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CONVERGENCE AND STABILITY
IN THE NUMERICAL INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS

GERMUND DAHLQUIST

1. Introduction and summary

1.1, Statement of the problem. Consider a class of difference equations

(LY) o ¥nin + Spa¥nin-1 + - + %o¥n = B (Bpfosi + - + Bofn)s

where 5 is a parameter and
f03f15f2’ cet

are the values of a given function f(z,y) at equidistant arguments
x, =a+nh, ie.
" fn=f(xni?/n)-

We shall investigate the use of such equations for the numerical solution
of the initial value problem for an ordinary differential equation

(1.2) Y =flxy), y@)=1y-

The behaviour of the solutions of (1.1) when A is small and = is large,
is then of particular interest.

Some particular formulas of this class have been in practical use for
a long time, the simplest example being the point-slope formula

(1.3) Ynt1 — Yn = hfn .

It is well known in this case that y, tends to the solution y(x) of (1.2)
when 2 — 0 and n — oo, so that'a+nh=2x, provided that f(z, y) is con-
tinuous and satisfies a Lipschitz condition.

Two slightly more sophisticated formulas which have been utilized are

(1.4) Ynir = Yn = 3P (fosr + [0)»

(1.5) Yniz — Yn = 3P (fraz + 4 + 11) -

Equation (1.4) is based on a quadrature formula, known as the trape-

zoidal rule, and similarly (1.5) is based on Simpson’s rule. We may note
Received October 23, 1955.
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34 GERMUND DAHLQUIST

that (1.3) defines a straightforward computational scheme, whereas in
(1.4) y,,,4 is found implicitly on the right hand side so that there arises
in each step an algebraic (or transcendental) equation, which is usually
solved approximately by some iterative method. For brevity, this equa-
tion will always be called ““algebraic” in accordance with the practice of
Hartree and others. Such a formula is called a closed formula, while a
formula like (1.3) (where ¥,,, is not found on the right hand side) is
open. Formula (1.5) is also closed. Note that it is a second order difference
equation. A special procedure is therefore required in the beginning to
give the value ;. Such complications are accepted because of the greater
accuracy of (1.4) or (1.5) when compared with (1.3).

One special feature is common to these particular cases: they contain
the variable y, explicitly in two points only. This is the case for almost
all practically used methods of this kind. More general formulas of the
type (1.1) have recently been studied by Frei [4] and Quade [9]. How-
ever one may ask whether it would not be possible to make use of the
information from the preceding points in a much more efficient manner
by choosing a more complicated formula of the type (1.1). This question
was the starting point of the writer’s investigations. The main result
is rather negative (Theorem 4), but there are new formulas of this general
class which are at least comparable to the classical numerical methods
when high accuracy is wanted, e.g. (1.10) and (1.11).

In order that the difference equation (1.1) should be useful for numer-
ical integration, it is necessary that (1.1) be satisfied with good accuracy
by the solution of (1.2), when % is small, for an arbitrary function f(z, y).
The exact definition of the word “arbitrary’” will be given in Section 2.1.
It follows from this that the value of the expression L[y(z)] defined by

k
(1.6) Lly(x)] = go’oc,y(x +vh) — h B,y (x + vh)

should be small when % is small, for all sufficiently regular functions
y(x). This imposes restrictions on the coefficients «,, §, in (1.1). By
expanding the terms in L[y(x)] into powers of h, we see that

Lly(x)] = O(R»+)
for arbitrary y(z) if and only if the following p+ 1 linear relations hold:

(1'7) Zk,av =0 ’

=0

(1.8) Zk'(a,vv/s! - B Ys=1))=0 (s=1,2,...,p).
v=0
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The largest value of p for which this holds will be called the degree
of the operator L, whereas the integer k (i.e. the number of preceding
points oceurring, explicitly or implicitly, in (1.1)) will be called the order
of the operator L or the order of the difference equation (1.1). Since the
number of coefficients is equal to 2k + 2, one may expect that they can
be chosen so that (1.7) and 2k relations of the type (1.8) are satisfied, in
which case p is equal to 2k. A proof of this and an explicit expression
for the corresponding operator will be found in Section 2.4.

By the expansion of (1.6) into powers of %, we see that, if p is the degree
of L, then
(1.9) Lly@] ~ - Chosty@D (@) (h-0),

where C 18 a non-zero constant independent of y(z). In particular, L{y(x)]
vanishes identically when y(x) 18 a polynomial whose degree is less than
or equal to p.

A simple calculation gives for instance the following values for the three
methods discussed above.

Point-slope method: £ =1, p =1, C = 1/2.
Trapezoidalrule: k=1, p =2, C =1]12.
Simpson’s rule: k=2 p=4,C=1/90.

