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CONVERGENCE BEHAVIOUR
OF INEXACT NEWTON METHODS

BENEDETTA MORINI

Abstract. In this paper we investigate local convergence properties of inex-
act Newton and Newton-like methods for systems of nonlinear equations. Pro-
cesses with modified relative residual control are considered, and new sufficient
conditions for linear convergence in an arbitrary vector norm are provided. For
a special case the results are affine invariant.

1. Introduction

We consider the system of nonlinear equations

F (x) = 0,(1)

where F is a given function from RN to RN , and we let F ′(x) denote the Jacobian
of F at x. Locally convergent iterative procedures commonly used to solve (1) have
the general form:

For k = 0 step 1 until convergence do
Find the step ∆k which satisfies

Bk∆k = −F (xk)(2)

Set xk+1 = xk + ∆k

where x0 is a given initial guess and Bk is a N×N nonsingular matrix. The process
is Newton’s method if Bk = F ′(xk), and it represents a Newton-like method if
Bk = B(xk) is an approximation to F ′(xk) ([1], [2]).

In [3] and [4] iterative processes of the following general form were formulated:
For k = 0 step 1 until convergence do

Find some step sk which satisfies

Bksk = −F (xk) + rk, where
‖rk‖

‖F (xk)‖ ≤ ηk(3)

Set xk+1 = xk + sk.
Here {ηk} is a sequence of forcing terms such that 0 ≤ ηk < 1. These iterative
processes are called inexact methods. In particular, we obtain inexact Newton
methods taking Bk = F ′(xk) and inexact Newton-like methods if Bk approximates
the Jacobian F ′(xk). We remark that inexact methods include the class of New-
ton iterative methods ([1]), where an iterative method is used to approximate the
solution of the linear systems (2).
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For inexact Newton methods, local and rate of convergence properties can be
characterized in terms of the forcing sequence {ηk}. Let ‖ · ‖ denote any vector
norm on RN and the matrix subordinate norm on RN×N . In [3] it is shown that,
if the usual assumptions for Newton’s method hold and {ηk} is uniformly less than
one, we can define a sequence {xk} linearly convergent to a solution x∗ of (1) in
the norm ‖y‖∗ = ‖F ′(x∗)y‖.

Recently, several authors (see e.g. [5], [6], [7], [8]) have proposed applications
of inexact methods in different fields of numerical analysis and pointed out diffi-
culties in applying linear convergence results of [3]. In fact, such results are norm-
dependent and ‖ · ‖∗ is not computable. Then, they focused on the analysis of the
stopping relative residual control ‖rk‖/‖F (xk)‖ ≤ ηk and its effect on convergence
properties.

In this paper we consider inexact methods where a scaled relative residual control
is performed at each iteration. Further, we determine conditions that assure linear
convergence of inexact methods in terms of a sequence of forcing terms uniformly
less than one and for an arbitrary norm on RN . Such schemes include as a special
case inexact methods (3). The results obtained are valid under the assumption of
widely used hypotheses on F and merge into the theory of Newton’s and Newton-
like methods in the limiting case of vanishing residuals, i.e. ηk = 0 for each k.
Further, for a special case, such conditions of convergence are affine invariant and
in agreement with the theory of [9].

2. Preliminaries

In this section we analyze local convergence results given in [3]. The follow-
ing definition of rate of convergence can be found in [1].

Definition 2.1. Let {xk} ⊂ RN be any convergent sequence with limit x∗. Then
xk → x∗ with Q-order at least p, p ≥ 1, if

‖xk+1 − x∗‖ = O(‖xk − x∗‖p), k →∞.

