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Abstract. In this paper we consider a class of difference approximations to the Dirichlet
problem for second-order elliptic operators with smooth coefficients. The main result is
that if the order of accuracy of the approximate problem is v, and F (the right-hand side)
and/ (the boundary values) both belong to Cx for X < v, then the rate of convergence is
0(hx).

1. Introduction. Let (R with boundary â<R be a bounded domain in euclidean
.ZV-space EN. We shall be concerned with the solution of the Dirichlet problem

N -î N «
(1.1) Lu = —   X a,jk(x) —-h 2 ai(x) 1— + cto(x)u = F   in <R ,

j,k=l OXjOXlc j=l OXj

(1.2) u = f   on d(R ,

where L is uniformly elliptic and a0 ^ 0 in (R. For the numerical solution it is com-
mon to cover (R by a square mesh with mesh-width h, and for "interior" mesh-
points x approximate the Eq. (1.1) by an equation of the form

(1.3) Lhuh(x) = /T2 £ bß(x, h)uh(x + ßh) = MhF(x) ,
ß

where ß = (ßi, • • ■, ßN) has integer components and Lh and Mh are consistent with
L and the identity operator, respectively. For mesh-points near d(R one considers
similarly equations of the form

(1.4) lhUh(x) = Uh(x) 4- X bß(x, h)uh(x + ßh) = mh(F, f)

which take into account both Eqs. (1.1) and (1.2). In much of the literature, it is
assumed that Lh is of positive type, or ^Zß bß(x, h) ^ 0 and bß(x, h) á 0 for ß ^ 0 in
(1.3), and this is the case that is considered in this paper. Similarly, the bß in (1.4)
are often assumed ^ 0; we shall assume here that

E IM =§ t < iß
and shall say then that the pair of operators Lh and lh is of essentially positive type.

For many special schemes of the type described, convergence results are given
in the literature. They are generally of the form that if the discrete problem (1.3),
(1.4) approximates the continuous (1.1), (1.2) with order of accuracy v, then

(1.5) \u(x) -uh(x)\ ^ Ch\

The constant C here depends on the unknown solution u ; in general one has had to
assume that u, together with its derivatives of orders less than or equal to v + 2, is
bounded in (R.
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Thus in particular, if N = 2 and

T      —   _A     — 3 U d U

dxi        dx2

a common approximation of (1.1) is the well-known "five-point" formula

(1.6) -Ahmu(x) = h~2\iu(x) -   Z u(x + ßh) \ = F(x) .
I lisUi J

For this operator, and for the simplest possible boundary approximations,
Gerschgorin [7] proved an estimate of the form (1.5) with v = 1. Later Collatz [6]
using linear interpolation near the boundary, improved the result to get (1.5) with
v = 2. Using instead of (1.6) the "nine-point" formula

-Ahmu(x) = —A2Qu(x) - 4   ¿Z uix + ßh) -       Z      u(x + ßh)
6h   V \ß\=i \ßt\=\ß2\=i

= F(x) 4- ^ Ah(b)F(x) ,

Bramble and Hubbard [3] showed that the operator lh in (1.4) can be chosen in such
a manner that (1.5) holds for v = 4. These authors [4] also constructed operators
Lu and lh in the case of a general L (N = 2) such that (1.5) holds with v = 2.

It was observed by Bahvalov [1] in an important paper, seemingly not well-
known outside the Russian literature, that the regularity demands on the solution
u of the continuous problem in some cases can be relaxed by essentially two deriva-
tives at the boundary without losing the convergence estimate (1.5) and that for
still less regular u one can obtain correspondingly weaker convergence estimates.
Bahvalov used his error bounds to estimate the number of arithmetic operations
needed to obtain u to a prescribed accuracy. Related results were also obtained in
special cases by Wasow [13], Laasonen [8], and by Volkov, cf. [11], [12], and refer-
ences.

The purpose of this paper is to present a general theory which comprises all the
special features mentioned. In doing so we shall express the estimates in terms of the
data F and / of the problem rather than in terms of the unknown solution u; the
main result will be of the type that if F and / both belong to Cx for some X > v,
then an inequality of the form (1.5) holds. It will also be shown that if F and/ are
in Cx for X < v, then error bounds of the form 0(hx) can be obtained. Since the
effort is concentrated on the dependence of the regularity of F and/, we shall assume
that the coefficients and the boundary are infinitely differentiable.

