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CONVERGENCE AND REMAINDER TERMS IN LINEAR
RANK STATISTICS!

By HARALD BERGSTROM AND MADAN L. PURI

University of Goteborg, Chalmers University of Technology,
and Indiana University
A new approach to the asymptotic normality of simple linear rank sta-
tistics for the regression case studied earlier by Hajek (1968) is provided
along with the estimation of the remainder term in the approximation to
normality.

1. Introduction and summary. Let X, ---, X, be independent random vari-
ables having continuous cdf’s (cumulative distribution functions) F,(x),
F,(x) respectively. Consider a statistic S, = s(X,, ..., X,) with ES, = 0 and
ES,’ < co. Then, to prove the asymptotic normality of S, (as n — o), Hajek
(1968) uses the method of projection which gives to the statistic S,, the approxi-
mation of the form

(1‘1) S»= Z?=1E[S»IXJ']‘

Consider now the simple linear rank statistic S, introduced by Hajek (1962,
1968)
(1.2) Sa = L1 6{P(R,/n) — E[¢(R;[m)]}
where the ¢’s are known constants, R; is the rank of X, among (X, ---, X,)
and ¢(. ) is a score generating function defined on (0, 1). Ha]ek (1962) [see also
Hajek-Sidak (1967)] established the asymptotic normality of S, in (l 2) under
the assumption that the F, are contiguous, e.g., when Fy(x) = F(x — Ad,,) where
A is the unknown parameter and the d’s are the known constants. Later on
Hajek (1968) studied the asymptotic normality of S, for the general F,(x) (the
noncontiguous case). Under the setup of Hajek (1962), Jurec¢kova and Puri
(1975), referred to hereafter as JP, studied the problem of determining the rate
of convergence of the cdf of S, to the limiting normal cdf and established it of
order O(N-#+?) for 6 > 0. In this paper we not only give a new approach to the
asymptotic normality of S, for the general F, (i.e., not necessarily contiguous)
but improve the results of JP in providing a sharper bound (for the general F,’s).
In the passing, we may also mention that whereas JP requires ¢ to have a
-bounded fourth derivative, here we only require the boundedness of the second
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672 HARALD BERGSTROM AND MADAN L. PURI

derivative. Furthermore whereas this paper gives more explicit error bounds
than the JP paper, the latter gives more information on the limiting behavior
of ES, and Var S,,.

We now introduce some notations. We define ¢(+) = 0 outside (0, 1). Then,
we can use the supremum norm

(1.3) 1G]l = SUPse (e, ()] -

Set

(1.4) p; = Ryn, pu = E[p;| X], ux)y=1 if x=0
and  u(x) =0 otherwise.

Then

(1.5) R, = T u(X, — X;) .

In this paper, we shall deal with the following approximation of S,.
(1.6) T, = Xt cdd(oi) — E[P(0:)] + (0: — 0:)9"(0:0)} 5
assuming that ¢’ exists on (0, 1) and
(1.7) T, = N1, E[T,| X;] .

Since E[(p; — p:)¢'(p:;)] = 0, it follows that

(1.8) T, = Zr,cdd(on) — ElP(0:)] + Ties ELor — 0u)d(00) | X1} -
Let H,, G, and G, be the cdf’s of S,, T, and T, respectively, and put

(1.9)  o}=E[S}, b2=E[T2, TI%= % Sraek, T, >0,
Then our theorems are the following:

THEOREM 1.1. If ¢ has a derivative on (0, 1) then

(1.10) 1G(8,0) — @()I| < 4CL2IIg11* + llg'IIF] Ziaaled?d, s
D(x) = (2a)~t (=, e~ dt

where C is the constant in Berry-Esseen’s inequality (Zolotarev (1967) gives the
approximation 0.9051). Further,

(1.11) 16, — 0ul < CI#Il + 119" DT s
with an absolute constant C,, provided ¢'' exists on (0, 1).

THEOREM 1.2. If ¢ has a second order derivative on (0, 1), then for any positive
integers n and r such that n='r* < §,

(1.12)  ||Hy(0pe) — Q)| < 4CQIIGIP + Nl¢'|°) i leald,?
+ G + 17T Prrer

where C, is an absolute constant.