The value of &, L[y(x)] is essentially equal to the error in the estima-
tion of y, ., on the assumption that ¥,k 4, Ynip—g - - -» Yn are exact. More
accurately, it gives the error in ¥, ., — kS, Y, .5 On that assumption.
It is therefore called the local truncation error. For a good formula this
should be small, and hence p should be large. This is however not
sufficient, since one has also to consider the inherited error, i.e. the error
produced in y, ;. by the errors occurring in the previous steps. It will
be proved (Section 2.6) that those methods for which p is high show a
very unpleasant error growth, which is in fact so strong that it is neces-
sary to reject all formulas for which p>k+2. An “explanation” may be
that the sensitivity to delicate features in the sequence ¥,,, ¥ 11, - - - Ynis)
Jus Fusts -+ s fnan> Which is expressed by a high value of p, is indistin-
guishable from a sensitivity to perturbations. Some perturbations, e.g.
round-off errors, are unavoidable in numerical computations, so that not
even the difference equation is solved exactly. Another source of pertur-
bations is the algebraic equation occurring in each step, which is usually
not solved exactly. We must also observe that the difference equation
requires k initial values. Only one of them is given in the original prob-
lem, and the accuracy of the final results depends on the choice of pro-
cedure used to obtain the estimates of the values y;, ¥, . .., Y5, From

8%
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a practical point of view one is led to require that small changes of the
extra initial values must not cause large changes in the final results. A
numerical example in the next section will probably make this so-called
strong numerical instability more clear.

The instability of formulas of degree p> & + 2 is the worse, the smaller
k has been chosen. All formulas of degree p=£%+2 give a different type
of numerical instability, whose effect in a given range of integration can
become arbitrarily small, provided that % has been chosen small enough.
We may call this phenomenon weak instability. 1t is not so serious that
the formulas of degree p=Zk-+ 2 must be rejected. On the contrary, the
writer is of the opinion that some of them are the best ones for practical
use when high accuracy is wanted. Some care is however necessary,
in particular when dealing with problems where there are transients which
are damped out quickly compared to the timescale of the phenomena
under consideration. In fact the difference equations in this case possess
oscillating, ‘“‘parasitic”, solutions whose amplitudes increase the more
quickly the quicker the transients are damped out in the correct solution.
When these formulas are used, it is, however, important that the extra
initial values ¥, ¥,, ..., ¥, should be determined with an accuracy
comparable to the local truneation error in the following computations,
and the round-off errors kept smaller than the local truncation errors.
In particular cases, the weak instability has been discussed in the liter-
ature, for instance by Todd, Dahlquist, Rutishauser, Léwdin, Craggs
and Mitchell. See also Milne [7] and Collatz [2]. These problems will be
dealt with in another paper under preparation, where some quantities,
called growth parameters, will be introduced for the study of this weak
instability.

The growth parameters have been used in a heuristic discussion of
formulas of low order which results in the suggestion of two formulas
of order 4 and degree 6.

(1.10) Ypsa = — Ynis + Ynx + Yn + 3 (fris + faa + I1664fn+2) ,

(1'11) Ynta = + Ynis — Yur1 + Yo + h(fn+3 +
+fn+1 + %azfn+2 + %%64fn+2) .

These may be compared to Newton-Cotes’ formula, which can be written
(1'12) yn+4 = y'n + 2h’ (fn+3 + fn+1 + %52fn+2 + fga4fn+2) N

The first one has, roughly speaking, a smaller regular error component,
but it is less stable, while the second one has a larger regular error com-
ponent, but is more stable.
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A more detailed error analysis and some numerical examples will be
presented in the paper under preparation. Moreover, an attempt will
be made to generalize to other types of differential equations and nu-
merical methods.

1.2. A numerical example. Apply the formula
Ynre = = 4Ynn1 + 5Yn + b(4fpin + 2f3)
to the differential equation
y =9 y0)=1.
The local truncation error is small:
Ly ~ $hty®(z).

This formula has in fact the smallest truncation error among all open
formulas of order 2. If we take h=0,1 we get the difference equation

(1.13) Yotz = — 3,6 Ypq + 5,2y, Yo =1

with the exact solution
Yo = (1=A)5™ + AL,

£y &~ 1,105168, fo v — 4,705168

where

are the roots of the quadratic equation
(2436 —-52=0

and A is a constant determined by the choice of ;. The solution of the
differential equation is ¢%1* ~ 1,105171",

Note that the term A4 ¢,* has a very strong growth, e.g. {,°~5,3- 106,
We may call this the parasitic solution. We see below the results of two
computations using (1.13) where y,,, has been rounded off correctly to
six decimals in each step before the computation of ¥, ,,.

