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Convergence Behavior of Affine Projection
Algorithms
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Abstract—Over the last decade, a class of equivalent algorithms
that accelerate the convergence of the normalized LMS (NLMS)
algorithm, especially for colored inputs, has been discovered
independently. The affine projection algorithm (APA) is the
earliest and most popular algorithm in this class that inherits
its name. The usual APA algorithms update weight estimates
on the basis of multiple, unit delayed, input signal vectors. We
analyze the convergence behavior of the generalized APA class of
algorithms (allowing for arbitrary delay between input vectors)
using a simple model for the input signal vectors. Conditions for
convergence of the APA class are derived. It is shown that the
convergence rate is exponential and that it improves as the number
of input signal vectors used for adaptation is increased. However,
the rate of improvement in performance (time-to-steady-state)
diminishes as the number of input signal vectors increases. For
a given convergence rate, APA algorithms are shown to exhibit
less misadjustment (steady-state error) than NLMS. Simulation
results are provided to corroborate the analytical results.

I. INTRODUCTION

A DAPTIVE filtering techniques are used in a wide range
of applications, including adaptive equalization, adaptive

noise cancellation, echo cancellation, and adaptive beam-
forming. The normalized least mean square (NLMS) algorithm
[1] is a widely used adaptation algorithm due to its compu-
tational simplicity and ease of implementation. Furthermore,
this algorithm is known to be robust against finite word length
effects. One of the major drawbacks of the NLMS algorithm
is its slow convergence for colored input signals. Over the
last decade, a class of equivalent algorithms such as the
affine projection algorithm (APA), the partial rank algorithm
(PRA), the generalized optimal block algorithm (GOBA),
and NLMS with orthogonal correction factors (NLMS-OCF)
has been developed to ameliorate this problem [2], [3]. The
distinguishing characteristic of these algorithms, which was
developed independently from different perspectives, is that
they update the weights on the basis of multiple, delayed
input signal vectors, whereas the NLMS algorithm updates the
weights on the basis of a single input vector. In the sequel, we
will refer to the entire class of algorithms as affine projection
algorithms, since APA (with unit delayed input vectors) is
the earliest among these algorithms and since the name APA
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is more widely used in the existing literature than the other
names. However, the convergence results that we derive here
are applicable to the entire class of affine projection algorithms,
allowing for arbitrary delay between input vectors.

The APA is a better alternative than NLMS in applications
where the input signal is highly correlated [9], [10], [15]. Al-
though a wide range of analysis has been done on the conver-
gence behavior of the NLMS algorithm [4], [5], the convergence
behavior of APA has not received as much attention to date.
Some results are available on the steady-state behavior (char-
acterized by misadjustment) of APA [11]–[13]. In this discus-
sion, we analyze the convergence behavior of APA and derive
the necessary and sufficient conditions for the convergence of
the APA class of algorithms, as well as an expression for the
mean-squared error. Furthermore, we study the improvement
in performance with the number of vectors used for adapta-
tion. The steady-state behavior is also analyzed. The analysis
is done using a simple model for the input signal vector. In ad-
dition to the usual independence assumption [1], the angular
orientation of the input vectors is assumed to be discrete. Al-
though these assumptions are rarely satisfied by real-life data,
they render the convergence analysis tractable. Furthermore, we
show that simulation results match our analytical results when
the data (“pretty much”) satisfies the independence assumption.
The limitations imposed by the assumptions used, as well as
by the simplifications made in our analysis, are also discussed.
Not unexpectedly, our analytical results deviate from the sim-
ulation results when the data grossly violates the assumptions;
however, the general performance characteristics predicted by
our analysis still hold. Thus, our results serve as useful design
guidelines.

The weight update equation of APA is presented in Section II.
Section III begins with a list of the assumptions that are used.
Based on these assumptions, the convergence behavior of APA
is analyzed. The insights provided by the analytical results are
summarized. Section IV compares our analytical results with
the results obtained from simulations. A summary of the results
and concluding remarks are provided in Section V.

Notations used in this paper are fairly standard. Boldface
symbols are used for vectors (in lowercase letters) and matrices
(in uppercase letters). We also have the following notations:

transpose;
Hermitian transpose;
complex conjugate;
probability;
expectation;

tr trace.

1053–587X/00$10.00 © 2000 IEEE
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Fig. 1. Adaptive filtering problem.