Moreover, consider the quantity Qp = Qp({xk}, x∗), called the Q-factor:

Qp({xk}, x∗) = lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

.(4)

In [1] it is noted that if Qp < ∞, then for any ε > 0 there exists a k0 such that

‖xk+1 − x∗‖ ≤ α‖xk − x∗‖p, k ≥ k0,(5)

where α = Qp + ε. With regard to p = 1 and for a given norm, the process has
Q-linear convergence if 0 < Q1 < 1, Q-sublinear convergence if Q1 ≥ 1. If, for
p = 1, there exist α < 1 and k0 such that (5) holds, convergence is Q-linear in that
norm ([1]).

In [3] the following result is proved:

Theorem 2.1 ([3], Th. 2.3)). Let F : RN → RN be a nonlinear mapping with the
following properties:

(i) there exists an x∗ ∈ RN with F (x∗) = 0;
(ii) F is continuously differentiable in a neighborhood of x∗, and F ′(x∗) is
nonsingular.
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Assume that ηk ≤ ηmax < t < 1. Then there exists ε > 0 such that, if ‖x0−x∗‖ ≤
ε, the sequence {xk} of inexact Newton methods converges to x∗. Moreover, the
convergence is linear in the sense that

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, k ≥ 0.

This thesis holds for inexact Newton-like methods too, if we assume that Bk is
a good approximation to F ′(xk), i.e.

‖Bk − F ′(xk)‖ ≤ γ and ‖B−1
k − F ′(xk)−1‖ ≤ γ,

where γ is a suitable small quantity.
Theorem 2.1 assures that inexact Newton methods converge Q-linearly in norm

‖ · ‖∗ and

lim sup
k→∞

‖xk+1 − x∗‖∗
‖xk − x∗‖∗ ≤ t.(6)

Convergence conditions in norm ‖ · ‖ can be easily derived with slight changes in
the proof of Theorem 2.1. In particular, since

‖y‖
‖F ′(x∗)−1‖ ≤ ‖y‖∗ ≤ ‖F ′(x∗)‖‖y‖,

we obtain

Q1({xk}, x∗) = lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ cond(F ′(x∗)) t,(7)

where cond(F ′(x∗)) = ‖F ′(x∗)‖‖F ′(x∗)−1‖ is the condition number of F ′(x∗).
This observation points out an interesting relation between the Q1-factor in norm

‖ · ‖ and the number cond(F ′(x∗)) t , and shows that convergence in norm ‖ · ‖ may
be sublinear if cond(F ′(x∗)) t ≥ 1.

Since (7) employs x∗, it does not allow us to evaluate the upper bound t on
{ηk} such that convergence is assured to be Q-linear in norm ‖ · ‖. On the other
hand, in the following section we will show that, for a well known class of functions
F and for an arbitrary norm on RN , new linear convergence conditions leading to
computable restrictions on the forcing terms can be derived. As in Theorem 2.1,
the forcing sequence is uniformly less than one.

3. Inexact methods with scaled residual control

In this section we assume that F belongs to the class F(ω, Λ∗) of nonlinear
mappings that satisfy the following properties ([6], [9]-[13]):

(i) F : D(F ) → RN , D(F ) an open set, is continuously differentiable in D(F );
(ii) there exists an x∗ ∈ D(F ) such that F (x∗) = 0 and F ′(x∗) is nonsingular;
(iii) S(x∗, ω) = {x|x ∈ RN ‖x − x∗‖ ≤ ω} ⊂ D(F ), and x∗ is the only solution

of F (x) = 0 in S(x∗, ω);
(iv) for x, y ∈ S(x∗, ω),

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ Λ∗‖y − x‖.
From [10], [2] and [11] we have the following lemmata:

Lemma 3.1 ([10]). Let F ∈ F(ω, Λ∗). Then there exists σ < min{ω, 1/Λ∗} such
that F ′(x) is invertible in S(x∗, σ) and for all x, y ∈ S(x∗, σ) we have

E(y, x) = F ′(x)−1(F ′(y)− F ′(x)), ‖E(y, x)‖ ≤ Λσ‖y − x‖,(8)

where Λσ = Λ∗/(1− Λ∗σ).
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Lemma 3.2 ([2], Lemma 4.1.9). Let F : RN → RN be continuously differentiable
in an open convex set D ⊂ RN . For any x, x + z ∈ D,

F (x + z)− F (x) =
∫ 1

0

F ′(x + tz)z dt.