REMARK. If the c¢; are chosen such that |c,| < a/n? with constant a for all
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i and n, then
r,, < ajnt,

and for r = [log n], [T, */®*) < a¥ e (log n) n~#(1 4 O(1/log n)).
Note that §,~c, is invariant and thus also §,-'T,, is invariant under the trans-
formation ¢; — y¢;, i = 1,2, --

2. Some lemmas.

LeEMMA 2.1. For any positive integers r and n, 2r < n, we have

@.1) E[(p; — pu)"] < b(r)n~
with

-r n—1 2 2r—2t -3t
@) M) SRR 5 "’2,),t 2

and for n7'r* <

(2.3) | b(r) < 2—%(27")’_ [1 + 8n-7] .
Proor. By (1.4) we obtain |

' 0y — Py = —'ll' 2ie [M(X — XF(X)] .

By the polynomial theorem we then get

@4  Elo,— o)l =g GO S BTl [t = X,) = AL

1

S+ -0 45, =2r.
We claim that any term in this sum is equal to zero if 5; =1 for some j,
Indeed we find that the conditional expection of the product with respect to all
X;, j # jois equal to 0 if s; = 1. Hence we have only to regard terms with
s; = 0 or = 2 for any j, and there can be at most ¢ < r exponents s; different
from0. Ifs; >2,j=1,2,.--,t 5; =0for j > t,i>t we obtain, observing
that
(X, — X;) — F(X)| = 1

(2.5 E[IIi [u(X; — X)) — F(X)]i < E Lo [u(X; — X;) — Fy(X))

= E[[I}= [Fy(Xs) — FA(X)]l = 47*.
This inequality remains true for all permutations of the indices 1, - .., n. Put
(2r)!

sleees!

(2.6) () = Zsl+--~+st=2r;aj22,j=1,.--,t

Since ¢ indices out of n — 1 indices can be chosen in (*;') different ways we
obtain from (2.4) through (2.6),

(2.7) E[(0: — pu)"] < 07 Ll ("Tr(D47"
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We claim that

(2r)! —te2r—at
(2.8) r() < —(—2—21‘—)' 2t .

Indeed, differentiating the identity

(Z;’=1yj)zr = Za Feeota= (2}‘)'
1 st—er

1"

Ht—lyl

twice with respect to all y; and then putting all y, equal to 1, we obtain

2"! r— 2r!

Now using (2.7) and (2.8), we get (2.1) and (2.2). We now estimate b(r) further,
mainly for use when n and r are large. Put r — ¢t = u. Then we can write

- b(r) < 27 X12h k(u)
with
k(u) — n-“(2r)! (r — u)2u23u .
’ (r — u)! (2u)!
Particularly
k(0) = (2r) k(1) < 4n-1 75 . (27,')'_

and for u > 1

_k_(i‘_'*‘_l_)_:n—l(l_ 1 >2u.23.(r_) (r—u—1y
k(u) r—u 2u + 1)(2u + 2)

<:in'r<i for n'r*< $.
Hence

o) < 2+ - COL[L 4 gnoip
r.
for n7'r* < $.

LEMMA 2.2. For any positive integers r and n, 2r < n, we have

(2.10) ET, — 1,77 < «(n)ll$|"T%,
if ¢' exists on (0, 1), and if " exists on (0, 1)
(2.11) E[(S, — T.)"1 = 6@2n)ll¢"|MT%,
(2.12) E[(S, — T,yr] < d(r, 9)T%,
with
b(2r) < n~ T (*7) (4r)! pr-at | Q-st

(4r — 21)!

_ 4r)! _ -
C < 221' 2r 21; n ( t4r 2t 2 t
()5 207 T () 5

d(r, ¢) = [N I¢"Il + eI I¢"|IT* -
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Further we have the estimates

(2.13) b(2r) < 2o GOV 11 4 20p-1p9)
- 2r)!

for 2°n7'r* < 3,

4
(2.14) o(r) < 22’;'

REMARK. By Stirling’s approximation of the I'-function we have

[1+227'%  for n'r*< .

gg T = 28rtipir(exp —2r) exp —

Proor. By (1.6) and (1.8) we get
(2.15) T, — Tn = Yo — pu)P'(0u) — Di-viizs E[(0: — 0:1)9"(0:) | X1}
and for j + i
(2.16)  E[(0: — pu)¢'(0:0)| X;] = -'17 Dike E{Ju(X; — X)) — Fy(X))1¢'(0::)| X}

%E[u(X X)) — FX)) (o) | X1

since the conditional expectations in the sum are zero for j # k, i. Now using
the relation

(0 = P9 () = - Tfus UK, — X;) = FYX) (00
and noting that
E[(0; — p:)¢'(0:)| X.] = 0
we obtain from (2.15)

(2.17) T,— T, = _’11_ PHID NI R 2P
with
(2.18) Vij = [u(X; — X;) — F(X,)]¢"(0:)
— E{[u(X, — X;) — F(X)I¢'(0:) | X;} -
Clearly
(2.19) E[V;|X,]1=0, E[V,;|X]=0.