II. CLASS OFAFFINE PROJECTIONALGORITHMS

Fig. 1 shows an adaptive filter used in the system identifica-
tion mode. Here, the system input and corresponding mea-
sured output , possibly contaminated with measurement noise

, are known. The objective is to estimate an-dimensional
weight vector such that the estimated output ,
where is the input vector at the

th instant, is as close as possible to the measured outputin
mean-squared error sense. The affine projection algorithms are
iterative procedures to estimate these weights.

The APA class, as mentioned earlier, updates the weights on
the basis of multiple input vectors. We use the weight update
equation of the NLMS-OCF algorithm [3] for our discussions
since it is more general than in the other algorithms of this
family (allowing other than unit delay between input vectors)
and since the NLMS-OCF update equation is conducive to the
analysis that follows. The adaptive filter weights are updated by
NLMS-OCF as in

(1)

where is the number of input vectors used for adap-
tation, is the input vector at the th instant, , for

, is the component of that is orthogonal
to is the delay between
input vectors used for adaptation , and, for
is chosen as in

for if

for if

otherwise

(2)

where

for and

(3)

The constant is usually referred to as the step size.
The weight updates generated by APA and GOBA are

equivalent to the special case of the weight updates generated
by NLMS-OCF, which is shown in (1), with (see the
Appendix). PRA is the special case of APA where the APA

weight adaptations are performed once every samples
instead of every sample. The flexibility in selecting the vectors
used for adaptation, through the choice of, as provided by
NLMS-OCF, has been found to be useful in realizing certain
advantageous behavior, such as faster convergence under most
conditions and reduction in steady-state error, over the other
algorithms in the APA class (which restrict to be unity) [14].
In the next section, we study the convergence behavior of (1)
under certain simplifying assumptions.

III. CONVERGENCEANALYSIS OF THE AFFINE PROJECTION

ALGORITHM CLASS

The convergence analysis is done based on the following as-
sumptions on the signals and the underlying system.

A1) The signal vectors have zero mean and are inde-
pendent and identically distributed (i.i.d.) with covari-
ance matrix

(4)

where diag , and
. Here, are the

eigenvalues of , and are the corre-
sponding orthonormal eigenvectors . That
is, is a unitary matrix.

A2) There exists a true adaptive filter weight of dimen-
sion such that the corresponding error signal

(5)

inherits the properties of the measurement noise,
which is a zero mean white noise of variancethat
is independent of .

A3) The random vector is the product of three indepen-
dent random variables that are i.i.d. That is

(6a)

where

tr

(6b)

where means that has the same distribu-
tion as the norm of the true input signal vectors.

Assumption A3), which was first introduced by Slock [4],
leads to a simple distribution for the vectors consistent with
the actual first- and second-order statistics of the input signal.
Assumption A3), as will be seen, makes the convergence anal-
ysis tractable. Under assumption A3), the weight update equa-
tion of APA can be modified. Since are either parallel or
orthogonal to each other, the orthogonalization step to compute

, for , becomes redundant. Hence, (1)–(3)
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can be rewritten as shown in (7), (8), shown at the bottom of the
next page, and (9), respectively.

(7)

and

for (9)

[Using (A3),
since

. Hence, (3) can be modified to the
form shown in (9).]

To analyze the convergence behavior of (7), first, the weight
adaptation is rewritten in terms of the weight error vector,
where . Using this notation together with (5),
we can rewrite as . Combining this
result with (7) and (8), the adaptation equation in error form can
be obtained as

(10)

where is a set of or fewer indices
for which the are orthogonal to each other since
for . Equation (10) is in a form suitable for convergence
analysis. In the absence of noise, (10) becomes a homoge-
neous difference equation, whose convergence can be studied.
However, with measurement noise, convergenceper seis not
possible; we need to study convergence in the mean and con-
vergence in the mean square. We say that the weights converge
in the mean if the expectation of the weight-error vectorap-
proaches zero as the number of iterationsapproaches infinity.
Convergence in the mean square means that the steady-state
value of the covariance cov of the weight error vector is
finite. If these two forms of convergence are satisfied, then the
APA algorithm is said to be stable. We begin the convergence
analysis with the computation of the weight error vector covari-
ance.

