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Abstract. Decomposition of multidisciplinary engineering system design problems into smaller subproblems is
desirable because it enhances robustness and understanding of the numerical results. Moreover, subproblems can
be solved in parallel using the optimization technique most suitable for the underlying mathematical form of the
subproblem. Hierarchical overlapping coordination (HOC) is an interesting strategy for solving decomposed prob-
lems. It simultaneously uses two or more design problem decompositions, each of them associated with different
partitions of the design variables and constraints. Coordination is achieved by the exchange of information between
decompositions. This article presents the HOC algorithm and several new sufficient conditions for convergence
of the algorithm to the optimum in the case of convex problems with linear constraints. One of these equivalent
conditions involves the rank of the constraint matrix that is computationally efficient to verify. Computational
results obtained by applying the HOC algorithm to quadratic programming problems of various sizes are included
for illustration.

Keywords: decomposition methods, large-scale optimization, distributed computing, hierarchical coordination

1. Introduction

Engineering design can be viewed as a decision-making process that uses mathematical
models to predict design behavior and to select a design whose value is considered satis-
factory. A typical approach consists of formulating a design optimization problem using
models to estimate design criteria and constraint functions, and applying formal methods
to search the design space for an optimum.

In this article, we assume that a design problem can be formulated as a convex optimization
problem of the form:

find x ∈ Rn such thath(x) = 0, g(x) ≤ 0 and f (x) is minimized,
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where f :Rn → R and gi :Rn → R are convex functions, andhi :Rn → R are affine
functions. We assume that the problem above has a nonempty solution set, and thatf
andgi are differentiable functions onRn. Although most design problems are nonlinear,
nonconvex problems, many optimization algorithms solve a sequence of approximation
problems similar to those considered in this article to arrive at the solution of the original
design problem.

In the case of a large nonlinear design problem that involves a significant number of
variables and constraints, decomposition of the design problem into smaller design sub-
problems may be desirable. The subproblems can then be solved in parallel, using the
optimization technique most suitable for the underlying submodel, gaining in robustness
and interpretation of results, and occasionally also in speed of execution. Moreover, sys-
tem design problems typically involve several disciplines. Subsystem design teams repre-
sent an explicit problem decomposition. Thus, coordinated solution of design subproblems
may be the only way to address the overall system problem in a practical and robust
manner.

Hierarchical overlapping coordination (HOC) uses two or more design problem decom-
positions, each of them associated with different partitions of the design variables and
constraints. This kind of problem decomposition may reflect, for example, matrix-type
organizations structured according to product lines or physical subsystems (object decom-
position) and the disciplines involved in the design process (aspect decomposition). Coor-
dination is achieved by the exchange of information between decompositions, as explained
in Section 2.1.

The mathematical formulation of HOC was first proposed in [13], and several criteria for
convergence of the coordination algorithm under linear equality and inequality constraints
were developed in [13] and [23]. Convergence criteria developed in those articles are com-
putationally difficult to check and possibly incorrect (see Remark 4.5). In this article, we
present computationally efficient conditions that ensure the convergence of overlapping
coordination under linear equality and inequality constraints.

Several researchers have proposed coordination strategies to exploit the structure of a
problem associated with its decomposition. Reviews of optimization procedures that use de-
composition are presented by Wagner and Papalambros [27] and Sobieszczanski-Sobieski
and Haftka [25]. Recently, Nelson and Papalambros [19] presented sequentially decom-
posed programming (SDP) as a globally convergent coordination scheme for hierarchic
systems. Other promising coordination algorithms, including concurrent subspace opti-
mization (CSSO) [24] and collaborative optimization (CO) [4] for nonhierarchic systems,
require further study of robustness and convergence properties.

Interest in HOC here is motivated by the desire to solve decomposed problems rigorously,
rather than to achieve computational speed-ups.

2. HOC under linear equality constraints

In the case of linear equality constraints only, the original optimization problem can be
restated in the following form:

Minx f (x) subject toAx = c, (2.1)
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Figure 1. Block-decomposition of constraint matrixA, design vectorx, and constant vectorc.

where f :Rn → R is convex and differentiable,A is anm× n constraint matrix with real
entries,x ∈ Rn is the vector of optimization variables, andc ∈ Rm is a constant vector. We
assume that the above problem has a nonempty solution set.

Suppose that the columns and rows ofA (and correspondingly the components ofx and
c) can be reordered to generate a block-angular decomposition as represented byAα in
figure 1. We refer to it as theα-decomposition of the problem. In figure 1,xα is the vector
of reordered design variables,cα is the reordered vectorc, andyα is the vector ofnα linking
variables for theα-decomposition. The linking variables for theα-decomposition will be
referred to asα-linking variables, and the number of subproblems in theα-decomposition
(diagonal blocks in the figure) is given bypα. More explicitly,

yα :=


xα(1)
...

xα(nα)

 and cα :=


cα1

...

cαpα

 .
xαi is the vector of local variables associated with blockAαi , i.e., with subproblemαi

for i = 1, 2, . . . , pα. We note that the reordered matrixAα consists of a “side” block
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of columns, corresponding to theα-linking variables, and diagonal blocksAα1, Aα2, . . . ,

Aαpα
.