The proofs will be based on new estimates for the discrete Green's function for
the operator Lh. This estimate can be thought of as a discrete analogue of the esti-
mate

/       G(x, y)dô ^ Cd,       x G (R

for the continuous Green's function, where d(y) is the distance from y to 3(R. (In
special cases such results were used by Volkov [12].) The transition between esti-
mates in terms of the solution and the data F and / will be made by means of the
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Schauder estimates for second-order elliptic differential operators; at some points it
will be convenient to use interpolation properties of Lipschitz spaces. These latter
types of techniques also apply to other convergence problems in difference equations
(cf. Peetre and Thomée [10] and Bramble, Kellogg, and Thomée [5]).

In a certain sense the results are not optimal as far as the regularity of F is con-
cerned; it will be shown in a forthcoming paper by Bramble [2] that the operator
Mh in (1.3) can be chosen in such a manner as to make it possible to further relax
the regularity demands on F.

2. Preliminaries. We start by introducing some notation. For 3TC C EN, let
6 (3Tl) be the set of real-valued continuous functions on 3TC and define

[m|cot = sup \u(x)\ .
IË311

In particular, if 3TC is a finite point-set, C(3Tl) simply consists of all real-valued func-
tions on 3TC and \u\$ji is always finite.

For a domain (R C EN and u G C((R), 0 < a ^ 1 we set

jj    i s                        \u(x + y) — u{x)\H„,si(u) =       sup       >-+-—-^LL.
x,x+y^Si;yfí<¡ \y\

Let a = (ai,  • ■ -, ax) with a¡ nonnegative integers and define D"u =  (d/dxi)"1
■ ■ ■ (d/dxN)ax. If s is a positive real number and s = S 4- a, where S is an integer and

0 < a ^ 1, we say that u G es((R) if Dau G C((R) for ]«| = V_V ai = s and if

\u\,,a = \u\tn +   ¿-i Hatm(pau)
Lus

is finite. We set 6K((R) =  P|s>o C« (ÔT).
For u G 6((R) we also set

, , _                  \u{x + y) - 2u(x) + u(x - y)\
¿c,<n\u) =       sup      -—-

x,x±yE<R;y*0 \y\

and say again for s = S + o-, where »S is a nonnegative integer and 0 < a 5= 1,
that u G Cz8 ((R) if Dau G C((R) for |«[ g S and if

|w|z..,m — |m|<r + , Z  ZaM(Dau)

is finite. The finiteness of Hi,a\(u) or Zi,m(w) means that u satisfies a Holder condi-
tion or a Zygmund condition, respectively. Under the regularity assumptions below
on dot we have Czs((R) = GS((R) for nonintegral s; for integral s we have e"((R) Ç
ezs(oT).

Let (Rs = {x;x G (R; d(:r) > 5} where d(a;) is the distance from x to the boundary
d(R of (R. We say that m G 6S((R) if m G e8((Rä) for all 5 > 0.

We shall always assume that d(R G CM, so that each point x G d(R has a neighbor-
hood ü)x C d(R which is the homeomorphic map g(&x) of an open spherical neighbor-
hood Qx of the origin in EN~l and g, G G^ß*), / = 1, • • •, N where g = {gi, ■ ■ ■, gip).
Since (R is a bounded domain we can by compactness cover OCR by a finite number of
the sets wXj so that d(R = U5-i <*x}. Let gu) be the mapping corresponding to wXj.
We say that/ G C8(dCR) iïf(gU)) G C8(ßIy) for/ = 1, • • -, J, and define
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|/|.,a<R = max \f(jgll))\.,ax ■
i i

The definition of / G Cz*(d(R) and |/|z,,,a<R are analogous.
Consider now in the bounded domain (R the uniformly elliptic operator

Lu(x) = —   Z ajk(x) + Z CLjiptP) —-h a0(x)u(x)       ajk(x) = akj(x)
j.k-i dXjdXk      y_i dXj

so that for some constant e0 > 0, real £ = (£i, • • •, £N) and x G &
W / iV \ 1/2

Z  Oyt(x)Ç,-Ç* ^ Éoltl' l£l = lZf/J      •
¿,it-l \;=1 /

We shall assume for simplicity that all coefficients are in QX(EN) and also that
a0(x) £ 0.

Our aim is to discuss the approximate solution of the Dirichlet problem

(2.1) Lu = F   in    (R

(2.2) u = /   on   OCR
by finite difference methods.