CasEk I: Take y,=1,105171, i.e. ¢! correct to six decimal places. In
this case 4~ —5,16-10-7. Hence, although the initial value is good, we
obtain a component of the parasitic solution.

Case II: Take y,=¢,. Hence A=0. The error of the theoretical
solution of the difference equation is then less than 8-10-3. (See Case
ITb in the table). But in a recursive numerical computation to six
decimals, the round-off errors inevitably introduce the parasitic solution,
and the actual error is larger than 0,2 for n=10. See Case IIa in the table.
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Case I Case Ila Case IIb

" (numerical solution) (numerical solution) &, with six correct dee.
Yn 10% - error Y 108 - error 108 - error

0 1,000000 . 0 | 1,000000 01
1 1,105171 0 1,105168 3 1,10516781 3
2 1,221384 19 | 1,221395 8 | 1,221396 7
3 1,349907 —48 | 1,349852 7 | 1,349847 12
4 1,491532 293 | 1,491787 38 1,491808 17
5 1,650001 —1280 | 1,648797 - 176 1,648698 23
6 1,815963 6156 | 1,821623 496 | 1,822088 31
7 2,042538 —28785 | 2,015902 —2149 | 2,013713 40
8 2,089871 135670 | 2,215192 10349 | 2,225491 50
9 3,097662 —638059 | 2,507999 —48396 | 2,459541 62
10 | —0,284254 3,002536 | 2,490202 228080 | 2,718205 77

In spite of the favourable local truncation error, the results are very
bad. Case IT with the “wrong’ ¥, is better than Case I. The results
would be still worse with a smaller value of £, since the number of steps
in a given range would increase. |{,| increases also a little, but that is
of minor importance. The instability is in this case a consequence of
Theorem 5 below. Here k=2, p=3.

The simple trapezoidal rule gives an error less than 0,0023 for » = 10.
Simpson’s rule is able to give more than five decimals accuracy.

2. A theory of strong instability.

2.1. The class of differential equations under consideration. We as-
sume that a solution y(x) to the equation

(2.1) dyjdz = f(z,y), yla) = ¥

exists for a£x<b, and that y(x) has continuous derivatives in every
point of this interval up to the order p+ 1, where p is the degree of the
operator L under consideration. It is also assumed that f(z, y) possesses
continuous derivatives up to the second order at every point (z, ¥) of a

region R defined by the inequalities
ly —y@)| =7, azxsbh.

r shall be so large that an approximate solution which does not stay in
R is of no interest. Hence we may put
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(2.2) ly@+z)| < K, asxsbh,

(2.3a) [f(@, y) — fle, )] < M|y — y|

for arbitrary points (z, y)eR, (z, y)eR.

The following theory will apply also to s simultaneous equations,
unless otherwise stated. The quantities y, f ete. may be interpreted as
vectors in s dimensions, |y being the norm of the vector y in some
suitable sense.

We shall give another formulation of the Lipschitz condition which is
more convenient when dealing with integration formulas of the closed
type. Since in this case the dependent variable has to be solved from
an algebraic equation in each step, the meaning of the solution of the
difference equation is not completely clear a priori. In order to define
this, the following lemma is needed. (Cf. the proof of Theorem 1 below.)
The lemma is not proved here, since it follows immediately from the
general theorem on iteration, given for instance in the book of Collatz
[2, p. 351f.]

WA

LemMmA. Let u=u(x) be a given vector in s dimensions, s 1, defined for
asx<h and let A be a given constant. Put

() — Af (=, y(z)) = u(@)
Suppose that |AM| <1 and that |u(x) —u(z)| < r(l —|AM]|).
Then, for each x, a <x < b, the equation
9@ — Af(z, y(x)) = u(@)
has exactly one solution y(x) in R.

Let » and » be two vectors satisfying the conditions of the lemma,
and let y and y be the corresponding solutions of the equation mentioned
there. Then

ly — 9l < lu ~ o + JAf@,y) —f@y) £ |lu—a + AM|ly -yl .
Hence
(2.4) ly —yl £ (1~ AM])Yu — uf,

and the new formulation of the Lipschitz condition reads
(2.3b) If (., y) = fle, 9 £ Mlu ~ ul
where

M =M1~ AM])1.

2.2. The class of operators. It will be convenient to discuss the opera-
tors L in terms of their generating polynomials
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o(0) = o l* + o O 4+ L+ oy,
o(0) = Bil* + Pral* T+ ...+ By

The roots of g(Z) will be denoted by

L100 Ca0r - +» Cio -
Let E be the operator defined by

BYy = Yna or BHylx) =y + h).
We shall always put n = [( — a)/h]. Then
Ly(x) = o(E) y(x) — ho(B) y'(z) ,

and the difference equation (1.1) reads
(2.5) oB)y, — ho(E)f, = 0.