We assume that Problem 2.1 can be decomposed in two or more different ways (say,
α-, β-, . . . decompositions). Model-based decomposition methods [17, 18] can be used to
produce such decompositions as described in Section 2.2. Although the results of this article
can be generalized to three or more decompositions, we will consider only two problem
decompositions (α andβ) to simplify notations and proofs.

Typically, system design problems have to be formulated as multicriteria optimization
problems. The criteria may correspond to the various problem aspects (e.g., system per-
formance, cost, durability, weight, or dynamic response) or to design objectives for each
subsystem. A monotonic value function [8] may be then used to combine dissimilar crite-
ria to generate a design point or Pareto set. In aspect or object decomposition, this value
function is separable according to aspects or subsystems, respectively. In weakly-connected
model decompositions, a separable value function could be constructed to match the model
decompositions as proposed in [9].

Under the assumption that the objective functionf isα-additively separable,1 Problem 2.1
takes the following form:

Minx fα0(yα)+
pα∑

i=1

fαi (yα, xαi )

subject toBαi yα + Aαi xαi = cαi , i = 1, . . . , pα. (2.2)

For a given vectordα ∈ Rnα , fixing theα-linking variablesyα = dα in (2.2) results in the
following Problemα:

Problem α :

For eachi = 1, . . . , pα, (2.3)

Minxαi
fαi (dα, xαi ) subject toAαi xαi = cαi − Bαi dα.

Problemα can be solved by solvingpα independent uncoupled subproblems. Similarly,
Problemβ can be defined and solved for aβ-decomposition after fixing theβ-linking
variables.

2.1. Generic HOC algorithm

The generic hierarchical overlapping coordination algorithm can be described for the case
of two decompositions (α andβ) as follows:

Step1. Fix linking variablesyα, and solve Problemα by solving thepα independent
subproblems given in (2.3).

Step2. Fix linking variablesyβ to their values determined inStep1, and solve Problemβ
by solving pβ independent subproblems.

Step3. Go toStep1 with the fixed values ofα-linking variables determined inStep2.
Step4. Repeat these steps until convergence is achieved.
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Figure 2. Flow of information in hierarchical overlapping coordination.

Thus, in the HOC algorithm, the linking variables for one of the decompositions are
fixed at values that result from the solution of a number of independent subproblems asso-
ciated with the previous decomposition. The flow of information between decompositions
is represented in the diagram of figure 2.

Remark 2.1. The accumulation point achieved inStep 4 is not necessarily an optimal
solution of Problem 2.1. A sufficient condition guaranteeing the convergence to a solution
of the original problem will be developed in the following sections.

2.2. Finding decompositions of a design problem

Hierarchical overlapping coordination entails identifying hierarchical decompositions of
the design model, i.e., groups of design submodels (or modules) that exchange information
in an acyclic manner. The flow of information among modules can be then represented with
a graph without circuits—a tree. Once design information is fixed at a given level, design
tasks at the level below can be carried out independently. Relying on the engineer’s insight
to recognize a decomposition of a large multidisciplinary design model may not always
be possible, so several computational techniques have been devised for hierarchical and
sequential decomposition of design processes and problems.

Sequential decomposition techniques identify and arrange modules that contain de-
sign tasks that are strongly connected to minimize feedback between modules [1, 15,
21, 26]. These techniques reorder the so-called design structure matrix2 in a block-triangular
form to generate the best computational sequence. The resulting partition is nonhier-
archical if feedback cannot be avoided. Feed-forward structures are still not appropri-
ate for hierarchical decomposition and coordination because the modules may not be
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separable. Kroo and his collaborators [1, 11] have proposed using auxiliary variables
and compatibility constraints for hierarchical decomposition of design models whose
reordered structure matrix presents both feed-backward and feed-forward con-
nections.

Similar ideas have been applied to hierarchical decomposition of design processes and
problems. Kusiak proposed in [12] a branch-and-bound algorithm to partition an overall
design task into subtasks with minimal interdependence, allowing concurrency of the design
process. For a given design problem, a matrix called functional dependence table (FDT)
can be constructed as a Boolean matrix representing the dependence of design constraint
functions on variables. The (i, j )-th entry of the FDT is one if thei -th constraint depends
on the j -th variable and zero otherwise.3 A decomposition of the given design problem
can be achieved by reordering rows and columns of the FDT corresponding to the con-
straints and variables, respectively. The decomposition algorithm proposed in Michelena
and Papalambros [18] uses a hypergraph representation of the design model, which is then
optimally partitioned into weakly connected subgraphs that can be identified with subprob-
lems. An implementation of this decomposition algorithm is available on the web [16].
Design variables are represented by the hypergraph edges, whereas design constraints in-
terrelating these variables are represented by the nodes. These constraints may be given
as algebraic equations, response surfaces or look-up tables, or evaluated using simulation
modules. The formulation can account for computational demands and resources as well as
the strength of interdependencies between modules in the model, using weights in the graph.

