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ABSTRACT

This paper presents a new multiplicative algorithm for non-
negative matrix factorization with β-divergence. The de-
rived update rules have a similar form to those of the con-
ventional multiplicative algorithm, only differing through
the presence of an exponent term depending on β. The con-
vergence is theoretically proven for any real-valued β based
on the auxiliary function method. The convergence speed
is experimentally investigated in comparison with previous
works.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] has recently
become a very popular technique in signal processing, and
has been succesfully applied to various problems such as
source separation [2, 3, 4], feature extraction, music tran-
scription [5] or dimension reduction. Given a nonnegative
matrix Y, the goal of NMF is to find two nonnegative ma-
trices H and U such that Y ≈ HU. To measure how close
Y and HU are, the Euclidean (EUC) distance, the gener-
alized Kullback-Leibler (KL) divergence and the Itakura-
Saito (IS) divergence are often chosen. The three of them
are enclosed in the more general framework of β-divergence
[6, 7]. Since the choice of an appropriate divergence de-
pends on the application and the data [2, 8, 9], an algorithm
stable for a wide range of β is desired.
Multiplicative gradient descent [7, 10] is one of the most

popular approaches for NMF with β-divergence. A proof of
the convergence of the algorithms for β = 2 (EUC distance)
and β = 1 (KL divergence) was given in [10], and it has
been extended to 1 ≤ β ≤ 2 [11]. However, convergence
for β < 1 and β > 2 remains to be proven. A generalized
multiplicative algorithm, which introduces an exponent step
size, has also recently been proposed in [12], discussing in
particular the local and stable convergence, in the sense of
Lyapunov’s theory, of this algorithm when initialized in a
given neighborhood of a local minimum. However, conver-

gence is not guaranteed in general.
Another way to derive optimization algorithms for NMF

is through a statistical approach. The minimization of a β-
divergence can indeed be shown to be equivalent, for spe-
cific βs, to a Maximum-Likelihood (ML) estimation prob-
lem, due to the reproductive properties of some probabilis-
tic distributions. Update equations for NMF with EUC dis-
tance (β = 2), KL divergence (β = 1) and IS divergence
(β = 0) have been obtained under this framework in [13]
based on the expectation maximization (EM) algorithm. Al-
though convergence to a stationary point is then guaranteed,
this approach is currently limited to the cases β = 0, 1, and
2.
This paper proposes a new multiplicative algorithm for

NMF with β-divergence, for which the monotonic decrease
of the objective function at each iteration is theoretically
guaranteed for all β. The derivation of this algorithm is
based on the careful design of a so-called auxiliary func-
tion [10] for each term of the objective function.
The remainder of this paper is organized as follows. We

will first briefly review the formulation of NMF with β-
divergence in Section 2, and give a survey of the previous
methods in Section 3. We will then derive the proposed
multiplicative algorithm in Section 4, and finally present in
Section 5 basic experimental results validating our method
and comparing it to previous works.

2. NONNEGATIVEMATRIX FACTORIZATION
WITH β-DIVERGENCE

Given a matrix Y = (Yω,t)Ω×T ∈ R≥0,Ω×T and an integer
K, NMF is the problem of finding a factorization:

Y ≈ HU, (1)

whereH = (Hω,k)Ω×K ∈ R≥0,Ω×K andU = (Uk,t)K×T ∈
R≥0,K×T are nonnegative matrices of dimensions Ω × K
and K × T , respectively. K is usually chosen such that
ΩK+KT ¿ ΩT , hence reducing the data dimension. This



problem can be formulated as the minimization of an objec-
tive function

D(Y | HU) =
X
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d
³
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X
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´
, (2)

where d is a scalar divergence.
A common way to measure how close Y and HU are is

to use a so-called β-divergence [14], defined by
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It can be shown to be continuous in terms of β through the
following identities:
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The choice of β should be driven by the type of data be-
ing analyzed and the application considered. In the NMF-
related literature, β = 1 is for example often used for sound
source separation [2], while β = 0.5 is used for the es-
timation of time-frequency activations [8] and β = 0 for
multipitch estimation [9]. How to choose β for multipitch
estimation and musical source separation is discussed in [5]
and [3], respectively.