By the polynomial theorem we get
(2.20)  E[(T, — T.y"] = nE[L1a 3w & Vi

— - (2]‘)! n » ;i

= T T1 5 (s35) BT T (e Vo)
where the sum should be taken over terms corresponding to different vector
solutions {s;;}, i, j = 1, - -- n, j # i of the equation

(2.21) Diir Diwi Sy = 2r.
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The expectation

(2.22) E[Ii I3 Vigii]

is equal to O for some vector solutions of (2.21) since (2.19) holds, and we have

only to regard those solutions for which the expeciation (2.22) is not equal to 0.
We say that s;; gives the contribution s,; to the sum (2.21) from each of the

indices i and j. Hence according to this notation an index k gives the contri-
bution

(2.23) 9(k) =% 2%urSes + F Lher Sin

to the sum (2.21). By conditioning with respect to all X, j + k we easily find
that the expectation (2.22) is equal to 0 if k gives the contribution } to the sum
(2.21), i.e., if 5,; = 1 for exactly one index j + k, and s;, = O for j + k or if
s;, = 1 for exactly one j and s,; = 0 for j + k.

The sum }; on the right-hand side of (2.20) can be divided into partial sums
as follows. Let C be a collection of different positive integers belonging to the
set1,...,2r,say C = (1,2, ---,¢). Let )], consist of all terms in (2.20) cor-
responding to the vector solutions of (2.21) such that

(a) s;; = 0 if not both i and j belong to C;

(b) for any k € C the contribution to the sum (2.21) is larger than 4. Note
that C can contain at most 2r different integers since every k € C gives at least
the contribution 1 to the sum (2.21). Clearly partial sums ], and 3., contain
no common terms if C; # C,. Consider now the expectation

E[[Li= IT5s: (eiViy)]
where the i and j belong to the collection C. Note that s;; may be equal to 0
for some pairs (i, j). By Holder’s inequality we get, using the fact that |V,;| <
2{l¢"lls
(2.24) |E TLian IS (€ Vi)v] < i i led s EL(V ) 1ei™
< 2| Tl

where

(2.25) si = Ntoi8i;, Dis, =2r.

The partial sum corresponding to C is then estimated by
2r)!

(2.26) T 80— @ Tt e

c
TTiza TTks5 (s:)!

Note that (2r)!/T]i., T1t.; (5:;)! is an integer. Hence we have

)
N@) = 2¢
0 Z I Ay | (sij)!

terms in the class C which are estimated by (2.24). Let <, be the set of all terms

2 I T3 (e Vig)id
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in (2.23) which belong to some class C containing exactly ¢ indices. Let (s,
Sy -+, 8,) in (2.26) be given, 0 < 5, < 5, < -+ < 5, iy s, = 2r. Then ac-
cording to the symmetry the set &, contains a sum of terms, each estimated by

(2:27) 27| |P TTs e

where (k, - - - k,) is any combination of numbers 1, 2, - .., n to the rth class and
in any order within this class. Let the number of terms in C, for a fixed vector
(85 83 + -+, 5,) as above be n(f) and the sum of terms (2.27) belonging to (s,,
Sy -+, ;) be A(sy, 5 ¢ -+, 5,). (Note that n(r) depends on sy, ---,s,.) Then,
since A(s,, - - -, 5,) is a symmetrical function '

t
(2.28) Ay sy -5 80 = "R T e

where )}’ is the sum all terms belonging to all permutations of the numbers
1,2, ..., n. By Holder’s inequality we get, observing that

S
leg, [ =[], Zia 5 = I,

(2.29) 2 i el = T (7 k)™

and here
x'en = n P T
Y n
Hence we obtain by (2.28) and (2.29)

1
Asy 8+ -5 8) S 2PN m(0) - — Db e

Since &, contains (F)N(f) terms we then find that &, gives at most the contri-
bution

1
n—27227||¢r”2r(;t)N(t) . _’_l_ 21’1’=1 ciﬁr
to the right-hand side of (2.20). Putting

i=1%t rm'go’

1
I3 = — Dt
n

and regarding the sets &, for r = 1, 2, ..., 2r, we obtain from (2.20) that

(2.30) E[(T, — T,)"] < 2n=™||¢"| "%, TiL(INC) -
We estimate N(7) in the following way. Consider the identity

(2n)! .
@31)  (Tha Do xexy)” = N LAY (ICEAT)

ITi-0 6= (5:5)!

