
all umbrella windows get well equilibrated, the statistical errors obtained from Eq. (32)
indeed offer a faithful estimate for the absolute errors, as shown in Fig. 4. The results here
further confirm that an accurate estimate of the errors is only possible after sufficient
equilibrations (i.e., in the asymptotic limit, where statistical errors dominate).
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DISCUSSION

In this study, we demonstrated that superior numerical optimization algorithms, such as the
trust region and BFGS methods, can solve the WHAM equations with higher accuracy and
significantly faster speed than the traditional direct iteration method. In the direct iteration
method, the incremental change in each WHAM iteration can be smaller by orders of
magnitude than the actual distance to the solution, resulting in slow convergence rates and
potentially misperceptions of false convergence. In contrast, common numerical
minimization algorithms take into account the curvature of the target function and make a
more informed move in each iteration, thus requiring significantly fewer iterations to find
the solution. Furthermore, as the search approaches the optimal solution the convergence
rate of these algorithms will speed up, and their performance gain over the direct iteration
method will therefore be more significant when results of higher precision are desired. In
our tests we found that the BFGS method is more efficient than the trust region method,
mainly because BFGS constructs an approximate Hessian matrix and thus avoids the costly
computation of the second derivatives. If the number of the umbrella windows is very large,
the nonlinear conjugate gradient method is another viable choice, as it avoids the
construction of the Hessian matrix altogether.

One underlying reason for the poor convergence of the iterative solution to the WHAM
equations is that the free energies of each umbrella run need to be adjusted globally, but the
iteration operates locally. In our case of ion translocation through a membrane channel, the
WHAM iterations changed the free energies of windows at one end of the channel only
slowly relative to the windows at the other end. Even in a globally not yet converged state,
each window was already well-matched with its neighbors, and iterations had to maintain
that matching. The standard WHAM iteration thus faces similar numerical challenges as,
say, local update schemes in path integral simulations or in polymer simulations. The use of
minimizers successfully addresses this problem by using what amounts to gradient-based
multiparticle moves in the simulation analogs.

The coupled nonlinear WHAM equations also make it difficult to directly estimate the
statistical errors in the obtained free energies, especially for the free energy difference across
multiple umbrella windows. To address this problem, a coarse-grained free energy profile
can be calculated by integrating the mean restraining forces corresponding to the free energy
gradients. The statistical errors in the coarse-grained free energy can be easily determined
from the variances of the average reaction coordinate in each individual window. The
coarse-grained free energy is a good approximation for the normalization factors in WHAM
and, in the stiff-spring case, the desired PMF itself. On this basis, one can use the error
obtained from the coarse free energy profile to estimate the error of the fine WHAM profile.
In the WHAM-derived free energy profile, the statistical uncertainty in the difference
between two distant positions can thus be readily estimated (Eq. 32), with an explicit
expression of the error accumulation over the intermediate umbrella windows. Moreover, in
this scheme it is straightforward to decompose the statistical errors into the contributions of
each individual window; to further improve the accuracy of the PMF, one may focus on the
windows with predominant contributions to the errors and extend the sampling in these
windows.

The error estimation above relies on a proper estimate for the variance of the average
reaction coordinate in each window, which can only be achieved when the other orthogonal
degrees of freedom are also sufficiently sampled. Insufficient equilibration or sampling of
the orthogonal coordinates is a common problem in practical applications of free energy
methods, and may result in significant underestimation of the errors. This problem typically
manifests itself as inconsistencies between neighboring (and more distant) histograms of the
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umbrella windows, as different states of the orthogonal coordinates normally correspond to
different probability distributions also of the WHAM coordinate x. The inconsistency
coefficients introduced in this study can help identify discontinuities in the orthogonal
coordinates between neighboring umbrella windows, when data in each individual window
alone give no hint of such a problem, as demonstrated in our tests. If inconsistency is
detected, one may thoroughly examine all relevant coordinates in the involved windows for
potential discontinuity,24 or simply extend the simulations for a better equilibration. It is
therefore advisable to perform these consistency tests in addition to the error estimation in
umbrella sampling simulations.