The following assumptions will always be made:

A. The coefficients «;, §;, are real, o; 0.

B. The polynomials ¢({) and ¢({) have no common factor.

C. The degree p of the operator L is at least equal to 1.

Assumption A needs hardly any comment. Assumption B is made
for the sake of convenience in the theory, but nothing essential is lost.
Note for instance, that if ¢({) were a common factor, then (2.5) would
be equivalent to an equation of lower order

Ql(E) Yn — kGl(E)fn = Yn>
where () = e(Q)/e(8),
o1(8) = a(8)/e(C)

and vy, is a solution to the equation ¢(&)y, =0, completely determined
by the method of start. The use of (2.5) is in the long run not much
better than the use of the lower order equation

o(B) y, — hoyB)f, = 0.
Assumption C is more interesting. We see by (1.7) and (1.8) that it
is equivalent to the two equations
(2.6) e(l) =0, ¢'(1) =o(1).

The first equation is necessary for the existence of a solution y, to the
difference equation which converges uniformly to a continous function
- y(x)=0 when & — 0, » - co in such a way that n=[(x—a)/k]. For then
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Wnsr — y(@)] <6 (»=0,1,...,k)

if % is small enough, and hence, by (2.5)

k k
y@@) 3 o, = & X o] + O(R).
=0 =0

Since y(x)+0 in general, it follows that 2'«,=0. Hence p(1)=0.
If y, converges uniformly to a continuous function y(x), then the
second equation (2.6) makes sure that y(x) satisfies the correct differen-

tial equation. For, put
* e©) = € - 1 @)

QI(E) (yv+1 - yv) - hU(E)f,, =0.
Sum from 0 to n, and put F,=2"_ h f,:
QI(E) (yn+l - yo) = U(E) Fn .

Ynio > Y2), ¥y, —>y(a),

Then, by (2.5)

But

Fn+v—->S(f(t, y@)dt  (p=0,1,... k).

Hence
x

&) (y(e) — y@) = oW\ f(t y)) dt
According to Assumption B, o(1) is different from zero. Hence, by
differentiation we get

e'(1) dy/de = o(1) f(%, y)

since p’(1)=g4(1). This differential equation is equivalent to (2.1) if
and only if ¢'(1)=g(1).

2.3. Stable convergence and stable operators. Besides the equation
(2.5), the following perturbed equations will be considered

(2.7) o(E) Gy, = ho(E) fy + 7,

Y =Y, + 9, (x=0,1,...,k—1).
¥, should be interpreted as the estimate of y,, with a prescribed number
of digits or decimal places, obtained in a numerical solution, and f, is

defined as the ewact value of f(z,, ¥,). 9, is the error in the initial value
Y,, and 7, is called the local perturbation in step n. In order to get an



42 GERMUND DAHLQUIST

idea of 7, the reader may compare Case ITa and Case IIb in Section 1.2.
77, represents the contribution at step » to the deviation of the numerical
solution from the theoretical solution of the difference equation (1.1)
with initial values #g, %y, - .., ¥4 It does not include the interest of
the “error capital” produced by round-off errors and other approxima-
tions in previous steps. Nor does it include the local truncation error.
The local perturbation 7, arises from two sources:

a. The values of the derivatives actually used in the computations
in step n, say, f.* fas1™ -- > fuiu—2®, are usually not identical with
Jns an, <+ s fp+x—3 due to round-off and to approximations in the solu-
tion of the algebraic equation for ¥, etc.

b. There are round-off errors and approximations of the kind mentioned
in @, when y,,,, and f, . * are computed from the given values

Yy, ” * * *
Yns Un+1s ++ o ?/n+k—1’fn ’fn+1 ERR wfn-f—k—l .

The actual value of 7, is different in different arrangements of the
computations, even if the method of integration is the same. In view
of this, it is natural to require that the solution of (2.7) should be close
to the solution of the differential equation (2.1) for all small perturba-
tions. This requirement will now be formulated more precisely with
the aid of the notion of stable convergence.

Let P(h, ¢) be the class of all perturbations (2.7) to a given individual
equation of the form (2.5) for which

2 In,| + max|d,] < ¢
b—a

ve < k-1

h

We shall say that y, converges stably (P) to y(x) in the interval (a, b) if

ﬁﬁ; Sup  sup I?;n - y) = Ke,
h—>0 P(h,e) a<zsbd

where K is independent of & and £ (0 < ¢ < ¢,), but it may depend on the

interval and the function f(z, ) considered.