Lemma 3.3 ([11], Lemma 3.1). Let x, y ∈ S(x∗, σ). Then∫ 1

0

‖E(x∗ + t(x− x∗), y)‖dt ≤ Λσ(
‖x− x∗‖

2
+ m),(9)

where m = min{‖x− y‖, ‖x∗ − y‖}.
In the following, for brevity, we write Λ = Λσ, S = S(x∗, σ).

Now let us consider inexact methods of the form:
For k = 0 step 1 until convergence do

Find some step ŝk which satisfies

B̂kŝk = −F (x̂k) + r̂k, where
‖Pkr̂k‖

‖PkF (x̂k)‖ ≤ θk(10)

Set x̂k+1 = x̂k + ŝk

where x̂0 is a given initial guess and Pk is an invertible matrix for each k. If Pk = I
for each k, (10) reduces to (3). It is worth noting that residuals of this form are
used in iterative Newton methods if preconditioning is applied, and that Pk changes
with index k if Bk does.

First we examine inexact Newton and modified inexact Newton methods that
correspond to B̂k = F ′(ŷk) with ŷk = x̂k and ŷk = x̂0, for each k, respectively.

Theorem 3.1. Assume B̂k = F ′(ŷk), ∀k, in (10). Let x̂0 ∈ S, ‖x̂0 − x∗‖ ≤ δ,
νk = θk cond(PkF ′(ŷk)) with νk ≤ ν < ν, and µ = Λ

2 δ(1 + ν). Then the iterates of
(10) are well-defined and {x̂k} converges to x∗ if

α = µ(µ + ν) + ν < 1,(11)

for inexact Newton methods and

α = µ(µ + ν) + 2µ + ν < 1,(12)

for modified inexact Newton methods. Further, for sufficiently large k we have

‖x̂k+1 − x∗‖ ≤ ν‖x̂k − x∗‖ ,(13)

‖x̂k+1 − x∗‖ ≤ (2µ + ν)‖x̂k − x∗‖ ,(14)

for inexact Newton and modified inexact Newton methods, respectively.

Proof. First, we point out that (11) or (12) implies ν < 1, (µ + ν) < 1, and (12)
yields (2µ + ν) < 1.

Assume that x̂k and ŷk are in S, and determine an upper bound for ‖x̂k+1−x∗‖.
From (10) and Lemma 3.2 with ξk = x∗ + t(x̂k − x∗) we obtain

x̂k+1 − x∗ = x̂k − x∗ − F ′(ŷk)−1(F (x̂k)− F (x∗)) + F ′(ŷk)−1r̂k

= −
∫ 1

0

E(ξk, ŷk)dt (x̂k − x∗) + F ′(ŷk)−1P−1
k Pk r̂k.
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Further,

‖x̂k+1 − x∗‖ ≤
∫ 1

0

‖E(ξk, ŷk)‖dt‖x̂k − x∗‖+ θk‖(PkF ′(ŷk))−1‖‖PkF (x̂k)‖

≤
∫ 1

0

‖E(ξk, ŷk)‖dt‖x̂k − x∗‖

+ θk‖(PkF ′(ŷk))−1‖‖PkF ′(ŷk)
∫ 1

0

F ′(ŷk)−1F ′(ξk)dt(x̂k − x∗)‖

≤
∫ 1

0

‖E(ξk, ŷk)‖dt‖x̂k − x∗‖

+ θk cond(PkF ′(ŷk))‖
∫ 1

0

(I + E(ξk, ŷk))dt(x̂k − x∗)‖

≤ [(1 + νk)
∫ 1

0

‖E(ξk, ŷk)‖dt + νk]‖x̂k − x∗‖,

and from Lemma 3.3 we derive

‖x̂k+1 − x∗‖ ≤ [Λ(1 + νk)(
1
2
‖x̂k − x∗‖+ mk) + νk]‖x̂k − x∗‖,(15)