The above hierarchical decomposition algorithms can be also used to identify clusters
of submodels of an already partitioned design model. Note, however, that a highly coupled
model might not be decomposable at all; that is, the number of linking variables would
be too large in relation to the total number of variables. Optimization by decomposition,
including HOC, is not appropriate in these cases. HOC is a promising method only if the
sparsity of the model is such that two or more weakly connected partitions can be identified.
In general, a decomposable model is characterized by having a small set of linking variables,
and it is very likely to have multiple decompositions.

In practical design situations, one may not be able to rearrange the order of evaluation
of design modules. A linking variable may actually be the output of a design module.
Hierarchical decomposition is still possible by adding auxiliary variables and enforcing
compatibility constraints within the corresponding subproblem, as suggested in [1, 2, 11]
for nonhierarchical systems. This approach is equivalent to constraining a residual on the
value of the output linking variable as in the individual discipline feasible (IDF) formulation
in [5].

2.3. Optimality conditions

The Lagrange multiplier theorem for linear equality constraints [3, Proposition 3.4.1] states
thatx∗ ∈ Rn is a solution to Problem 2.1 if and only if there exists a vectorλ ∈ Rm such
that

∇ f t (x∗)+ Atλ = 0. (2.4)
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In contrast to the case of nonlinear constraints, this optimality condition is valid even without
the regularity assumption onx∗. This is a consequence of Farkas’ Lemma for polyhedral
sets [3, page 292].

Condition 2.4 is equivalent to

∇ f t (x∗) = −Atλ,

which can be rephrased as

“∇ f t (x∗) belongs to the row space RS(A).”

Let ei ∈ Rn be thei -th standard row vector whosei -th component is one and all other
components are zero. Once anα-decomposition and aβ-decomposition are given, define
the indicator matricesHα andHβ by

Hα :=


eα(1)
eα(2)
...

eα(nα)

 , Hβ :=


eβ(1)
eβ(2)
...

eβ(nβ )

. (2.5)

These are uniquenα × n andnβ × n matrices having ones and zeros as their entries such
that

Hαx = yα, Hβx = yβ.

DefineKα, Kβ andKαβ as follows:

Kα :=
(

A

Hα

)
, Kβ :=

(
A

Hβ

)
, Kαβ :=

 A

Hα

Hβ

 .
Problemα, with fixed values for theα-linking variablesyα = dα, can be defined as

Minx f (x) subject toAx = c and Hαx = dα. (2.6)

One notes thatx∗α ∈ Rn is a solution to Problemα if and only if there exists vectorsλα ∈ Rm

andµα ∈ Rn(α) such that

∇ f t (x∗α)+ Atλα + Ht
αµα = 0. (2.7)

This optimality condition can be rephrased as

“∇ f t (x∗α) belongs to the row space RS(Kα).”
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Analogously,x∗β is a solution to Problemβ if and only if

“∇ f t (x∗β) belongs to the row space RS(Kβ).”

2.4. Properties of HOC

The following properties of HOC were observed and proved in [13]. Note that they ensure
convergence of the HOC algorithm.

1. If the HOC algorithm is started with a feasible pointx0, then at each stage of the process,
problemα and problemβ will have nonempty feasible domains.

2. If the sequences{xαi }∞i=1 and {xβi }∞i=1 result from solving problemα and problemβ,
respectively, andf min := min{ f (x) | Ax = c}, then

(a) f (xαi ) ≥ f (xβi ) ≥ f (xα(i+1) )

(b) limi→∞ f (xαi ) = lim i→∞ f (xβi ) = f ∗ ≥ f min

3. Any accumulation pointx∗ of either {xαi }∞i=1 or {xβi }∞i=1 solves both problemα and
problemβ.

3. Conditions for convergence under linear equality constraints

Onceα- andβ-decompositions of the optimization problem in (2.1) are obtained, let{xαi }∞i=1
and{xβi }∞i=1 be the sequences obtained by applying the generic HOC algorithm to these
decompositions as described in Section 2.1. Theorem 3.1 below gives a sufficient condition
for these sequences to converge to a minimum of Problem 2.1 in terms of the row spaces
RS(A), RS(Kα) and RS(Kβ).

Theorem 3.1. Letx∗ be an accumulation point of{xαi }∞i=1 or {xβi }∞i=1. If

RS(A) = RS(Kα) ∩ RS(Kβ),

thenx∗ is a solution to the optimization problem in(2.1).

Proof: By Property 3 of Section 2.4,x∗ solves both Problemα and Problemβ. Therefore,

∇ f t (x∗) ∈ RS(Kα) and∇ f t (x∗) ∈ RS(Kβ).