Using (10), the covariance of the weight error vector is
given by

cov

(11)

If the dependency of on past measurement noise is ne-
glected, using that is of zero mean, the last two terms of
the above expression vanish. Furthermore, if we neglect1 the
dependency of on the past input vectors that appear in the
first term of the above expression and use A2) to simplify the
second term, we can rewrite (11) as

cov

cov

(12)

Using A3), we can rewrite the outer- to inner-product ratios as

(13)

1In the case of PRA, no approximation is involved in this step since~w is
independent of the input vectors used for adaptation.

for if

for if

otherwise

(8)
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where is one of . Note that the above
result is independent of the norm of . Now, substituting
(13) into (12) we get

cov

cov

(14)

Since is independent of and is independent of , from
A2) and A3), respectively, we can rewrite (14) as

cov

cov

(15)

where

(16)

Let us define the diagonal elements of the transformed covari-
ance matrix cov as for . That is

cov cov (17)

Note that this does not mean that cov is a diagonal
matrix.

With the above notation, the pre- and post-multiplication of
(15) by and and , respectively, results in

cov

(18)

From the orthonormality of the 's,

if
if

(19)

Using the above result, (18) can be rewritten as

cov

cov

cov

cov

(20)

The probability is the same as the probability of
drawing (with replacement) the ball marked, at least once in

trials, from a collection of balls marked ,
where the probability of drawing the ball markedis . Hence

(21)

By substituting (21) into (20), we get

(22)

where , and .
The following observations can be made from (22).
Observation 1: is a necessary and sufficient

condition for the APA class to be stable. Let us first look at the
mean-squared convergence. The errorin the output estimate
is given by

(23)

Using A2), the mean-squared error in the output
estimate can be written as

tr cov

tr cov

tr cov

(24)

From (24), we see that the mean-squared error converges if
converges. If and the input signal is sufficiently rich
( for any ), then , and ;
this guarantees the convergence of in (22). If ,
then , and ; hence, does not converge.
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Thus, provided and the input is sufficiently rich, the
steady-state solution of (22) is given by

(25)

Combining (24) and (25), the steady-state (final) mean-squared
error is given by

tr (26)

Using (24), the finiteness of the steady-state mean-squared
error implies the finiteness of cov in steady state. That is
cov is asymptotically stable. Thus, for sufficiently rich
inputs, is a necessary and sufficient condition for
convergence in mean square.

Now, we analyze the convergence in the mean. After we ne-
glect the dependence of on the past input vectors, taking
expectation on both sides of (10) results in

(27)

Here, we used (16) to replace the outer- to inner-product ratios
with and used A2) to conclude that the expected value of
the term with vanishes.

Define vector as the representation of in terms of
the orthonormal vectors . That is

(28)

Therefore

(29)

Using this notation, premultiplication of (27) by results in

(30)

Using (19) and (21), (30) can be rewritten as

(31)

From (31), we see that converges to zero if and only if
. For sufficiently rich inputs, we have .

Hence, is a sufficient condition for to converge.
Consequently, if converges to zero exponen-
tially as approaches infinity. Since forms
an orthonormal basis, . Hence, con-
verges to zero as approaches infinity. In other words, APA
is an asymptotically unbiased estimator of the weights. Thus,

is a sufficient condition for convergence in mean.
Combining the conditions for mean and mean-squared conver-
gence, is a necessary and sufficient condition for the
APA class to be stable. Earlier, this algorithm stability condition
was made plausible geometrically for the noiseless case [3], [7].

Observation 2: The convergence behavior of the
mean-squared error for the noiseless case, viz. , is
exponential, as given in (37). We begin the analysis by making
a few assumptions on initial conditions. Assume that noa
priori information on the system is available and, hence, that

the typical initial estimate for the weights is used. We
use the maximum entropy assumption for the optimal weights
[4]. That is, has equal components along all eigenvectors
of . For example

tr
(32)

where is the variance of the output signal , and
satisfies the maximum entropy assumption. For

these values of the optimal weight and the initial estimate
, assuming

cov
tr

(33)

Using the fact that is unitary, it follows that

cov
tr

(34)

The above is a matrix with tr as all its entries. Hence,
using (17), we get

tr (35)

Solving (22), using (35) as the initial condition, and substituting
the solution in (24), we get the mean-squared error as

tr
(36)

From A3), tr , so that we can rewrite (36) as

(37)

Hence, (37) describes the theoretical convergence behavior of
the APA class of algorithms under noise-free conditions.