where mk = min{‖x̂k − ŷk‖, ‖x∗ − ŷk‖}.
Concerning inexact Newton methods, we observe that mk = 0 for each k, and if

x̂k ∈ S(x∗, δ) from (15) we have

‖x̂k+1 − x∗‖ ≤
[
Λ
2

(1 + νk)δ + νk

]
‖x̂k − x∗‖ < (µ + ν)‖x̂k − x∗‖.

Then, from (11) it follows that ‖x̂k+1−x∗‖ < ‖x̂k−x∗‖. Moreover it can be shown
that

‖x̂k+1 − x∗‖ < αk(µ + ν)δ, k ≥ 0 .(16)

In fact, for k = 0 we have

‖x̂1 − x∗‖ ≤
(

Λ
2

(1 + ν0)δ + ν0

)
‖x̂0 − x∗‖ < (µ + ν)δ,

and (16) holds. Suppose now ‖x̂k−x∗‖ < αk−1(µ+ ν)δ for a given k ≥ 1. If α < 1,
then x̂k ∈ S(x∗, δ), and from (15) we obtain

‖x̂k+1 − x∗‖ < [Λ(1 + νk)(1
2αk−1(µ + ν)δ) + νk]αk−1(µ + ν)δ

< (µ(µ + ν) + ν)αk−1(µ + ν)δ = αk(µ + ν)δ,

which proves (16).
To prove convergence for modified inexact Newton methods we show that (16)

holds with α given in (12). In particular, m0 = 0, mk = min{‖x̂0−x̂k‖, ‖x̂0−x∗‖} ≤
δ for k > 0, and (15) yields ‖x̂1 − x∗‖ ≤ (1

2Λ(1 + ν0)δ + ν0)‖x̂0 − x∗‖ < (µ + ν)δ.
Then x̂1 ∈ S(x∗, δ), and (16) holds for k = 0.

If as inductive hypothesis we assume x̂k ∈ S(x∗, δ) and ‖x̂k−x∗‖ < αk−1(µ+ν)δ,
then from (15) we have ‖x̂k+1 − x∗‖ < α‖x̂k − x∗‖, and (16) follows.

Finally, if we consider (15) and if k is large enough so that
Λ
2

(1 + νk)‖x̂k − x∗‖ ≤ ν − ν,(17)

(13) and (14) easily follow.
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It is worth noting that, for a given ν < 1, at each iteration (11) and (12) yield
the upper bound ν/cond(PkF ′(ŷk)) for θk.

This theorem also gives an estimate of the radius of convergence δ ≤ σ. In
particular, from α < 1 we have

δ <
2(1− ν)
Λ(1 + ν)

, δ <
−(ν + 2) +

√
ν2 + 8

Λ(1 + ν)
,

for inexact Newton and modified inexact Newton methods, respectively, and we
can conclude that δ decreases while ν approaches 1.

From Theorem 3.1, stated with Λ = Λσ, we have that the sequence {x̂k} belongs
to S(x∗, δ). Moreover, from [10] we know that, for x, y ∈ S(x∗, δ) and δ ≤ σ, (8)
holds with Λδ = Λ∗/(1 − Λ∗δ). Then we can conclude that the thesis of Theorem
3.1 is still valid if we replace Λ with Λδ. Further, if (11) and (12) are formulated
in terms of Λδ, then for ν = 0

δ <
2

3Λ∗
, δ <

2
√

2− 2
(2
√

2− 1)Λ∗
,

given in [12] for Newton’s method and modified Newton’s method, respectively. In
particular, the estimate for the radius of convergence of Newton’s method is known
to be sharp ([12]). Then, we can conclude that for vanishing residuals, Theorem
3.1 merges into the theory of Newton’s method.