Since RS(A) = RS(Kα) ∩ RS(Kβ), one gets∇ f t (x∗)∈RS(A), which impliesx∗ is a
solution to the original optimization problem. 2

Although Theorem 3.1 offers a conceptually clear sufficient condition for the conver-
gence of the HOC, it involves the algorithmic process of computing the intersection of
the two vector spaces RS(Kα) and RS(Kβ). The computational cost associated with this
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process can be fairly high. As an attempt to obtain a computationally efficient HOC con-
vergence condition, we prove in Theorem 3.2 that a certain matrix rank condition implies
the convergence condition of Theorem 3.1.

Theorem 3.2. Let r be the rank of A and̂A be an r×n submatrix of A with full row rank.
If the matrix

K̂αβ :=

 Â

Hα

Hβ


has full row rank, then RS(A) = RS(Kα) ∩ RS(Kβ).

Proof: Clearly, RS(A) ⊂ RS(Kα) and RS(A) ⊂ RS(Kβ). Therefore,

RS(A)⊂RS(Kα) ∩ RS(Kβ).

To show the reverse inclusion, choose an arbitraryv ∈ RS(Kα)∩RS(Kβ). Letv1, . . . , vr

be the row vectors of̂A, andei ∈ Rn be thei -th standard row vector. The full row rank
condition on

K̂αβ =
(
v1, . . . , vr , eα(1), . . . ,eα(nα), eβ(1), . . . ,eβ(nβ )

)t
implies that{v1, . . . , vr , eα(1), . . . ,eα(nα)} and {v1, . . . , vr , eβ(1), . . .eβ(nβ )} are bases for
RS(Kα) and RS(Kβ), respectively.

v∈RS(Kα) H⇒ v =
r∑

i=1

ai vi +
nα∑

i=1

si eα(i ) for someai ’s andsi ’s in R.

v ∈ RS(Kβ) H⇒ v =
r∑

i=1

bi vi +
nβ∑

i=1

ti eβ(i ) for somebi ’s andti ’s in R.

Therefore,

r∑
i=1

(ai − bi )vi +
nα∑

i=1

si eα(i ) −
nβ∑

i=1

ti eβ(i ) = 0.

Sincev1, . . . , vr , eα(1), . . . ,eα(nα), eβ(1), . . . ,eβ(nβ ) are linearly independent, one concludes

ai = bi , sj = 0, tk = 0, for all i = 1, . . . , r, j = 1, . . . ,nα, k = 1, . . . ,nβ.

This meansv =∑r
i=1 ai vi ∈RS(A). 2

Corollary 3.3. Same notations as in Theorems3.1 and3.2. If the matrixK̂αβ has full row
rank, thenx∗ is a solution to the optimization problem in(2.1).
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Remark 3.4. The convergence condition given in Corollary 3.3 offers a very efficient
criterion for the convergence of hierarchical overlapping coordination in terms of rank
(K̂αβ). A model partitioning algorithm as in [18] should just check if rank(K̂αβ) is equal
to r + nα + nβ .

The following theorem offers several interpretations of the HOC convergence condition
given in Corollary 3.3.

Theorem 3.4. With the same notations as in Theorem3.2, the following three conditions
are equivalent.

1. The matrixK̂αβ has full row rank.
2. There exists no(nontrivial) linear relation exclusively among theα- and β-linking

variables.
3. The set ofα-linking variables and the set ofβ-linking variables are disjoint, and the

matrix Âαβ obtained fromÂ by deleting columns corresponding to theα-andβ-linking
variables has full row rank.

Proof: (1)⇐⇒ (2): FromAx = c, one can find the unique vectorĉ= (ĉ1, . . . , ĉr )
t such

that Âx = ĉ. Let v1, . . . , vr be the row vectors of̂A andei ∈ Rn be thei -th standard row
vector. Note that

vi x = ĉi , ei x = xi .

K̂αβ is rank-deficient.⇐⇒ There exists a nontrivial linear relation among the row
vectors ofK̂αβ.

⇐⇒ There exists a nontrivial linear relation
r∑

i=1

ai vi +
nα∑

i=1

si eα(i ) +
nβ∑

i=1

ti eβ(i ) = 0.

⇐⇒ There exists a nontrivial linear relation
r∑

i=1

ai vi x+
nα∑

i=1

si eα(i )x+
nβ∑

i=1

ti eβ(i )x = 0.

⇐⇒ There exists a nontrivial linear relation
r∑

i=1

ai ĉi +
nα∑

i=1

si xα(i ) +
nβ∑

i=1

ti xβ(i ) = 0.

⇐⇒ There exists a nontrivial linear relation exclusively among
α-andβ-linking variables.

(1)H⇒ (3): Since( Hα

Hβ
) has full row rank, the sets{α(1), . . . , α(nα)} and{β(1), . . . , β(nα)}

are disjoint. By performing appropriate elementary row operations onK̂αβ , one easily
concludes that̂Aαβ has full row rank.
(3)H⇒ (1): Straightforward. 2
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Theorem 3.6 below shows that, under a certain additional condition, the two conditions
of Theorem 3.2 are actually equivalent.