One may think of alternative definitions of this notion. From a
practical point of view the limit process % - 0 stands essentially for the
consideration of values of » which are sufficiently small in some sense.
Since in actual computations the perturbations are usually kept smaller
than the local truncation error, or at least of the same of order of magni-
tude, one may for instance consider a class P’(k, «, ) or more briefly
P’(h), defined by the inequalities

[al < oBf,  [8,] < alf,
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where x>0, 8> 1 are some fixed numbers. Then y, converges stably (P’)

i s ) -
oy, sup |7 — (@) > 0
P'(h)

uniformly for a £x <6, when h — 0. In connexion with this definition we

shall put
e= 2 Inl+ max|d,].
x = k1

y 20

h

It is seen that ¢ - 0, if » - 0. The theorem below applies to both de-
finitions, showing that they are essentially equivalent.

An operator L is said to be a stable operator, if the following conditions
are satisfied in addition to the assumptions A, B, C stated above:

D. The roots of ¢({) are located within or on the unit circle.

E. The roots on the unit circle are distinet.
This definition is motivated by the following theorem:

TaroreM 1. A necessary and sufficient condition that y, should converge
stably to the solution of (2.1) for all differential equations of the class con-
sidered is that the operator L be stable.

The necessity can be proved by the consideration of some special
differential equation. Take for instance

dylde = qy, y(0) =1

in the interval (0,1); ¢ is a non-zero constant.
The characteristic polynomial of the difference equation is then

e(8) — qha(l).

If % is small but different from zero, this polynomial has distinet roots
$;=1¢;] € given by the formula

m! a(ls)
Q(m)(CjO)

provided that ;, is a root of o({) of multiplicity m=1. (Note that
(L) %0, by assumption B). The solution of the difference equation
{2.5) is thus

1/m
(2.8) &= Lo + ( qh) + O(hEmy

™+ el + .o el

It is now easily seen that there are two difference equations belonging
to the class P(h, &) whose solutions differ by A |{;|" cosng; if for
instance 4 =¢ min {|;|*-%, 1}. Similarly if

A = obf min {|¢;17%,1},
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the same is true for the class P'(%). Since n=[{x — a)/k], it is seen in
both cases that the condition

lim £, 1% < oo

h—>0
is necessary for stable convergence. Condition 2 is an immediate con-
sequence.

Next, assume that |{;|=1, and that ¢ is the greatest number among

the real parts of the m determinations of the m-th root of

m1go(Cio) [ (L0 €™(Ls0)) -

Then . L
lim Ilel/h = lim (1 + chi/m + 0(k2/'m,))1/h
k-0 h—>0

for at least one of the roots. Hence

lim [£;[1% = oo

h—0
if m=2 and ¢>0. Now if m = 3, at least one of the m-th roots of a non-
zero complex number has a positive real part so that ¢>0. The same is
true for m =2, unless qo({;0)/L;00"™({;) is real and negative. But this
limitation is of no importance, because stable convergence is required
both for positive and for negative values of g. We may then conclude
that condition ¥ is necessary.

In order to prove the sufficiency, assume that L is stable. The proof is
rather long. It is similar in principle to some proofs in the stability
theory of differential equations [1, p. 82 ff.], but the method of successive
approximations is replaced by a step by step method.

Let y(z) be the solution of the differential equation. Put

x, =a+vh, ¥y, =y,) [ =7, 9),
A=hpo, u =y, — M, % =3, A,
Then, by (1.9) and (2.2),
o(B)yn = holB) fr — ln,
11,] < KC'ho+1,

where C’ depends on A. If / — 0, then ¢’ — C. Subtract this from (2.7),
and introduce u, and u,, instead of y, and ¥,,:

(2.9) o(B) (uy — uy) = g,
k—1 -
9 = 2(: (hﬂj - Ao‘j)Ej(fn - fn) + U + ln .
=
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Observe that fn +i—Jn+r does not appear in ¢,, so that (2. 9) determines
Uity — Ynsde exph01t1y For this reason the variables u,, u, will be used

instead of y,, ¥,
It is easily verified that the difference equation (2.9) is equivalent to
the sum equation

n
(2.10) Unil = Upik = 2O Iniks & + Oyt
=0

where g, and ¢, are solutions to the homogeneous difference equation
¢(E)g,=0. The former is determined for n=1 by the initial conditions

hr=¢=. .. =g1=0, g, =071,

and we extend the definition by putting g, =0, for » 0, so that actually

1, n=20,

0, n£0.
&, is determined by the initial values
By =0, O =w,—u, (v=12 ... ,k—1).