Observation 3: APA converges faster than NLMS; as more
input vectors are used, the convergence rate itself improves,
whereas the rate of this improvement decreases. From (22), we
see that the rate of convergence depends on the factor ,
where , and .
Note that the values of, and, hence, the convergence rates, are
the same for step sizesand for . However, as
will be shown in Observation 5, the steady-state mean-squared
error increases as increases. In view of this, it is better to use
a step size . As we can see from (22), faster conver-
gence occurs for values of closer to 0 (equivalently
and closer to 1). Hence, we want for fast convergence.
Equivalently, is the optimum step size value for fastest
convergence. Furthermore, increasing the number of input vec-
tors used for adaptation increases the convergence rate
since, as increases, gets closer to 1. This explains
the faster convergence of APA over NLMS. Fig. 2 shows a plot
of the convergence rate factor for different values of

and different values of , with . It is evident from
this plot that the convergence rate factor has an exponential de-
pendence on . That is behaves like for some

. Hence, for large enough values of, with denoting
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Fig. 2. Dependence of convergence rate factor(1��� ) onM (a)p = 0:2.
(b) p = 0:4. (c) p = 0:6. (d) p = 0:8.

the total probability mass associated with the largest of the,
(37) can be approximated as

(38)

Equivalently

(39)

Thus, for large enough , the slope of the learning curve
(plot showing mean-squared error in decibels versus iteration
number) depends linearly on . If we next define the time to
(reach) steady state as a performance index of the algo-
rithm, the rate at which the performance improves diminishes
as increases. This explains the phenomenon that Gay and
Tavathia observed in their simulation results [8].

Observation 4: If the input is white, the learning curve is
linear, and the mean-squared error drops by 20 dB in about

iterations. Assume that the input to the adaptive
filter is white. In this case, all the 's are equal. That is

for (40)

Therefore, if the step size is chosen to be unity, the convergence
rate factor for white noise can be written as

(41)

Substituting (41) into (37), the mean-squared error convergence
is given by

(42)

Hence, the mean-squared error in decibels can be written as

(43)

Thus, the learning curve for a white input is linear and the mean
squared error drops by about 20 dB in iterations for

. This also means that longer filters exhibit slower conver-
gence. This observation also corroborates the idea that the con-
vergence rate can be improved by starting with a smaller number
of taps in the adaptive filter and then gradually increasing the
number of taps until the desired order is reached. A similar idea
was exploited to accelerate the convergence of LMS [6].

Observation 5: The misadjustment of the APA class is in-
dependent of . Using (26), the misadjustment, which is de-
fined as the ratio of excess mean-squared error to minimum
mean-squared error, equals

tr (44)

Note the independence of (44) of . In fact, it is the same as
the misadjustment of the NLMS algorithm (NLMS is the special
case of APA with ) with the same . The independence
of (44) of is, perhaps, due to the fact that we neglected depen-
dence of on past measurement noise while going from (11)
to (12). Simulation results indicate a “weak” dependence of mis-
adjustment on . As shown in Observation 3, the convergence
rate improves with increasing . Thus, APA provides a way to
increase the convergence rate without compromising too much
on misadjustment and, hence, the steady state mean-squared
error of APA. This is yet another advantage, so far unreported,
of APA over NLMS.

Observation 6: NLMS is the special case of APA with
. If , then , and difference equation (22), which

describes the behavior of , becomes

(45)

Similarly, the NLMS mean-squared error convergence behavior
is given by

(46)

These results match the earlier results derived for NLMS under
the same assumptions [4]. From Observation 4, the learning
curve of NLMS drops by 20 dB in about iterations for

. This result conforms to Rupp's observation on the con-
vergence speed of NLMS [11].

A Special Comment for PRA

The PRA attempts to reduce the complexity of APA by
adapting the weights once every samples instead of
every sample. Hence, the analysis above givesmutatis mutandis
the results for PRA. The diagonal elements of the transformed
covariance matrix of the weight estimation error, which is
defined in (17), become, for PRA

if
if

(47)
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Fig. 3. Learning curves of APA for white input using�� = 1:0 (a) Simulated
with D = 1. (b) Simulated withD = 32. (c) Theoretical. (Input: White noise.
System: FIR(31), � = 0, andM = 10).

where denotes modulo . The mean-squared error
of PRA is thus given by

(48)

where denotes the largest integer that is less than or equal
to .