Theorem 3.6. Suppose thatK̂α := (
Â

Hα
) and K̂β := (

Â
Hβ
) have full row rank. Then,

RS(A) = RS(Kα) ∩ RS(Kβ) if and only if the matrixK̂αβ := ( Â
Hα
Hβ
) has full row rank.

Proof:

(⇐H): Shown in Theorem 3.2.
(H⇒): SupposeK̂αβ is rank-deficient. Letv1, . . . , vr be the row vectors of̂A, andei ∈ Rn

be thei -th standard row vector. Since

K̂αβ =
(
v1, . . . , vr , eα(1), . . . ,eα(nα), eβ(1), . . . ,eβ(nβ )

)t
is rank-deficient, there exists a nontrivial linear relation among its row vectors:

r∑
i=1

ai vi +
nα∑

i=1

si eα(i ) +
nβ∑

i=1

ti eβ(i ) = 0, (3.1)

where the coefficients are not identically zero. In this expression, the first two sums belong
to RS(Kα) while the third sum belongs to RS(Kβ). Therefore,

r∑
i=1

ai vi +
nα∑

i=1

si eα(i ) = −
nβ∑

i=1

ti eβ(i ) ∈ RS(Kα) ∩ RS(Kβ) = RS(A).

Sincevi ’s andeα( j )’s form a basis for RS(Kα) = RS(K̂α), an arbitrary element of RS(Kα)

has a unique expression as a linear combination of these basis vectors. In particular, an
element of RS(A)⊂RS(Kα) is expressed only in terms ofvi ’s. Therefore, from

∑r
i=1 ai vi+∑nα

i=1 si eα(i ) ∈ RS(A), we deduce that

s1 = · · · = snα = 0.

Thus, (3.1) becomes

r∑
i=1

ai vi +
nβ∑

i=1

ti eβ(i ) = 0, (3.2)

where the coefficients are not identically zero. This contradicts the full row rank condition
on K̂β , and thus,K̂αβ has to be a full row rank matrix. 2

Since the row space RS(B) of a matrixB can be viewed as the orthogonal complement
of its null space NS(B), the HOC convergence condition of Theorem 3.1 given in terms of
the row spaces ofA, Kα andKβ can be rephrased in terms of their null spaces.
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For any subspaceW of an inner product spaceV , we denote the orthogonal complement
of W by W⊥. We need the following lemma.

Lemma 3.7. Let W1 and W2 be subspaces of a finite dimensional inner product space.
Then

(W1+W2)
⊥ = W⊥1 ∩W⊥2

(W1 ∩W2)
⊥ = W⊥1 +W⊥2

Proof: Exercise 11 in [6, page 313]. 2

Theorem 3.8. Let A, Kα and Kβ be the matrices defined by two decompositions of the
optimization problem in(2.1).Then

RS(A) = RS(Kα) ∩ RS(Kβ)

if and only if

NS(A) = NS(Kα)+ NS(Kβ).

Proof: For an arbitrarys× t matrix B, identify RS(B) and NS(B) as subspaces ofRt ,
and identify at-dimensional row vector with at-dimensional column vector. Just note that

RS(B)⊥ = NS(B),

and apply Lemma 3.7. 2

In [13] and [23], the null space condition NS(A)=NS(Kα) + NS(Kβ) was developed
as a sufficient condition for convergence of HOC. A computational procedure to check
the convergence of HOC based on this condition will have to compute the sum of two
vector spaces, N(Kα) and N(Kβ), which is an expensive computational process. Also,
this condition is sometimes difficult to work with. For instance, the following apparently
incorrect statement appears in [23]:

[23, Property 4] If the decision variables corresponding to the interaction (i.e., linking)
variablesyα andyβ are bounded by common equations, then

NS(A) 6= NS(Kα)+ NS(Kβ).
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Example 2 in [23] was constructed specifically to demonstrate the above Property 4. The
constraints in this example are

x1+ 3x2+ 2x3 = c1

x2+ 2x3+ x4 = c2

x4+ x5+ x6+ 2x7 = c3

x5+ 3x6+ x7 = c4

x6+ x8+ x9+ x10 = c5

x9+ x10 = c6,

and the linking variables areyα = x6 andyβ = x4. Based on the observation that the third
constraint equation contains bothyα andyβ , the article [23] claims that this example satisfies
the hypothesis of Property 4 and therefore NS(A) 6= NS(Kα) + NS(Kβ). It also presents
a computation that results in the erroneous conclusion that NS(A) and NS(Kα)+NS(Kβ)

are different. An explicit computation usingMaple [20] actually shows that NS(A) =
NS(Kα)+ NS(Kβ), and that indeed this example disproves [23, Property 4].

The above example demonstrates how difficult it can be to check the convergence criterion
NS(A) = NS(Kα)+ NS(Kβ) in actual computation.