We shall study finite difference approximations of L of the form

Lhu{x) = h~2 Z Oß{x, h)u(x + ßh)
ß

where ß = (ßi, • • -, /3jv) with integral components ßj. We assume that there are
positive constants A0 and B such that bß G QX(EN X [0, A0]) and frp = 0 for \ß\ > B.
We shall always assume that Lh is consistent with L so that for any x and any u
sufficiently smooth

\\m.Lhu{x) = Lu{x) .
A-.0

We shall further assume that Lh is of positive type; i.e. for h g A0 and x G öt we have

Z M*. Ä) ̂  0 ,
(2.3) 3

Mz, A) á 0       |3^0.
Let EhN be the set of mesh-points x = (mji, • • •, m^h) where m¡ are integers.

For x G -EV^, the set \y;y = x + /3A, 6/3(3;, A) ?í 0 for A ^ A0} is referred to as the
set of neighbors of x; its convex hull in EN will be denoted by 9IX. We set

Rh = s n #/
Ä* = iz;z G Rh, 31* C &}

âAft = Rh\Rh ■

The points in Rh are called interior mesh-points; those of dRh are boundary mesh-
points. We denote the set of real-valued functions defined on the above sets by
2D;,, SDÄ, and dS)h, respectively.

In addition to the operator Lh which will be used at interior mesh-points, we
introduce an operator lh which will be related to the boundary values,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE   ESTIMATES 699

hu(x) = Z bß(x, h)u(x 4- ßh)       x G dRh.
ß

We shall assume that b0(x, h) = 1 and that bß(x, A) = 0 for \ß\ > B and for x 4-
ßh (£ Rh. No regularity will be assumed about the coefficients in h; instead we shall
assume that there exists y < 1 such that

(2.4) Z \Mx, A) | g 7 ,   iG dRh, A ̂  Ao.
ß^o

For the approximate solution of the Dirichlet problem (2.1), (2.2) we now con-
sider a discrete problem

(2.5) LhUh = MhF   on Rh

(2.6) huh = mPi   on dRh.
Here iliÄ is a bounded linear operator from e((R) into SDA, ff = (F, /) G 6(<R) X
e(r3(R) and mÄ is a bounded linear operator from G((R) X C(ö(R) into d£>Ä. We shall
prove later (Lemma 5.3) that this problem has a unique solution for small A, and
our aim is to study the convergence of this solution Uh to the solution of (2.1), (2.2).

We say that the discrete problem approximates the continuous problem with
order of accuracy v if for any X, p. with OáAS^O^áii there is a constant C
such that

(2.7) \Lhu(x) - MhLu{x)\ S CÄx|«|w*«.i       « G C2+X(äy ,       xERh,

(2.8) \ku - mh(Lu, ù)\dBh    S CA'fluLm + \Lu\a),       u G C(öi)
where ü denotes the restriction of u G 6((R) to d(R. By the consistency between Lh
and L, ilf/, is then an approximation of the identity operator.

We can now state our main result :
Theorem. Assume that the operators L, Lh, lh, Mh, and mh satisfy the above as-

sumptions and that the discrete problem (2.5), (2.6) approximates the Dirichlet problem
(2.1), (2.2) with order of accuracy v. Let Uh and u be the solutions of the discrete and
continuous problems, respectively. Then for X, p S: 0, X, p. ¿¿ v, there is a constant C
such that for F G Czx((R), / G Qz^dOi) we have

(2.9) \u - uh\Rh Û C{Amin(X'")|i'U.x.ai + A^^l/lz,^«} .
Further, if F G CX((R) for some X > 0, andf G C(d<R), we have

lim \u — uP\Rh = 0 .
Ä-.0

The proof of this result will be given in Section 5.

3. Positive Type Operators and Green's Functions. Throughout this section we
shall assume that L, Lh, and <R satisfy the assumptions of Section 2. We start with a
lemma concerning the structure of positive type operators.