Put max|y,—y,| =6. Then max|9,’| < @(1+ [AM]). For a stable operator
the solutions of the homogeneous equation g(E)=0 are bounded, since
they are combinations of terms lLike (;*, [{;|<1 or am{™, |{;|<]1.
Hence, for a given operator, there exists a constant @, independent of A,
such that

l7.] < & |9,]] < GO.
Assume that % and ¢ are so small that

(2.11) [AM| <1, &+ KCh (b —a) <r(l — |AM|) G-1¢-0M" C-a)

(r was defined in Section 2.1, and M’ iz defined below). Provided that
the following inequality holds,

|ﬁv - uvl < 7‘(1 - M’MI) s

the lemma in Section 2.1 defines ¢, uniquely in the region R where the
modified Lipschitz condition (2.3b) can be applied. Suppose that this in-
equality holds for v<n+k—1, where n is a certain given integer, such
that @+ (n+k)h <b. Now we shall apply mathematical induction. It is
to be shown that

[t — Upsr] < (1 — |AM]}).

The assumption is true for n =0, since
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|4, — u,] < GO £ Ge < r(1 — |AM]),
by (2.11).
We get, by the application of (2.3b) to the definition of ¢,,
lg,) £ AM" max |u, — u,) + |y + KC'h*+1 (v < n),

U< r+k—1

where b

M= M(1 - MMI)_I%' 185 — o;Bro]
i=
The sum equation (2.10) then gives

n
[ty = Uil S G 3 (AM" max |u, — u,| + |n,| + KO'h#+1) + GO

y=0 B =< vtk—1
n
< hGM" 3] max |u,— u,| + G(c + KC'h?(b— a)).
v=0 p 5 v+k—1
It follows that max,_,|u,—u,| <z, where z, is the increasing sequence
defined by the recurrence relation

n+k—1
Zure = WG 3 2, + G (e + KOW(b-0) (12 0)

which is equivalent to the difference equation
Zoik = Zpap-1 = POEM 2,44 (n 2 0),

21 =G (e + KO'h?(b — a)).

Hence
Zoip = (L + AGM" )z, < M G- g, ,,

st — Unei] < G(e + KC'(b — a)hp)edM 0

and thus by (2.11) .
I“n+k"'un+k' < 7'(1 - M’M') .

By induction the preceding formulas are seen to be valid for every =,
if a+(m+kR<b It now follows from (2.4) that
Yni = Ynsxl < G (e + KC'(b — a)hp) eF¥ G- (1 — [AM])-1.
The stable convergence follows immediately from this inequality,

which also gives an upper bound for the error, which is, however, in
general rather poor.

2.4. The existence of an operator of degree 2k. We shall obtain an
expression for the operator for which p is as large as possible for a given k.
We may put A=1 without loss of generality. Put

g@) = 2z — D& —2)... (& - k),
gele) = p@)/( — &) (§=0,1,..., k).
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Let 4o, Y1 - s Y JorS1s - s fu be 2k+2 given numbers. There is a
unique polynomial y(x) of degree 2k + 1 for which

y(f) = yf! y’(f) =f5’ (5 = O, 15 et k) .
It has the form

2
< Pe(x) p(x) ( 2¢;"(€) )}
Ye + Je = Ye) -
=5 { <¢5(§)) (@) \F e

This formula is a confluent form of Lagrange’s interpolation formula,
which can be derived from the expansion of y(z)(g(z))2 into partial
fractions. See e.g. Steffensen [11, p. 33]. In special cases the degree of
y(x) becomes less than 2k+1. We see by equating the coefficient of

x%+1 to zero in the expression for y(x) that the necessary and sufficient
condition for this is

k
(2.12) é‘; (2 &) 2 (fe — 209 (®)o&)) = 0.

In other words: Equation (2.12) gives a relation between the values of a
function and its derivative in k41 equidistant points which is valid for
any polynomial of degree 2k (or less), and it is the only linear relation
between these quantities which is satisfied for all polynomials of degree 2k.

We obtain from the definition of ¢(z) ete. after a short calculation

k 2
(P& = ((k — )rery=® = ( 5) (k)2
(5)/?’5(5) = ks - hlc——e s
where
Bp=1+4+214+314 .. +m, k=0,

We put these expressions into (2.12) and divide by the coefficient of y,.
The result is:

THROREM 2. There is an operator of order k for which the degree is as
kigh as 2k. This operator is unique, apart from a trivial factor, and the
coefficients are

oy = Tt (b= ) (";)2 By = ! (;“)2

The generating functions of this operator are thus
o) = it S = b (&),

2
ou2) = %hk-lz (5) .