4. HOC under mixed linear constraints

In this section, we extend the results of the preceding sections to the general case of HOC
under mixed linear equality and inequality constraints:

Minx f (x) subject toAI x ≤ cI and AEx = cE (4.1)

where f : Rn→ R is convex and differentiable,AI (AE, resp.) is anmI ×n (mE×n, resp.)
constraint matrix with real entries,x ∈ Rn is the vector of optimization variables, and
cI ∈ RmI (cE ∈ RmE , resp.) is a constant vector. LetA be the matrix( AI

AE ). The problem is
assumed to have a nonempty solution set.

The HOC algorithm described in Section 2.1 applied to Problem 4.1 results in two
sequences{xαi }∞i=1 and{xβi }∞i=1. For an accumulation pointx∗ of {xαi }∞i=1 or {xβi }∞i=1, define
Ja to be the set of the indices corresponding to the active inequality constraints, i.e.,

Ja := {i ∣∣ (aI
i 1, . . . ,a

I
in

)
x∗ = cI

i

}
,

whereaI
i j denotes the(i, j )-entry of the matrixAI . Let ĀI be the submatrix ofAI consisting

of the active inequality constraints.
Define the cone C(A) by

C(A) :=
{

x | x =
∑
i∈Ja

ai vI
i +

mE∑
i=1

bi vE
i ,ai ≥ 0

}
, (4.2)
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wherevI
i (v

E
i , resp.) denotes thei -th row vector ofAI (AE, resp.). Also, define the induced

cones C(Kα) and C(Kβ) as follows:

C(Kα) :=
{

x | x =
∑
i∈Ja

ai vI
i +

mE∑
i=1

bi vE
i +

nα∑
i=1

si eα(i ),ai ≥ 0

}
,

C(Kβ) :=
{

x | x =
∑
i∈Ja

ai vI
i +

mE∑
i=1

bi vE
i +

nβ∑
i=1

ti eβ(i ),ai ≥ 0

}
.

The Lagrange multiplier theorem for linear constraints [3, Proposition 3.4.1] states that
x∗ ∈ Rn is a solution to Problem 4.1 if and only if there exists anonnegativevectorλI ≥ 0
and a vectorλE such that

∇ f t (x∗)+ ĀI t
λI + AEt

λE = 0. (4.3)

As in the case of equality constraints, this result is valid even whenx∗ is not regular
[3, page 292].

Condition 4.3 is equivalent to

−∇ f t (x∗) = ĀI t
λI + AEt

λE, λI ≥ 0, (4.4)

which can be rephrased as

“−∇ f t (x∗) belongs to the cone C(A).”

For fixed values of theα-linking variablesyα = dα, Problemα can be defined as

Minx f (x) subject toAI x ≤ cI , AEx = cE and Hαx = dα. (4.5)

Using the above reasoning, one sees thatx∗α is a solution to Problemα if and only if

“−∇ f t (x∗α) belongs to the cone C(Kα).”

Analogously,x∗β is a solution to Problemβ if and only if

“−∇ f t (x∗β) belongs to the cone C(Kβ).”

The following theorem offers an analogue of Theorem 3.1.

Theorem 4.1. Letx∗ be an accumulation point of{xαi }∞i=1 or {xβi }∞i=1. If C(A) = C(Kα)∩
C(Kβ), thenx∗ is a solution to the optimization problem in(4.1).

Proof: By Property 3 of Section 2.4,x∗ solves both Problemα and Problemβ. Therefore,

−∇ f t (x∗) ∈ C(Kα) and −∇ f t (x∗) ∈ C(Kβ).
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Since C(A) = C(Kα)∩C(Kβ), one gets−∇ f t (x∗) ∈ C(A), which impliesx∗ is a solution
to the original optimization problem. 2

The HOC convergence condition stated in Theorem 4.1 cannot be practically used because
one has to know a priori the accumulation pointx∗ and the setJa of active constraints in
order to compute the cones C(A),C(Kα) and C(Kβ).

As an analogue of Theorem 3.2, Theorem 4.2 below fixes this problem and provides a
new sufficient condition for the convergence of HOC. This condition does not rely on the
accumulation pointx∗.

Theorem 4.2. Let r be the rank of A and̂A be an r×n submatrix of A with full row rank.
If the matrix

K̂αβ :=

 Â

Hα

Hβ


has full row rank, thenC(A) = C(Kα) ∩ C(Kβ).

Proof: Clearly, C(A) ⊂ C(Kα) and C(A) ⊂ C(Kβ). Therefore, C(A) ⊂ C(Kα)∩C(Kβ).
To show the reverse inclusion, choose an arbitraryv ∈ C(Kα) ∩ C(Kβ). Let v1, . . . , vr

be the row vectors of̂A, andei ∈ Rn be thei -th standard row vector. Since

v ∈ C(Kα) H⇒ v =
∑
i∈Ja

ai vI
i +

mE∑
i=1

bi vE
i +

nα∑
i=1

si eα(i ),ai ≥ 0,

v ∈ C(Kβ) H⇒ v =
∑
i∈Ja

di vI
i +

mE∑
i=1

ei vE
i +

nβ∑
i=1

ti eβ(i ), di ≥ 0,

we have

∑
i∈Ja

(ai − di )vI
i +

mE∑
i=1

(bi − ei )vE
i +

nα∑
i=1

si eα(i ) −
nβ∑

i=1

ti eβ(i ) = 0. (4.6)

Sincev1, . . . , vr from a basis for the row space of( A1

AE ), there existγ1, . . . , γr ∈ R such
that ∑

i∈Ja

(ai − di )vI
i +

mE∑
i=1

(bi − ei )vE
i =

r∑
i=1

γi vi .