A result analogous to Theorem 3.1 can be proven also for inexact Newton-like
methods where B̂k = B̂(x̂k) approximates F ′(x̂k).

Theorem 3.2. Let B̂(x) be an approximation to the Jacobian F ′(x) for x ∈ D(F ),
satisfying for x ∈ S the following properties:

• B̂(x) is invertible;
• ‖B̂(x)−1F ′(x) − I‖ ≤ τ1;
• ‖B̂(x)−1F ′(x)‖ ≤ τ2.

Let x̂0 ∈ S, ‖x̂0−x∗‖ ≤ δ, νk = θk cond(PkB̂k) and νk ≤ ν < ν. Then the sequence
{x̂k} of (10) is well-defined, and {x̂k} converges to x∗ if

α = ρ(ρ + τ1 + ν τ2) + τ1 + ν τ2 < 1,(18)

where ρ = Λ
2 δ(1 + ν)τ2. Moreover, for k sufficiently large,

‖x̂k+1 − x∗‖ ≤ (τ1 + ν τ2)‖x̂k − x∗‖ .(19)

Proof. To begin, note that (18) implies (τ1 + ν τ2) < 1 and (ρ + τ1 + ν τ2) < 1.
We assume that x̂k ∈ S and determine an upper bound for ‖x̂k+1−x∗‖. From (10)
and Lemma 3.2 with ξk = x∗ + t(x̂k − x∗) we obtain

x̂k+1 − x∗ = x̂k − x∗ − B̂−1
k (F (x̂k)− F (x∗)) + B̂−1

k r̂k

= x̂k − x∗ −
∫ 1

0

B̂−1
k F ′(ξk)dt(x̂k − x∗) + B̂−1

k r̂k

= −
∫ 1

0

B̂−1
k F ′(x̂k)E(ξk, x̂k))dt(x̂k − x∗)

− B̂−1
k (F ′(x̂k)− B̂k)(x̂k − x∗) + B̂−1

k P−1
k Pk r̂k.
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Therefore, applying Lemma 3.3, we derive

‖x̂k+1 − x∗‖ ≤ (τ2

∫ 1

0

‖E(ξk, x̂k)‖dt + τ1)‖x̂k − x∗‖+ θk‖B̂−1
k P−1

k ‖‖PkF (x̂k)‖
≤ ( 1

2Λτ2‖x̂k − x∗‖+ τ1)‖x̂k − x∗‖

+ νk τ2

∫ 1

0

‖F ′(x̂k)−1F ′(ξk)‖dt‖x̂k − x∗‖
≤ (1

2Λτ2‖x̂k − x∗‖+ τ1)‖x̂k − x∗‖

+ νk τ2

∫ 1

0

‖(I + E(ξk, x̂k))‖dt‖x̂k − x∗‖,
and

‖x̂k+1 − x∗‖ ≤
[
Λ
2

(1 + νk)τ2‖x̂k − x∗‖+ τ1 + νk τ2

]
‖x̂k − x∗‖.(20)

To prove convergence, note that

‖x̂1 − x∗‖ ≤ (ρ + τ1 + ν0 τ2)‖x̂0 − x∗‖ < (ρ + τ1 + ν τ2)δ,

and, by induction on k > 1, suppose that

‖x̂k − x∗‖ < αk−1(ρ + τ1 + ν τ2)δ ,(21)

with α defined in (18). We can conclude that x̂k ∈ S(x∗, δ) and, from (20),

‖x̂k+1 − x∗‖ <

[
Λ
2

(1 + νk)τ2α
k−1(ρ + τ1 + ν τ2)δ + τ1 + νk τ2

]
‖x̂k − x∗‖

< [ ρ(ρ + τ1 + ν τ2) + τ1 + ν τ2]‖x̂k − x∗‖ = α‖x̂k − x∗‖,
which proves the induction hypothesis. Further, for sufficiently large k, (17) holds
and from (20) we derive (19).