Lemma 3.1. There are positive constants Ao and X such that for any x G Rh and
any n G EN with \n\ = 1 there is a ß G EN with integral components such that for
A ^ Ao

(i) Oî, ij) ̂  X,
(ii) -bß(x, A) ^ X,

where (ß, 17) =  Z7=i ßflli-
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Proof. By Taylor's theorem we have for smooth u,

Lhu(x) = u(x)h~2 Z bß(x, A) + Z ~3— ̂ Z ßP>ß{x, A)
ß 3       "Xj ß

+ jlrf 2W^I'Ä) + (,(1)    asA-^0
&     j,k   OXjOXk     ß

and so from the consistency we conclude that

Z bß(x, A) = h2a0(x) + o (A2)    when A —> 0 ,
ß

(3.1) Z ßjbßix, A) = ha¡{x) + o (A)    when A —> 0 ,
ß

Z ßißkbß{x, A) = — 2ajk(x) + o(l)    when A —> 0 .
ß

In particular, if |ij| = 1, we obtain after multiplication of (3.1) by r¡fr)k and summa-
tion over j and k, and using the ellipticity of L,

— Z iß, v)2bß{x, A) = 2 Z ajk(x)viVk + o(l)    when A —» 0 ,
(3.2) ß j'k

è26o + o(l)    when A -> 0
for sufficiently small A, uniformly in x and n. Similarly,

(3.3) Z 03, v)bß(x, A) = o(l)    when A -> 0 .
ß

Since /3 and bß are uniformly bounded, to prove the statement it is clearly sufficient
to prove

inf        -   Z   (ß,v)bß(x,h)    >0.
h¿h0:x&Rh L     (3,>ji>o J

But by (3.2) and (3.3) we have for some positive A0 that for A ^ A0, 3; G Rh, and
hi = l,

-   Z    (ß,v)bß(x,h) = -±j:\(ß,v)\bß(x,h)4ro(l)
(/3,o)>o ¿   a

^ - (2£)_1 Z 08, *?)V*, A) + o(l) ^ B-^o
8

which thus proves the lemma.
The above lemma tells us that given any xGÄ* and any plane through x, there

is a neighbor of x on each side of the plane with distance greater than or equal to
3CA from the plane and corresponding to a coefficient with 16,3(3;, A)| ä; 3C.

We can now prove the following maximum principle:
Lemma 3.2. Let A á A0 where Ao is the constant in Lemma 3.1. Then if v G 2Dä

satisfies Lhv ^ 0 on Rh, v ^ 0 on dÄft, we Aaye t> ̂  0 on Rh.
Proof. Assume the conclusion is false, that v has a negative minimum v(x(0)) on

Rh. Since Z^ is of positive type we have

v(xm) è Z (-60(3;, h)~%(x, h))v(xl0) + ßh)
ß

and since the coefficients on the right are nonnegative and have sum at most 1, we
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conclude that for all neighbors corresponding to nonzero bß, y(3;<0) -f- ßh) g v(xi0)).
Using Lemma 3.1 with n = ei, we find that for one such neighbor x(1>, xia) è xp0) +
3CA. Iterating this argument we find a sequence of points x(i), j = 1, 2, • • • , such
that

v(xU)) g v{xw)       xiu) ^ jhX + 3;i(0) .

But by the boundedness of (R, after a finite number of steps, xU) G dRh, and thus
v(xU)) ¿I 0, which is a contradiction.

We can now conclude:
Lemma 3.3. The discrete problem

Lhv = F   on Rh

v = /   on dRh

has a unique solution v G £>hfor any fÇ^ andf G dS)h.
Proof. Since for F = f = 0, Lemma 3.2 proves that both v and — v are nonposi-

tive, we have the uniqueness. But this implies the existence by Cramer's rule.
We now introduce the discrete Green's function Gh(x, y) defined for each fixed

y G Rh by

LhGh{x, y) = h~ h{x, y)       x G Rh ,
Gh(x, y) = 5(3;, y)       x G dRh ,

where 8(x, x) = 1, 8(x, y) = 0 for x ^ y. In terms of this function we have the follow-
ing representation :

Lemma 3.4. Let v G %■ Then for x£fit we have

(3.4) v(x) = hN  Z Gh(x, y)Lhv(y) 4-   Z   Gh(x,y)v(y) .
y&Rh 1/GôAfc

Proof. This follows immediately from the definition of Gh and the uniqueness
part of Lemma 3.3.