IV. V ERIFICATION USING SIMULATION

In this section, we demonstrate the validity of the analytical
results presented in Section III and discuss limitations intro-
duced by the assumptions. Simulation and theoretical results
corresponding to three different types of signals, viz. white, rea-
sonably colored, and highly colored, are shown. The reason-
ably and highly colored signals are generated as a Gaussian
first-order autoregressive process with a pole at 0.25 and 0.95,
respectively. The system to be identified has a 32-point long
impulse response computed according to (32) for each case,
and hence, the impulse response satisfies the maximum entropy
assumption. The delay line of the adaptive filter is initialized
with true data values (soft initialization) in all simulations, and

is used as the initial estimate for the weights. The
measurement noise is assumed to be absent ( ) unless
noted otherwise. The simulation results shown are obtained by
ensemble averaging over 100 independent trials of the experi-
ment.

Fig. 3 shows the results obtained using a white input signal.
The weight updates are performed with 11 input vectors, i.e.,

. The steady-state MSE is limited in simulation to
around 325 dB because of the quantization errors introduced
in the calculations. We see that the theoretical result, as given
by (38), is very close to the simulated result when and
that there is an appreciable deviation between the theoretical and
simulated results when . This is because of the indepen-
dence assumption that we used in the analysis. The input vectors
used for a particular weight update are truly independent when

, whereas this is not true when . This is an ad-
vantage of NLMS-OCF, which allows .

The results obtained using the reasonably colored signal as
input are shown in Fig. 4. The simulation result is closer to the

Fig. 4. Learning curves of APA for reasonably colored input using�� = 1:0
(a) Simulated withD = 1. (b) Simulated withD = 32. (c) Theoretical. (Input:
AR(1), pole at 0.25. System: FIR(31), � = 0, andM = 10).

Fig. 5. Learning curves of APA for highly colored input using�� = 1:0 (a)
Simulated withD = 1. (b) Simulated withD = 32. (c) Theoretical. (Input:
AR(1), pole at 0.95. System: FIR(31); � = 0, andM = 10).

theoretical result when than when since the
input vectors used for weight updates are more nearly indepen-
dent when than when .

Results, for the highly colored signal as input, which are sim-
ilar to the results shown in Figs. 3 and 4, are shown in Fig. 5.
We see that there is a larger deviation between the theoretical
and simulation results in this case than in the white noise and
reasonably colored case. We would expect this behavior since
the highly correlated input violates the independence assump-
tion more strongly than the other two inputs.

From Figs. 3–5, we note that the convergence for the
case does not depend on the color of the input signal; curve
(a) reaches 130 dB at iteration 500. For the 32 case,
convergence is faster than for 1, with dependence on the
color of the input for the highly colored input causing some
slowing down in convergence.

The independence assumption of the input vectors is used to
claim that the weight estimate is independent of the input
vectors for all . The dependence of on the past
input vectors can also be reduced by using a smaller value for
the step size. For this reason, we expect the simulation results
to be in better agreement with the theoretical results for smaller
step-size values. This, in fact, is true, as can be seen from com-
paring the results in Figs. 4 and 6, which are obtained using
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Fig. 6. Learning curves of APA for reasonably colored input using�� = 0:1
(a) Simulated withD = 1. (b) Simulated withD = 32. (c) Theoretical. (Input:
AR(1), pole at 0.25. System: FIR(31); � = 0, andM = 10).

Fig. 7. Learning curves of APA for highly colored input using�� = 0:01 (a)
Simulated withD = 1. (b) Simulated withD = 32. (b) Theoretical. (Input:
AR(1), pole at 0.95. System: FIR(31); � = 0, andM = 10).

the reasonably colored signal. For an identical value of, input
signal, and system, the theoretical result is matched better by the
simulation result when than when . In addition,
note that the convergence rate is slower with than with

.
The simulation results and theoretical results for the highly

colored input signal are shown in Fig. 7. Here, in addition, the
simulation result with 32 is closer to the theoretical result
than the simulation result with 1. We see that there is a
large deviation between the theoretical and simulation results in
this case (even with a small value of). This is again due to the
strong dependency between input vectors used for successive
adaptations. Hence, the weight estimate is not really inde-
pendent of the input vectors . Note in this case, where is
small, that eventually, the convergence rate for 1 exceeds
that for 32. Recall that for fast convergence, is
optimal and that in Figs. 3–5, the convergence for 32 is
faster than for 1. The latter behavior is not universal, as
the results in Fig. 7 illustrate.