Therefore, (4.6) becomes

r∑
i=1

γi vi +
nα∑

i=1

si eα(i ) −
nβ∑

i=1

ti eβ(i ) = 0.
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Since

K̂αβ =
(
v1, . . . , vr , eα(1), . . . ,eα(nα), eβ(1), . . . ,eβ(nβ )

)t
has full row rank,v1, . . . , vr , eα(1), . . . ,eα(nα), eβ(1), . . . ,eβ(nβ ) are linearly independent.
Therefore,

γi = 0, sj = 0, tk = 0, for all i = 1, . . . , r, j = 1, . . . ,nα, k = 1, . . . ,nβ,

and thus

v =
∑
i∈Ja

ai vI
i +

mE∑
i=1

bi vE
i ,ai ≥ 0.

This implies thatv ∈ C(A) 2

Theorem 4.2 combined with Theorem 4.1 immediately implies the following Corollary.

Corollary 4.3. Same notations as in Theorems4.1and4.2.If K̂αβ has full row rank, then
x∗ is a solution to the optimization problem in(4.1).

Remark 4.4. K̂αβ has full row rank only if the sets ofα- andβ- linking variables are
disjoint and only if the sum of the rank ofA plus the total number of linking variables is
less than or equal to the total number of variables.

Remark 4.5. In [23, Property 13], an HOC convergence condition under inequality con-
straints was given in terms of null spaces, which does not rely on the accumulation point
x∗, either. Suppose thatα- andβ-decompositions are given for the problem

Minx f (x) subject toAx ≤ c, (4.7)

in which A is anm× n matrix. Define matrices̃A, K̃α andK̃β by

Ã := (A Im), K̃α :=
(

A Im
Hα 0

)
, K̃β :=

(
A Im
Hβ 0

)
.

It was claimed in [23] that the condition

NS(Ã) = NS(K̃α)+ NS(K̃β)

guarantees the appropriate convergence of HOC for the problem in (4.7).
However, this assertion does not seem to be correct. First, note that the three matrices

Ã, K̃α andK̃β have full row rank, and due to Theorem 3.6, the above null space condition
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is equivalent to the full row rank condition on the matrix A Im
Hα 0

Hβ 0

 .
This matrix has full row rank if and only if( Hα

Hβ
) has full row rank, which is true if and only

if the sets ofα- andβ-linking variables are disjoint. However, the disjointness ofα- and
β-linking variables is not enough to guarantee the convergence of HOC.

5. Computational results

5.1. Obtaining two distinct decompositions

To solve an optimization problemP by the HOC algorithm, two distinct (α-, β-) decom-
positions ofP satisfying the sufficient condition for convergence of HOC (Corollary 4.3)
can be found by the following heuristic:

1. Obtain anα-decomposition by applying the hypergraph-based model decomposition
algorithm (developed in [18] and described in Section 2.2) to problemP.

2. Obtain aβ-decomposition by penalizing4 theα-linking variables so that the disjointness
of the set ofα-linking variables and the set ofβ-linking variables is accomplished, as
required by the convergence condition (part (3) of Theorem 3.5). If the two sets of linking
variables are not disjoint, then go back to Step 1 and obtain a newα-decomposition after
penalizing the common linking variables.

3. Check if the resultingα-andβ-decompositions satisfy the convergence condition in
Corollary 4.3. If the convergence condition is not satisfied, then go back to Step 1
and obtain a newα-decomposition after penalizing one of the interdependent linking
variables (see part (2) of Theorem 3.5).

The HOC convergence condition in Step 3 above consists of checking the full-rankness of the
matrix K̂αβ . This is typically achieved by applying Gaussian Elimination toK̂αβ and finding
its row echelon form. Gaussian Elimination is well studied in numerical linear algebra, and
many efficient algorithms have been developed. In general, its complexity is cubic in terms
of the size of the matrix, although some inherent structure of the matrix frequently lowers
this complexity. Many computer algebra packages include efficient implementations of
these algorithms (e.g.,rankcommand inMaple).

5.2. Illustrative examples

We consider a family of quadratic programming (QP) problems of various sizes. The smallest
QP problemP1 has 25 variables and 21 linear constraints (19 equalities and 2 inequalities)
with a strictly convex, additively separable objective function. Thus, the FDT of problem



290 PARK ET AL.

Figure 3. Decompositions of example problemP1: (a)α-decomposition and (b)β-decomposition.