We collect some simple properties of Gh in a lemma:
Lemma 3.5. The Green's function defined above satisfies

Gh{x,y) ^0,       x,y £Rh

(3.5) Z  Gh(x, y)úl,       xGRh
y&dRh

and there are positive constants A0 and C such that for A ^ Ao,

(3.6) hN Z Gh(x,y) SC,       xERh.
v&Rh

Proof. The nonnegativity follows at once from the definition and Lemma 3.2,
and (3.5) then follows by setting v = 1 in (3.4) and noticing that by (2.3), Lh\ ;> 0.
Because of the assumptions on L there exists a function <f> G C2((R) satisfying
Ld> Si 2, and by consistency for sufficiently small A and x G Rh, we have Lh<p{x) 5t 1.
Setting v = 4> in (3.4) and using (3.5) we therefore obtain (3.6).

In order to give the next lemma which is the crucial lemma for our theorem,we
shall need some further notation. Let d(x) denote as before the distance from any
point x G (R to ö(R. Since we have assumed ô(R G eM then if 280 > 0 is less than the
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minimum over ô(R of the radius of the osculating sphere, we also have d(R¡ G C°° for
S < 25o and d G e°°((R \ (R2s0). For any nonnegative integer/ we define

Ph.j = {x;x<E.Rh,\ Xjh < d{x) ^ § Xij + 1)A} ,
where X is the constant in Lemma 3.1.

We shall then have the following (this is the first time any regularity of ô(R need
be assumed) :

Lemma 3.6. There are positive constants C and A0 such that when A ^ A0, \ Xjh <
So, we have

A""1    Z   Ghix,y) ^Cjh.

Proof. Let § Xjh < 50 and Bh < 50 so that d G exi(R\5is0+Bh). Let 5 = \ Xjh
and set

4>six) = 8        x G Rs
= dix)       x G (R\(Rí .

We want to apply Lemma 3.4 to the restriction of <p¡ to Rh. We have

L,My) = Lhdiy) 4- h~2       Z       bß(y, h)[8 - diy 4- ßh)]
(3.7) y+ßheRhn®s

^ Lhdiy) ,    y G Ä*\tt«
and since LÄ5 Sï 0 by (2.3)

Lhfriy) = LhS + A"2       Z      6/j(j/,A)[dö/ + i3A) -Î]è0,
(3.8) »-i-/Jft£»A\<Rí

y G ÄÄ Pi (Rj .
We need a stronger result for y G -P*,;- To this end let r¡ be the exterior normal at y
of d(Rd(y) and notice that the distance from y to d(R is attained in the direction of r¡.
It follows from Lemma 3.1 that there is a ß such that

(ßh, v) ^ Xh ,        -bßiy, A) ^ X
and since the distance from y to d(R{ is at most | 3CA we can conclude that for some
positive Ao depending on the curvature of d(R and on B, we have for h ^ ho that
diy + ßh) ^ 5 - i Xh and it follows that

(3.9) Lhfriy) è Gh'1,   y E Ph.j.
Using Lemma 3.4 with v = <t>¡, we now see from (3.7), (3.8), and (3.9) that

A""1   Z   Ghix, y) ^ C\Mx) + hN Z   Z   Ghix,y)\Lhdiy)\
V^PhJ \ Ki v^Ph.l

and using the definition of <j>s and that fact that d G  eto(<R\oÎ2a0) we have for
J Xjh < So,

(3.10) A*"1    Z   Ghix, y) í£ C S + A* Z    Z   Cfcfo y) > .
y&Ph.j V i<j y£Ph,l >

Since by (3.6) the quantity on the right is bounded independently of /, we get by
summation over / and multiplication by A,
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A* Z   Z   Ghix, y) ú C8
Kj v£Ph,l

which together with (3.10) proves the result.

4. Some Estimates for the Continuous Problem. We start by quoting some
definitions and results on interpolation spaces. For generalities, see [10] and refer-
ences.

Let Bj, j = 0, 1, be two Banach spaces with Bi Ç B0 so that for the correspond-
ing norms,

||m||b„ á C||m||Bi .

We set for t > 0,

KQ,, u) =  inf  d|« — v\\B„ + t\\v\\Bl)

and denote for 0 < 0 < 1 by (_B0, -Si)« the subspace of B0 defined by

l|w||(Bo.Bi)9   = SUP í ~6ií"(í, M)   <   oo   .
oo

We have Bi Ç (£<,, Si)« Q Bo, and for Bx = B0,

l|w||(B0.Bo)9   =   IIMI|bo •

We first state the following interpolation property :
Lemma 4.1. Let Bj, Bf, j = 0, 1, for four Banach spaces with Bx Ç B0, BP Ç Bp,

and let A be a linear operator from B0 into Bp such that for u G Bi, Au G BP, and

\\Au\\Bp á Cy||w||sy , j = 0, 1 .