Fig. 8 shows the simulation results obtained by using a dif-
ferent number of vectors for adaptation. The highly col-
ored signal is used as the input. While for the steady state
is projected to be reached in about 14 000 iterations, the steady

Fig. 8. Simulated learning curves of APA for highly colored input—Various
M (a)M = 0 (NLMS). (b)M = 2. (c)M = 8. (Input: AR(1), pole at 0.95.
System: FIR(31); � = 0; �� = 1:0, andD = 1).

Fig. 9. Simulated learning curves of APA for white input—VariousM (a)
M = 0 (NLMS). (b) M = 2. (c) M = 8. (Input: White noise. System:
FIR(31); � = 0; �� = 1:0, andD = 32).

state is reached for 2 and 8 in about 1600 and 1200 iter-
ations, respectively. Thus, the improvement in time-to-steady-
state achieved by increasing from 2 to 8 is less than the
improvement achieved by increasing from 0 to 2. This con-
firms Observation 3 from the analytical results—the im-
provement rate diminishes as increases. It is worthwhile to
point out that the characteristic predicted by our analysis holds,
even though the highly colored input signal does not conform to
our assumptions on the data.

The simulation results with white noise input, for different
values of , as shown in Fig. 9, corroborate Observation 4. Al-
though the theoretical predictions for the slope of the learning
curves for 0, 2, and 8, using (42), are 0.14, 0.41, and 1.2
dB/iteration, respectively, the corresponding slopes estimated
from the simulation results are about 0.17, 0.42, and 1.3 dB/it-
eration respectively. It is interesting to note that APA provides
an improvement in convergence rate not only for colored input
but also for white input. Even when the delay is chosen to be
unity, with white input, the convergence rate of APA improves
as the number of vectors used for adaptation increases. This
shows that APA is not merely a decorrelating algorithm since the
decorrelating-algorithm interpretation [11] suggests that APA
will not converge faster than NLMS when the input is white,
which cannot be decorrelated any further by APA.
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Fig. 10. Simulated learning curves of APA—Misadjustment/convergence rate
tradeoff (a)M = 0 (NLMS) and�� = 0:25. (b)M = 0 (NLMS) and�� = 1:0.
(c) M = 2 and �� = 0:25. (Input: AR(1), pole at 0.95. System: FIR(31);
� = 10 , andD = 32).

Fig. 11. Dependence of Misadjustment on step size (a)�� = 0:001. (b) �� =
0:01. (c) �� = 0:1. (d) �� = 0:5. (e) �� = 1:0. (Input: AR(1), pole at 0.95.
System: FIR(31); � = 10 , andD = 32).

Observation 5 suggested that APA provides a way to im-
prove the convergence rate without compromising on misadjust-
ment. The following experiment corroborates this observation.
Fig. 10(a) shows the learning curve of NLMS with a step size

of 0.25. We see that the algorithm takes about 8000 iterations
to converge. The misadjustment is 0.2062 for this case. An
improvement in convergence can be achieved either by using a
larger value of step size or by using the affine projection al-
gorithm (that is, by using more input vectors for the weight up-
date). Figs. 10(b) and (c) show the learning curves obtained by
using NLMS with and by using APA with (and

), respectively. In both these cases, we see faster con-
vergence than for NLMS with . It is evident that their
individual convergence rates are nearly comparable, whereas
the resulting misadjustments are quite different. NLMS with

1 has a misadjustment of 1.1164, whereas APA with
2 has a misadjustment of 0.2904. In other words, the

steady-state error of APA with 2 is at least 2 dB less than
the steady-state error of NLMS with 1, whereas their con-
vergence rates are comparable. APA with 1 (not shown to
avoid clutter) has a misadjustment of 0.2269 and converges
almost as fast as NLMS with 1. We note that the (experi-
mental) misadjustment has some dependence on(misadjust-

ment increases as increases). This increase in misadjustment
with has been reported in earlier papers [11]–[13]. However,
the misadjustment has a stronger dependence on step size than
on . This suggests that it would be better to use APA to get
improved convergence than to use NLMS with large step size.