P1 is a 21× 25 table.P1 actually is a QP approximation of a design problem of a hybrid
electric powertrain that uses a battery pack and a flywheel as energy sources [10]. The
largest QP problemP9 has 500 variables and 420 linear constraints (380 equalities and 40
inequalities).

Figure 3 shows the reordered FDTs for theα-andβ-decompositions obtained by apply-
ing the above decomposition process to the problemP1. Maple [20] was used to verify
that these two decompositions do satisfy the convergence condition in Corollary 4.3. The
α-decomposition in figure 3 has two subproblems and one linking variable (x13), whereas
theβ-decomposition has two subproblems and two linking variables (x3 andx9).

Once theα- and β-decompositions are determined, the QP subproblems have to be
solved repeatedly.QPOPT, the QP solver by Gill et al. [7], was used. TheMATLAB[14]
program implementing the HOC algorithm calls aQPOPTMEX function to solve the QP
subproblems. The HOC iteration process stops if the relative difference between the values
of the objective function for two consecutive iterations is less than a preset tolerance value.
The tolerance value used for the computation was 10−5.

To compare the effectiveness of the HOC algorithm with the ordinary All-At-Once (AAO)
approach (i.e., one not using decompositions), the problems were solved in both ways. Even
though the original problem yields a sparse matrix, each of the subproblems in the HOC
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Table 1. CPU-runtimes for QP problems of various sizes.

Hierarchical overlapping coordination

All at once
Serial- Parallel- No.

Prob No. var No. constr No. subpr Objective runtimea Objectives runtimea runtimea iterations

P1 25 21 2 165.52777 0.026 165.52777 0.123 0.096 4

P2 50 42 4 331.05554 0.156 331.05555 0.246 0.100 4

P3 75 63 6 496.58329 0.453 496.58333 0.340 0.110 4

P4 100 84 8 662.11103 0.980 662.11111 0.443 0.110 4

P5 125 105 10 827.63875 1.810 827.63889 0.560 0.103 4

P6 200 168 16 1324.2218 7.036 1324.2222 0.896 0.123 4

P7 250 210 20 1655.2772 13.66 1655.2777 1.163 0.126 4

P8 375 315 30 2482.9157 44.12 2482.9166 1.716 0.113 4

P9 500 420 40 3310.5590 103.2 3310.5555 2.260 0.123 4

aRuntime is measured in CPU seconds on a Sun UltraSpace 1.

may not be really sparse, so a sparse optimizer was not used with either approach. An AAO
approach with sparse optimizers may turn out to be comparable in performance with HOC.
However, HOC may increase computational efficiency of any general-purpose optimizer in
the case of sparse problems.

The results forP1 and for the other QP problems of larger sizes are shown in Table 1.
Runtime was measured in CPU seconds on a stand-alone Sun UltraSparc 1. Runtimes
only include QPOPT function calls, excluding I/O and data transfer betweenα- and
β-decompositions.

The algorithm terminates after four iterations in all nine cases. Each runtime repre-
sents the average of runtimes measured for five separate runs of the algorithm; the times
of the five runs were consistently close. Serial-runtime is measured for the HOC com-
putation with the subproblems solved sequentially, whereas parallel-runtime is measured
for the HOC computation with the subproblems simulated as if they were solved in
parallel.

HOC has lower parallel-runtimes than the ordinary AAO algorithm except for problem
P1. HOC has lower serial-runtimes than the AAO algorithm except for problemsP1 andP2.
Each of the two decompositions forP1 has two subproblems. Each of the two decompositions
for P9 has 40 subproblems. Note that HOC forP9 has parallel- and serial-runtimes that are
840 and 45 times faster than the AAO runtime, respectively. This is a promising result in
that HOC may not only allow rigorous solution of decomposed problems but also provide
computational benefits.

6. Conclusion

Hierarchical overlapping coordination can be used if the problem can be partitioned in a set
of loosely connected subproblems. The approach is attractive as a solution method for large
multidisciplinary design problems. In this article we showed that convergence conditions
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may be tested in a relatively simple and inexpensive manner. The illustrative example gives
also some encouragement that computational solution costs may be substantially reduced.
Future research is required to validate whether the computational advantage can be enjoyed
for a larger variety of problems.
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Notes

1. In general, HOC can be used if the objective function can be written as a monotonic function of local objective
functions derived from theα- andβ-decompositions.

2. A design structure matrix is used to represent precedence relations between design tasks. A nonzero (i, j )-th
entry in a design structure matrix indicates that taskj contributes information to taski .

3. In the context of design processes, an FDT is referred as the task-parameter incidence matrix. A (i, j )-th entry
in a design incidence matrix indicates that informationj is needed to perform taski .

4. A variable is penalized when it is not desirable to have the variable as a linking variable. This can be achieved
by assigning a high weight to the corresponding hyperedge in the hypergraph-based model decomposition
algorithm described in [18].
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