Then for u G (-Bo, Bi)« = Be we have Au G iBp, Bp)e = Bp and

\\Au\\b,' ú c^c'WuUi ,     o < e < i.
In our applications, the Banach spaces will be of the type C((R), ex((Rä), e^dCR),

etc. We shall need the following facts :
Lemma 4.2. With the above notation we have for 0 ^ po Ú Pi and with p = po +

0(Pi - Po),

iepom, emiä))e = ez*(Sï)
(eP0(a(R), eplid(ñ))e = e*p(d<R)

where equality signifies equivalence of the respective norms.
We shall now collect some well-known inequalities for the Dirichlet problem

(2.1), (2.2). For proofs, see e.g. Miranda [9]. We shall always assume that L and (R
satisfy the conditions in Section 2, in particular that a0 S; 0 in (R. First we have the
maximum principle estimate :

Lemma 4.3. There is a constant C such that for u G C2((R) Pi C((R) we have

\u\<r ̂  C{\Lu\<r + Maat} .
The following two lemmas contain the interior and up-to-the-boundary Schauder

estimates.
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Lemma 4.4. If X is a positive noninteger, there is a constant C such that for u G
e2+x((R)  D e((R)

|w|2+x,ötä ̂  C8       {|Lm|x,<h + |w|at} ■

Lemma 4.5. If X is a positive noninteger, there is a constant C such that for u G
e2+x(»i),

|w|2+x,<R ̂  C{\Lu\\,(r + |w|2+x,a<R} ■

For a general uniformly elliptic operator there would have been a term [m|<r on
the right in this inequality, but here this term can be estimated by Lemma 4.3.

Lemmas 4.3 through 4.5 can be used to prove the following existence and unique-
ness result:

Lemma 4.6. Let X be a positive noninteger. Then if F G CX((R), / G C(d(R) the
Dirichlet problem (2.1), (2.2) Aas a unique solution u G C2+X((R) D 6((R). If in
addition f G e2+x(6(R) we have u G C2+X((R).

Using the above interpolation lemma we shall now derive some auxiliary in-
equalities for the Dirichlet problem

(4.1) Lu = 0   in (R ,

(4.2) u = f   on d(R .
Lemma 4.7. Let \bea positive noninteger and 0 ^ n ^ 2 + X. Then there is a con-

stant C such that for f G 6z"(d(R) the solution u of (4.1), (4.2) satisfies

|w|2+x,(rs á CS"       |/|z,n,a<R.

Proof. We have by Lemmas 4.3 and 4.4

|«|2+x,cR5 Ú Co-2—x|/| a(R

and by Lemma 4.5,

|w|2+x,(R« Ú |w|î+x,ai á C|/|2+x,aai •

The result therefore follows by applying Lemmas 4.1 and 4.2 to the operator which
takes/into the solution u G e2+x((R5) of (4.1), (4.2).

Lemma 4.8. If p is positive there is a constant C such that for f G Gz" (3<R) the
solution u of (4.1), (4.2) belongs to 6z"((R) and satisfies

\u\z,it,<R = C\f\z,ß,a<R ■
Proof. For 2 + X > ¡j. and nonintegral we have again

|w]2+x,si á C|/|2+x,a(R

and by Lemma 4.3

|«|<r ̂ c|/u.
The result therefore follows by Lemmas 4.1 and 4.2.

5. The Rate of Convergence. In this section we shall establish the unique
solvability of the discrete Dirichlet problem (2.5), (2.6) and discuss the rate of
convergence of its solution wA to the solution u of the continuous problem (2.1),
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(2.2). More precisely we shall prove a sequence of lemmas leading up to the proof
of our Theorem as stated in Section 2. Throughout this section we shall assume that
the operators L, Lh, h, Mh, and mA satisfy the assumptions of Section 2.

We first have the following two simple estimates :
Lemma 5.1. For any mesh-function u G £>a we have

\u\dRh ^ t|m|äA + \hu\dRh

where y < 1 is the constant in (2.4).
Proof. This is an immediate consequence of the definition of the operator ZA.
Lemma 5.2. There are positive constants ho and C such that for h ^ ho and m G ¡Da

we have

(5.1) \u\Rh ^ C{\Lhu\Rh + \lhu\9Rh\ .