(2.13)
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The polynomial ¢,(f) can be expressed in terms of the classical Legendre
polynomials. In fact, the relation

k 2
@14 Py = (-3 (5) (6 + vje - 0y
J=0 J
= 2, (302 — Doz + Dtz — 1)

is easily derived by the application of Leibniz’ rule for the n-th deriva-
tive to Rodrigues’ formula

Pi(z) = (k) (3djdz)* ((z — 1) (z + 1)¥)

which is sometimes taken as the definition of the Legendre polynomial.
The corresponding operators are however in general unstable (cf. 2.6).
Yor instance, if k=3, we get

0l) =3+ 3H(2-0-1,
one root of which is equal to (— 19— (240)12)/11~ — 3,136.

2.5. The construction of operators from one arbitrary generating
polynomial. The constants ¢ and p in the fundamental relation (1.9)

Lly(@)] ~ — OB+ y@ (@) (b 0)

are independent of y(x). They can thus be determined by a special
example. Take y=¢% and put e*={. Hence

(2.15) e€) — o(@) logl ~ — C({ —1)pH1 (I >1).

The problems under discussion are therefore related to the problem of
approximating log{ by rational functions in the neighbourhood of {=1
and to the study of the distribution of the zeros of the denominator.
log¢ is here the branch defined by the condition logl=0. We shall in
the following consider the (-plane cut along the negative real axis.
Part of the problem can therefore be treated by the analytic theory of
continued fractions, but the writer prefers the following more direct way.
It is convenient to perform the transformations

(=E+Dle-1) z=@¢+D/C~D,
k .
(2.16) R = (3 - D)’ed) = X a7,

j=0

k
8(z) = (3 — 1))*o() = ijzj .
7=0

The polynomials R(z) and S(z) will be called the first and second asso-
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ciated polynomials of the operator L, respectively. Since g(1)=0, ac-
cording to (2.6), we get the condition a, =0, so that R(z) is actually a
polynomial of degree k—1.

In these notations the relation (2.15) transforms into

1 9\ P—k+1
@.17)  R@) - 8¢) log: * L~ = C (2) (2 > o),

z 4+ I\ 2\ Pk

(2.18)  R() (log ) — 8@) ~ — 0(—) (2~ o) .
z —1 z

The z-plane is cut along the segment from —1 to 1 of the real axis.

The logarithm is then uniquely determined by the condition that it

vanishes for z=oc.

THEOREM 3. It is possible to construct an operator L of degree pz=k+1,
starting from any polynomial () which vanishes for {=1. For a given
o(C) the comstruction is unique.

For define S(z) as the principal part of R(z)(log((z + 1)/(z — 1)))™ at
infinity. Since R(z)is a polynomial of degree (¢ — 1), this is a polynomial
of degree k. Then

s 1)—1— S(z) = 0(z1)

R(z) (log p_—
and hence, by (2.18), p—k=21, and the theorem is proved.

If an arbitrary constant c¢+0 is added to the polynomial S(z) thus
defined, it follows from the same argument that the degree will be equal
to k. If ¢ is added to S(z), then ¢(¢ — 1)* is added to o({). An open operator
is obtained by taking ¢= —g,. Hence, it is possible to contruct an open
operator L of degree p2k starting from any polynomial ¢(f) vanishing
Jor £=1. Since ({—1)* is the generating function of the k-th difference
A"fn, we may also say that an arbitrary operator is equal to the sum

of an open operator of degree pz % and a difference correction g, A’“fn.
This may be a convenient way of looking at the formulas in practice.
One can obtain the first approximation to ¥,., by applying the open
operator together with an extrapolated estimate of g, 4%f,.

It may be proved that it is possible to construct an operator L of degree
p2k from an arbitrary polynomial o({). It is only necessary to apply to
(2.17) the argument in the proof of Theorem 3.

2.6. The maximum degree for a stable operator. The requirement of
stability leads to inequalities for the associated polynomials, from which

Math. Scand. 4. ¢
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interesting coneclusions may be drawn. Since the unit cirele in the {-plane
is mapped onto the half-plane Rez <0 by the transformation (2.16), we
may formulate the stability conditions in the following manner.

D’. The roots of R(z) have non-positive real parts.

E’. There are no multiple roots of B(z) on the imaginary axis. The

coefficient a;_,==0.
The reason for the last condition is the simplicity of the root (=1,
which corresponds to z=o00. It follows from (2.16) that

apq = 217F o'(1) + 0.
Consider the factorization
R(Z) = a’k—l H(z + ﬁxv) H((z -+ 0‘”)2 + ﬂv2) (06,, g O) ]

where the first product is taken over the real roots and the second
product over the conjugate pairs of complex roots. The following con-
dition is seen immediately.