The results we proved state inverse proportionality between each forcing term θk

and cond(PkB̂k). Such conditions are sufficient for convergence, and may be overly
restrictive for the upper bounds on {θk} if PkB̂k are bad conditioned matrices.

We now consider the sequence {x̂k} given by inexact methods (10) with Pk 6=
I, and the sequence {xk} obtained for Pk = I, ∀k, and matrices Bk = B̂(xk)
in (3). From Theorem 3.2 it easily follows that if x0 = x̂0 and the sequences
{θk cond(PkB̂k)} and {ηk cond(Bk)} are bounded by the same quantity ν, then
{xk} and {x̂k} converge to x∗ satisfying (19).

Further, consider the k-th equation (3)

Bksk = −F (xk) + rk,

and assume that both residual controls
‖rk‖

‖F (xk)‖ ≤ ηk,
‖Pkrk‖

‖PkF (xk)‖ ≤ θk,

are applied. If we suppose ηk cond(Bk) = θk cond(PkBk), i.e.

θk =
cond(Bk)

cond(PkBk)
ηk = γηk,

and if Pk is such that 1 ≤ cond(PkBk) ≤ cond(Bk), we obtain γ ∈ [1, cond(Bk)]
and θk ∈ [ηk, νk]. We point out that θk does not depend on cond(Pk) but only on
the conditioning of PkBk. Further, it follows that the choice of a suitable scaling
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matrix Pk such that cond(PkBk) < cond(Bk) leads to a relaxation on the forcing
terms, and while cond(PkBk) decreases, θk approaches the maximum νk.

For Pk = B−1
k , called natural scaling ([13]), we have the residual control

‖B−1
k rk‖

‖B−1
k F (xk)‖ ≤ θk ,(22)

and the extremal properties cond(PkBk) = 1 and θk = νk, hold. Moreover, regard-
ing inexact Newton and modified inexact Newton methods with control (22), from
Theorem 3.1 it is easy to derive

Corollary 3.1. Let the hypotheses of Theorem 3.1 hold. Then, given a sequence
{θk} uniformly less than 1, there exists a δ̂ such that for x̂0 ∈ S(x∗, δ), δ < δ̂, the
sequence {x̂k} converges Q-linearly.

Proof. Since νk = θk < 1 ∀k and {θk} is bounded away from 1, for a suitable ν < 1
we have νk ≤ ν < ν. Further, there exists δ̂ > 0 such that (11) holds. Then,
from Theorem 3.1 the thesis follows for inexact Newton methods. In the same
way, if δ̂ is such that (12) is satisfied, the thesis holds for modified inexact Newton
methods.

We remark that θk < 1 is the only condition needed to define the process correctly
([3]), and that condition (22) is affine invariant, as it is insensitive with respect to
transformations of the mapping F (x) of the form: F (x) → AF (x), A an invertible
matrix, as long as the same affine transformation is also valid for B(x) (see e.g.
inexact Newton, modified inexact Newton and inexact finite difference methods).

Since Newton’s iterates are affine invariant, in [13] convergence conditions were
determined in affine invariant terms. Ypma provided an affine invariant study of
local convergence also for inexact Newton methods, although they are formally no
longer affine invariant unless the residuals vanish. Specifically, in [9] it was noted
that even if the method

F ′(xk)sk = −F (xk) + rk,
xk+1 = xk + sk,

k = 0, 1, . . . ,

is affine invariant, the condition ‖rk‖/‖F (xk)‖ is not. As a consequence the alter-
native form (22) with Bk = F ′(xk)−1 was proposed, and affine convergence theory
was provided for the resulting process.

We point out that for Pk = B−1
k and for methods such that (22) is affine invariant,

Theorems 3.1 and 3.2 represent an affine convergence analysis of inexact Newton-
like methods, and in the case of inexact Newton methods Corollary 3.1 agrees with
the main theorem of [9] (see [9], Theorem 3.1).
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