Proof. We have by Lemmas 3.4 and 3.5

Wix)\ ^ A^  Z Ghix, y)\Lhuiy)\ +   Z   Ghix, y)\u(y)\
(5.2) y^Rh y^dRh

2= C\Lhu\Rh + \u\aRh,

and the result therefore follows from Lemma 5.1.
As a consequence we can now prove the existence of a solution of the discrete

problem.
Lemma 5.3. With the h0 in Lemma 5.2, the discrete problem (2.5), (2.6) Acts a unique

solution Uh for h ^ ho and arbitrary choice of F and f.
Proof. Uniqueness is an immediate consequence of Lemma 5.2 and as in Lemma

3.3, uniqueness implies existence.
We can now essentially prove the convergence result in the case of homogeneous

boundary conditions:
Lemma 5.4. Assume that the discrete problem (2.5), (2.6) approximates the con-

tinuous problem (2.1), (2.2) with order of accuracy v and let X ^ 0, X 7a v. Then there
is a constant C such that if F G Czx((R) and if u and uh are the solutions of (2.1), (2.2)
and (2.5), (2.6), respectively, withf = 0, then

(5.3) \u - uh\Rh á CA^-'Vkx.ffi .
Proof. Since Mh and mh are bounded we obtain by Lemmas 4.3 and 5.2

\u — uh\Rh ^ \u\si + \uP\Rh Ú C\F\s\
which is (5.3) in the case X = 0. For X > 0, it is clearly, by Lemmas 4.1 and 4.2, no
restriction of the generality to assume that X is a noninteger. We then have u G
e2+x((R) by Lemma 4.6. We want to apply Lemma 5.2 to u — uh. We have by (2.7)
and Lemma 4.5,

,,. .s \Lhiu — «OU/, = \Lhu — MhLu\Rh
^ Ch |m|2+x,« ̂  Ch I^U.ai

and similarly by (2.8),

,. r\ \h(u — Uh)\dRh = \hu — mÄ(Lm, 0)IamA
^ CÄ"ta(k,,)(|tt|x4« + \Lu\si) ^ CAmiBtx'"|Fk,«R .
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Together (5.1), (5.4) and (5.5) prove the lemma.
For the treatment of the homogeneous equation we need an a priori inequality

which is somewhat stronger than (5.1). For this purpose we introduce the norm

||w|k = A2     Z j\u\PhJ + \u\rs h
Xjh<2¡0

where So is the positive number introduced in Section 3 and Rd0,h = (Ra0 Pi Rh- We
clearly have for some C independent of A,

||«lk ^ C\u\Rh
but the new norm gives less weight to the values of u near dRh ; it can be thought of
as a discrete analogue of

fío
||w||<r =  /    5|w|d(Rs öS + |u|(Rj0.

•'o
With this norm, we then have

Lemma 5.5. There are positive constants h0 and C such that for A 5= Ao and m G Da
we have

\u\sh ^ C{||LAw||ÄA + \lhu\ßRh} .

Proof. We have by Lemmas 3.5 and 3.6,

hN Z Gk(x, y)\Lhuiy)\ ^A    Z    iLhulp^h1*'1   Z   Ghix,y)
y&Rh 3CjÄS28o V^Ph.j

+ \Lhu\RhihhN Z Ghix,y) g C||LAw||ÄA.
y&Rh

The result therefore follows as above from (5.2).
We can now prove the following convergence result for the homogeneous

equation :
Lemma 5.6. Assume that the discrete problem (2.5), (2.6) approximates the con-

tinuous problem (2.1), (2.2) with order of accuracy v and let p ^ 0, p ¿¿ v. Then there is
a constant C such that iff G Cz*(d(R) and if u and Uh are the solutions of (2.1), (2.2)
and (2.5), (2.6) respectively, with F = 0, then

(5.6) W-UhUhúChr'^^fU^a.
Proof. As in the proof of Lemma 5.4, we first notice that by Lemmas 4.3 and 5.2,

(5.6) holds for p = 0, and that we can then assume without loss of generality that p
is a noninteger. By Lemma 4.8 we have u G C°((R) Pi e*'((R). We want to apply
Lemma 5.5 to u — uh. We have

\\Lhiu — Uh)\\Rh = \\Lhu\\Rh

(5.7) r 2 2 \
^ C\h2        Z       j\Lhu\ph,j + A2|Läm|äa + \Lhu\RS.h( .