Levma. If L is a stable operator, all non-vanishing coefficents of R(z)
have the same stgn.
We shall normalize the operators, so that

ak—l = l, a’- ; O .
Put the expansion

2z l -1 P o]
(2.19) (log * 1) =L D
z —

into (2.18). Then

. -1 -
R(z) (logz + ) - 8@) = - Yecz
z -1 =1
where
Cor = 2 Mopr1%osa11 5
(2.20) .

Cosp1 = 2 Poyi1%2 01 -
v

The coefficients p,,,, will play a major role in the following. The first
values are

py = 16, py = 2[45, pg = 22/945, p, = 214/14175.

The most essential fact is that the coefficients u,,. , are positive, since by
Cauchy’s formula
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1 z 4+ 1)1
sz+1="27i522”(10gz_1) dz
c
1
1 1 + a2\-!
— e 2p 2 2 .
2m_Sx (”+1°g1—x)
(2.21) -1
. 1+ 2 . 1+2
.((—m—l—logl__x)-—(:m+logl_x)>dx
1
. 1+x—1
= 2 (72 + log2 d 0.
§1x (n-{- ogl_x) z >

Here C is an arbitrary curve enclosing the segment (— 1, 1) of the real
axis. It then follows from (2.20) that ¢, > 0, unless R(z) is an odd poly-
nomial, in which case ¢,>0. Hence, by (2.18), p—k cannot exceed 2,
and we obtain the following theorem, which is one of the main results
of the present investigation.

TeEOREM 4a. The degree p of a stable operator of order k can never
exceed k+2. If an operator is stable, then the condition that R(z) is an odd
function is necessary and sufficient for the degree to be equal to k+ 2.
All roots of R(z) are then located on the imaginary axis. If k is odd, the
degree of a stable operator cannot exceed k1.

The last statement follows from the assumption E’. For because
@11 %0, R(z) cannot be an odd function when % is odd. The theorem is
“the best possible”, since if k is even, we can always find odd polyno-
mials satisfying conditions D’ and E’.

The following formulation of this theorem in terms of the generating
polynomials is obtained by a straightforward application of the trans-
formation formulas (2.16).

TaroREM 4b. If an operator of even order k is stable, then the conditions

(2.22) = =0y, fB,=7ph,

are necessary and sufficient in order that it should be of maximum degree
k+2. Al roots of g(£) then have unit modulus.

It is now easy to write down all stable operators of maximum degree
for a given order k. For instance, when k=2 there is only one stable
operator of degree 4, apart from a trivial factor. This is determined by
the polynomial R(z) =z, and it follows from the transformation formulas
(2.18), that it corresponds to the operator

4*
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Lyl = Ynia — Yn — %h(yn+2’ + 4’yn+1' + yn') >
i.e. Simpson’s rule.
For k= 4, the general stable operator of maximum degree is determined
by the polynomial
y poyn RB(z) = 2® + 2%z,
where A is a real non-zero constant. The corresponding operator can be

written
LIyl = Ynsa + #Wnss = Yn+1) — Yn —

—h {(4 + 20)Ypie + 8 + )%y, + 616(28 ~ W) Ynio'} s

where
w=2L - B+ <2

This includes as particular cases (u=1, py=—1, u=0) the formulas
(1.10), (1.11), (1.12) mentioned in the introduction.
We shall prove one more theorem of the same type.

TreoREM 5. If p>k for a stable operator, this must be closed. Actually,
Brfoy > 0. It is possible to construct an open, stable operator of degree p=F,
starting from any polynomial o($), satisfying the conditions A —E.

An operator is open if §,=0. But
B =c1im E*o(l) = liml((z - Dz + Y3 - 1))*8(k) = 8(1).

Assume that p=k+1. Then S(z) is equal to the principal part of
R(@2){log((z + 1)/(z — 1))}, and we may write (cf. (2.19) and (2.18)):
k-1 k-1

(2.23) S(z) = B(z) (J}z -2 z‘”) + 2,
y=1 »=1
where ot
ﬂw’ = g luaa’a—-v *
Hence ot

k-1
B, = S(1) = R(1) (% - él’m) + 2

Here R(1) and Z'p,' = 2% X, _,p,a, are non-negative if the operator is
stable. Furthermore, by Abel’s theorem

k-1 o
} - 2/"” > % - Yy, = lim {log((z + 1)/(2 - 1))}_1 =0.
p=1 y=1 z2->»14+0

It follows that 8, >0 for a stable operator if p>k. Hence p<k for an
open stable operator. It was shown in Section 2.5 that an open operator
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whose degree is at least equal to £ can always be obtained with a given
o(¢). The theorem is thus proved.
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