As alternatives to WHAM, some other methods aim to directly determine the normalization
factors {fi} or equivalently, the free energy factors {gi}, without constructing histograms.
The multistate Bennett acceptance ratio (MBAR) method,16 e.g., obtains the optimal {gi} by
solving a set of coupled nonlinear equations, and provides a formula for the statistical
uncertainty in the {gi}.16 In this study, we introduce other routes to determine the {gi}, by
minimizing the function  in Eq. (19) and, more approximately, by using free energy
gradients in Eq. (28). It was shown that the MBAR formulism is equivalent to the WHAM
equations as the bin width in WHAM approaches zero.16 We also demonstrate in this study
that WHAM and our gradient-based method give very similar results for the same dataset.
Given such similarities, we therefore expect the statistical errors estimated by our method
and by MBAR to be comparable. However, we have not performed a direct comparison
because a full implementation of the MBAR error estimate would require manipulation of
matrices of dimensions n× k, where n is the total number of data points summed over all k
simulations. At least for one-dimensional umbrella sampling with harmonic bias functions,
our error estimation scheme is thus much simpler to implement than that of MBAR, and
clearly reveals the contribution of each umbrella window to the accumulated error.

A potential drawback of WHAM is the somewhat artificial choice of the bin width for the
histograms and the associated discretization error.25 The theoretical estimate25 of such error
in our test cases is well below 0.05 kBT; indeed, we find that when using different bin widths
the WHAM results typically differ by less than 0.01 kBT, much smaller than the magnitude
of other errors discussed in this study. However, we note that if the simulations are extended
by orders of magnitude, other errors could in principle be dramatically reduced such that the
discretization becomes the major error source. In such cases one can simply use a smaller
bin width to reduce the error. Nonetheless, WHAM has practical advantages in certain
applications. For example, the number of bins is typically much smaller than the number of
the original data, and does not increase with the data size. Therefore the reduction of the
data into low-dimensional histograms can have significant benefit in the speed and memory
requirement when dealing with very large datasets. Also, WHAM directly provides the
unbiased free energy profile, which is typically the main objective of umbrella sampling
simulations. Furthermore, the histograms permit a more detailed examination of the data. It
was noted that an exchange of data between different simulations will not change the
MBAR result.14,16 In contrast, with the histograms one can further check whether the data in
each simulation are consistently distributed to detect potential problems, as demonstrated in
this study. Overall, in practical applications, major errors are almost always due to imperfect
data arising from the finite sampling and the initial conditions. Having proper diagnostics of
such errors and indicators of the resulting inconsistencies provides a basis for the
development of optimized and refined free energy sampling strategies.
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APPENDIX A

In this appendix, the estimate of the statistical error in Eqs. 1, 32, and 36 is generalized to
higher-dimensional umbrella sampling in a space spanned by N order parameters xα,

sampled in S simulations with added harmonic bias potentials  for
simulation i. From each simulation, we obtain an estimate of the N components of the free

energy gradient from the mean restraining forces, . As in Eq. 28, we want to
combine these gradients into an estimate of the relative free energies Gi=kBTgi of the
restrained simulations. However, in multiple dimensions the numerically estimated free
energy gradients can be integrated through multiple paths, the results of which may not
match exactly, due to both statistical errors in the estimated gradients and discretization
errors of the integration. A path-independent result can be obtained by minimizing the
squared deviation of the free energy differences Gj −Gi between adjacent windows i and j
from the corresponding averaged gradients,

(A1)

where the sum is over pairs (i,j) of simulations with nearby restraining centers  and ,
such that the linear approximation in Eq. A1 is applicable. For restraining points on a
rectangular grid, minimization of χ2 results in a discrete Poisson equation with boundary
condition G1=0 (where we arbitrarily chose i=1 as reference of the free energies, without
loss of generality). In general, setting the derivatives of χ2 with respect to the Gi to zero
results in a set of linear equations that can be written in matrix form asMG = BF, where M
amounts to a discrete version of the Laplace operator, G is the vector of (unknown) free
energies Gi, and B is a matrix that produces the appropriate linear combination of the

restraining forces  forming the vector F, consistent with Eq. A1. The formal solution then
is G = M−1BF. From the errors in the mean positions of the order parameters, we can again

estimate the uncertainties in the corresponding restraining forces, var ,

and more generally estimate their covariances cov . The
covariances of the estimated free energies are then obtained as linear combinations of the
covariances in the restraining forces,

(A2)

where cikα = (M−1B)i,kα. Here we assumed that there are no correlations between the results
of different simulations i. If we assume further that the restraining forces are uncorrelated,
we obtain an estimate of the uncertainty in the free energies,
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(A3)

In practice, it may be simpler to circumvent the matrix computations and instead calculate
cikα directly by repeated minimization of the quadratic target function χ2, in what amounts to

a variational construction of the Green's function M−1. Specifically, if all  are set to zero

in Eq. A1, except , then numerical minimization of the resulting χ2 with respect to the
Gi_(as above with the reference G1=0) directly produces the required solutions cikγ = Gi. By
repeated minimization of χ2 for all k and γ, one can thus build up the entire set of
coefficients entering the error formulas Eqs. A2 and A3. We note that for one-dimensional
umbrella sampling, with the (i,j) sum in Eq. A1 restricted to nearest neighbors, one recovers
the results of the main text, in particular Eqs. 32 and 36.