If an index k gives the contribution > 1 to the sum (2.21), i.e., to the sum

i Dbei Sy = 2r,
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then the double product
IT5an IL5ws (i)
contains x, as factor at least in the power 2. Hence differentiating the identity

twice with respect to each x,, k = 1, 2, - . -, ¢ and then putting all x, equal to 1
we get the inequality

0
0

: (281 25 xixj)zr}

Tk

(2.32) 2'N(1) = {Hiﬂ

zk=l,k=l,2,~-.,t )
The right-hand side, however, is at most equal to

L
sp=lk=1,-t  (4r — 2t)!

(2.33) {mﬂ%«z;l %))}

Combining (2.30), (2.32) and (2.33), we get
E[(T, — T,)"] < <(n)ll¢/I" T,

with
_ 4r)! - -
C :22r 2r 2: L) ( t4r 2t_2 t
(") =2 T () o Dy
1
Iy = — D el
n

We estimate ¢(r) exactly in the same way as we have estimated b(r) in Lemma
2.1 and then obtain for u = 2r — ¢

o(r) < ZuZo k(u)
with
(4r)!

K = Gt —w

2r — uy™ . 2%,

Hence

_ @n! -1, (o (4D
k(0 = k(1) < n=* - (27) i

and foru > 1

i(%(i‘_)ﬁ <4nr <} for <3,

Hence for n='r* < §
c(r) = (@nt [1 + 8n7'r?] .
= (@2n)!

Thus we have proved (2.13) and (2.14) of the lemma.
It follows by the definition of T, that

S, — T, = X, clé — E§)]
with
€] = 3(o: — pa)’ll9"]] -
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Hence
E[(S, — T,y']1 £ n* X1, ¢ E[(§, — E§)™]

and by Lemma 2.1
E[(§: — E(€)"] = 27E[EX] < |I¢9"I1"El(os — 0w)"] = nb(2r)l|¢"|" -

Thus we get (2.11)
E[(S, — T,)] < b(2n)T,, .

By Minkovski’s inequality we obtain (2.12) from (2.10) and (2.11)
El/ﬂr[(S” - T‘n)ar] = El/w[(sn - Tn)w] + El/w[(T‘n - T»]zr] .
Lemma 2.3. T, = 2t T, with independent random variables
(i) 1.9 = e{d(p;5) — Elp(p;)]}
1
+ o Dtes GLE@(X, — X;) — Fy(X.)¢'(0:) | X;] -
Further, A
(i) S [EIT 2P < 4R201¢1° + Nl¢'11} Ziaaled -
ProoF. We get the representation (i) by (2.16). Using well-known inequa-
lities
@+ o)) < 4[lal’ + 18],  [(Ziaa)| = m Dialal
we obtain
. 4 '
E[|T,9F] < 4|, E[[$(0;)] — E(py;)F] + — Zles [P -
Here
E[|¢(p;5) — E[4(0: )] < 2I¢11E($(0;5) — E(¢(p;7)) -
Thus we get (ii).
3. Proofs of the theorems.

(a) Proor oF THEOREM 1.1. (1.10) follows from Berry-Esseen’s inequality
and Lemma 2.3 and (1.11) from Lemma 2.2 (2.12).

(b) Proor oF THEOREM 1.2. For & > 0 we get
@B.1)  P[S, < 8,x] < P(S, < 6,x, 1S, — T, < 43,) + P[IS, — T, = h3,]
< P[T, < 6,(x + )] + P[IS, — T,| = #5,] .
Applying Theorem 1.1 we get
(32)  P[T, < 6,(x + B)] < O(x + k) + 4CQIIPI + |11 - T leida™.
Here

(33) O(x + h) < V) + [[PW)]| = O() + ——

@m)} -
By Cheb)}shev’s inequality and the inequality (2.12) of Lemma 2.2 we get
(3.4) P[|S, — T,| 2 hd,] < d(r, $)I7(h3,) 7™ .
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Now we choose n such that

h — 2r —27
_(2—71.); - d(r’ ¢)Fnr(h3n) )
i.e.,
(3.5) h = [(Zﬂ)id(r, 90)3,,"'1"‘;‘[,]1/"”“ .

It follows by Lemma 2.2, (2.12), (2.13) and (2.14), and the remark made after
Lemma 2.2 that for n='r* < 3

[d(r, O = (il + 1”11
with an absolute constant C’. Then it follows by (3.4) and (3.5) that

Gagr T A OTEH)™ S CLEP )+ 191D

By (3.1)—(3.6) we get the inequality (1.12) in one direction. It follows for the
other direction in the same way.
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