V       y,4Bh§Xjh¿2S0 )

Consider the second term. By the definition of LA and Lemma 4.3 it follows that

A2|L/,m|íía ̂  C|/|am .
Also for any positive noninteger v such that » < ¡< I 2 < » + 2 we have from
(2.7) and Lemma 4.8 that
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tí\Lhu\Rh ú Ch2+v\f\,+v aal

We may now apply Lemma 4.1 to the operator which takes / into A2LAw G £>a
(with maximum norm) to obtain

A2|Lam|äa^ CAM|/|z,„,a<R,       QÚPÚ2 + V.
Clearly this implies that

(5.8) A2|LAM|«A ̂  CAmin("'')|/|il,a<R

for all p ^ 0.
The last term can be estimated by applying (2.7) and the proof of Lemma 4.7:

(5.9) \Lhu\RH,h =5 ChP\u\n>,m0ß á CA'|/|a« ^ Chm[n(^\f\,,aSi.

Consider now the sum on the right in (5.7). For y G Ph,¡ with 4ßA í= Xjh we have

2fty £ (r\d(y)-Bh Ç (R(3Cj*-BA)/2 Ç úixjh/i

and thus by (2.7) and Lemma 4.7
LI ^-   /^T.i^inCX.i') I     I ^>   /-,, min(X,f)/ .7 \/i- 2—X|   r\,   hu\phij-áCh \u\2+\,(Rxjh/4 á CA OA)        I/La«.

We obtain

(5.10) A2       Z      j\Lhu\phjè CAmta(X»°       Z       0'Ar1+M-XA|/|„a<R.
4BAáX.,AS2a0 4BAg3CyAS2S0

Since

Z       (jA)-1+M-xA ^ C   if m > X ,
4BASXjAS250

^ CA"_X   if p < X
we can now choose X between ¿i and v and obtain by (5.10)

(5.11) A2       Z      j\Lhu\Phj ^CAmin(""')|/l,,i«.
4BAS3CJAS2Í0

Together (5.7), (5.8), (5.9) and (5.11) prove

(5.12) \\Lhiu - uh)\\Rh g Ch^^lfUm .
Finally

/c ,0-1 l^(M — ma)Uäa = Kam — mA(0, «)| SRh ̂  CAmin(",,')|M|i',3i

=£ CAmin<"") \f\ß.M

and by Lemma 5.5, (5.12) and (5.13) prove the lemma.
We can now complete the proof of the theorem. Let first X, p S: 0, X, p 5¿ v, and

let uhU) and u(i),j = 1, 2, be the solutions of the discrete and continuous problems
corresponding to í = (Z7, 0) and 5" = (0, /), respectively. We then obviously have
u = mH) + m(2) and Uh = ma(1) + ma(2) and by Lemmas 5.4 and 5.6 we therefore get

I I ^   I     d) 0)1 1     I     (2) (2)1
/- ,.n \u — uh\ith è \u     — uh   \Rh 4- \u     — up  \Rh

á C{Amin<x'')|FU,x.<R + A^^I/U.M.íffi}
which is (2.9).
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Assume now that F G CX((R) and / G C(ö(R). Given e > 0 we can find / G
Cx(d(R) such that |/ — /| am < «■ Let Í = (F, /) and let Uh and ü be the solutions
of the corresponding discrete and continuous problems, respectively. We then have

(5.15) \u — ma|äa ^ \u — w|m + |wa — ma|ba + \u — upRh .

By Lemmas 4.3 and 5.2, and since Mh and mA are bounded and linear we have

(5.16) \u — w|m + |wA — üh\-Rh á C\f — /|am á Ce.
Since 5 G CX(<R) X CX(3(R), we have

lim \ü — üh\~Rh = 0
A->0

by (5.14), and the result therefore follows from (5.15) and (5.16).
Remark. The interpolation technique can also be used to simplify the definition

(2.7), (2.8) of the order of accuracy. Assume e.g. that (2.7) holds with X = v and
that in addition the operator MA has the property that for some C,

\MhFix)\ ^ C\F\%X,       iGffl,
By consistency we find

\Lhuix)\ ^ C|w|2,3ix

and therefore, (2.7) holds also with X = 0. Hence, (2.7) holds for general X with
0 ^ X ^ v by Lemmas 4.1 and 4.2 (with 91* instead of <R).
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