APPENDIX B

In this appendix we show that our analysis of the statistical errors can be similarly applied to
umbrella sampling with more general biasing potentials w(x,r), such as those with
nonuniform spring constants, or anharmonic potentials. In the general case we define the
coarse-grained free energy

(A4)

whose derivative is

(A5)

We define

(A6)

The derivative of Gr(r) at ri is then given by

(A7)

in which  is obtained by averaging F(x,ri) in simulation i with biasing potential w(x,ri).
Then the difference of Gr (r) between any two windows is again given approximately by Eq.
(28), with the statistical uncertainty accordingly determined from the estimated variances of

the .
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For the harmonic biasing potentials w(x,r) = K(x − r)2 / 2 discussed in the main text, we

have , and  thus coincides with the average restraining force of
the biasing potential.
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Figure 1.

Umbrella sampling of a Na+ ion in an ion channel. The chosen reaction coordinate is the z -
coordinate of the ion, but is denoted by x here, as used consistently throughout this article.
(A) Free energy profiles calculated from the WHAM equations (blue solid curve) and from
the integration of the mean forces (red curve, which is largely overlapping with the blue
curve). The blue dashed curve represents the result from the direct iteration calculation with
a convergence threshold of δ = 10−3 and uniform initial values, as explained in Table 1 and
in the text. All curves are vertically aligned to have a value of zero at x =−38 Å. The plotted
error bars are for the free energy difference with respect to the first umbrella window at x =

−38 Å, as determined according to Eq. (32). (B) Standard deviation  in
the average position  in each window, estimated from the block averaging method12 as
described in the text. (C) Inconsistency coefficient π, defined in Eq. (40), between every pair
of adjacent umbrella windows. (D) Relative entropy η, defined in Eq. (41), between the
consensus and the observed histograms.
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Figure 2.

Model free energy surface. (A) Schematic illustration of a typical situation in free energy
calculations, with degrees of freedom orthogonal to the reaction coordinate exhibiting
multiple local minima. (B) Realization of the scheme in (A) with a simple quantitative
model, as defined in Eq. (43), with continuous motion in the x direction and discrete
hopping in the y direction between two 1D surfaces (blue). The green curve plots the
ensemble average of y for a given x. (C) The potential energies for the two states defined in
Eq. (44), and the corresponding free energy (green curve) calculated from Eq. (45).

Zhu and Hummer Page 24

J Comput Chem. Author manuscript; available in PMC 2013 February 5.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

Umbrella sampling MC simulations for different sampling sizes, plotted in a manner similar
to Fig. 1. The three columns show results for simulations with N =10,000, N =100,000, and
N =1,000,000 MC steps, respectively. (A) The free energy profiles calculated from the
WHAM equations (blue curves) and from the integration of the mean forces (red curves, Eq.
31), and the ideal (analytical) free energy profile (green curves, as in Fig. 2C). The free
energy curves are vertically aligned to have the same value at x =−5. The plotted error bars
are for the free energy difference with respect to the first umbrella window at x =−5. (B) The
standard deviation in the average position  in each window, estimated from the block
averaging method.12 (C) The inconsistency coefficients π for η all pairs of adjacent umbrella
windows. (D) The relative entropy between the consensus and the observed histograms.
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Figure 4.

Comparison of the estimated errors and the absolute errors, with respect to the free energy
difference between the two minima at x =±4 in the model potential. The umbrella

simulations with 1,000,000 MC steps are repeated 100 times, and the first N data from each

trajectory, with N ranging from 10,000 to 1,000,000, are used for analysis. From each

dataset, the estimated standard deviation calculated from Eq. (32) and the absolute error

(with respect to the ideal value, 0) are calculated. The two curves represent the mean (with

the standard deviation shown as error bars) of the estimated (blue squares) and absolute (red

circles) errors from the 100 datasets.
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