Fig. 11 depicts the dependence of experimental misadjust-
ment on . Here, the misadjustments for different values of
and different step-size constantsare shown. We see that the de-
pendence on increases as the step size is increased. For small
values of step size, the misadjustment does not change much
with . This supports our hypothesis that the misadjustment,
as shown in (32), is independent of since we neglected the
dependence of on past measurement noise while going from
(11) to (12). As the step size is decreased, the dependence of
on past measurement noise decreases, and hence, neglecting this
dependence does not introduce “too much” error. Thus, our Ob-
servation 5 that the misadjustment for APA does not depend on

holds as long as the data and parameters satisfy our assump-
tions.

V. CONCLUSION

The APA class of algorithms provides an improvement in
convergence rate over NLMS, especially for colored input sig-
nals. We analyzed the convergence behavior of APA based on
the simplifying assumptions that the input vectors are indepen-
dent and have a discrete angular orientation. A theoretical ex-
pression for the convergence behavior of the mean-squared error
is derived. As the signal color, input vector delay, and/or step
sizes tend toward satisfying the independence assumption, the
simulated results tend to the theoretical results, whereas there is
a mismatch otherwise. The convergence rate is exponential, and
it improves with an increase in the number of input signal vec-
tors used for adaptation. However, therate of improvement in
time-to-steady-state diminishes as the number of input vectors
used for adaptation increases.

For white input, the mean squared error drops by 20 dB in
about iterations, where is the number of taps in
the adaptive filter, and is the number of vectors used for adap-
tation. Although we show that in theory, the misadjustment of
the APA class is independent of the number of vectors used for
adaptation, simulation results show a weak dependence. Thus,
APA provides a way to increase the convergence rate without
compromising too much on misadjustment. Simulation results
corroborate our findings.

APPENDIX

When , the weight update generated by APA is the
vector that is as close as possible to the current weight vector
while setting the most recent a posteriorierror esti-
mates to zero [2]. That is

(49)

where is the minimum-norm solution to

(50)

In the above equation,
, and
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. Since is the minimum-norm solution of (50),
it is the unique solution of (50) that lies in the space spanned
by the columns of . APA usually solves for using the
matrix equation

(51)

Observe that the above solution lies in the space spanned by
the columns of . Simple algebra shows that obtained
using (49) and (51) sets the most recent a posteriori
error estimates to zero. That is

(52)

NLMS-OCF, on the other hand, finds the weight update by set-
ting “onea posterioriestimation error at a time to zero,” as ex-
plained below. NLMS-OCF begins by setting thea posteriori
estimation error at to zero while keeping the norm of the in-
crement in weights to a minimum. That is, it finds the weight
such that is minimized subject to .
This solution is given by

(53)

where , and .
Next, NLMS-OCF finds the weight that forces thea pos-

teriori estimation error at to zero while maintaining the
zeroa posterioriestimation error at and keeping the norm of
the increment in weights to a minimum. That is, find the weight

such that is minimized subject to
, and . If the increment in weights

is orthogonal to , then .
Thus, the first constraint is satisfied if the weight increment is
orthogonal to . Hence, we decompose into a compo-
nent along and a component that is orthogonal to . We
increment the weights along such that the second constraint
is satisfied. This solution is given by

(54)

where and .
The above process is repeated until each of the most recent

a posteriorierrors is forced to zero. We describe here
the general step that forces thea posteriori estimation error
at to zero, where . Here, we find
the weight such that is minimized subject to

for , and
. If the increment in weights is or-

thogonal to , then
for . Thus, the

first constraints are satisfied if the increment is orthogonal
to . Hence, we decompose into a
component that is in the span of and
a component that is orthogonal to .
We increment the weights along such that the last constraint
is satisfied. This solution is given by

(55)

where , and .

Thus, the weight update that forces the most recent
a posterioriestimation errors to zero is given by

(56)

where is the number of input vectors used for adap-
tation, is the input vector at the th instant, , for

, is the component of that is orthogonal to
, and , for

is chosen as in

for if

for if

otherwise

(57)

where

for and

(58)

Observe from (56) that the increment in weight lies in the
space spanned by the columns of. Furthermore, the updated
weight satisfies (52). Equivalently, the weight increment
satisfies (50). Since the minimum-norm solution to (50) is the
unique solution of (50) that is in the space spanned by the
columns of , the weight updates generated by APA and by
NLMS-OCF with are identical.

As is usually done in APA, the above algorithm can be gen-
eralized by introducing a constant, which is usually referred
to as the step size. This generalization, along with the modifi-
cations needed for the complex case, results in the update equa-
tions (1)–(3).
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