3. CONVENTIONAL ALGORITHMS

3.1. Multiplicative algorithms

The multiplicative gradient descent approach [10, 7] con-
sists in updating each parameter by multiplying its value at
the previous iteration by a certain coefficient. Here, let θ
denote the set of all parameters {(Hω,k)Ω×K , (Uk,t)K×T}.
The derivative with respect toHω,k of the objective function
Jβ(θ) =

P
ω,t dβ (Yω,t|

P
kHω,kUk,t) is

∂Jβ(θ)
∂Hω,k

=
X
t

ÃX
k

Hω,kUk,t

!β−1
Uk,t

−
X
t

Yω,t

ÃX
k

Hω,kUk,t

!β−2
Uk,t. (3)

Considering the following simple additive update forHω,k,

Hω,k ← Hω,k − ηω,k
∂Jβ(θ)
∂Hω,k

, (4)

the objective function will be decreasing if the coefficients
ηω,k are all set equal to a sufficiently small positive number,
as this corresponds to the conventional gradient descent. If
we now set

ηω,k =
Hω,kP

t (
P

kHω,kUk,t)
β−1 Uk,t

, (5)

we obtain the following update rule forHω,k:

Hω,k ← Hω,k

P
t Yω,t (

P
kHω,kUk,t)

β−2 Uk,tP
t (
P

kHω,kUk,t)
β−1

Uk,t
. (6)

A similar update rule can be obtained for Uk,t. Altogether,
the algorithm can be summarized as follows:

H← H · (Y · (HU)
β−2)UT

(HU)β−1UT
, (7)

U← U · H
T (Y · (HU)β−2)
HT (HU)β−1

, (8)

where the symbol · and the fraction bar denote entrywise
matrix product and division respectively, and the exponen-
tiations are also performed entrywise. Nonnegativity of the
parameters is preserved through the updates, provided they
are initialized with nonnegative values.
The convergence of the conventional multiplicative up-

dates have been proven only for 1 ≤ β ≤ 2, i.e, when
dβ(y|x) is convex w.r.t. x [10, 11].

3.2. EM-based algorithms

In [13], NMF with EUC distance (β = 2), KL divergence
(β = 1) and IS divergence (β = 0) is shown to be implicit
in the following generative model of superimposed compo-
nents,

Yω,t =
X
k

Cω,t,k. (9)

The components Cω,t,k act as latent variables and may be
used as complete data in the EM algorithm. We briefly
review here the update rules obtained through this method
successively for β = 2, β = 1 and β = 0.

3.2.1. EUC-NMF

NMF with EUC distance (β = 2) is equivalent to con-
strained ML estimation for the generative model (9) with

Cω,t,k ∼
³2πσ2

K

´− 1
2

exp
³
− 1
2
(Cω,t,k−Hω,kUk,t)

2K

σ2

´
.

(10)
“Constrained” means here that the parameters H and U are
estimated under the assumption that they are non-negative.



Thereby, the following update rules are obtained based on
the EM algorithm:

Hω,k=
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where [x]+ = max{x, 0} and

Wω,t =
X
k

Hω,kUk,t. (13)

3.2.2. KL-NMF

NMF with the generalized KL divergence (β = 1) is equiv-
alent to ML estimation for the model (9) with

Cω,t,k ∼ exp(−Hω,kUk,t)
(Hω,kUk,t)Cω,t,k

Γ(Cω,t,k + 1)
, (14)

where Γ denotes the Gamma function. Thereby, the follow-
ing update rules are obtained based on the EM algorithm:

Hω,k = Hω,k

P
t Uk,t(Yω,t/

P
kHω,kUk,t)P

t Uk,t
, (15)

Uk,t = Uk,t

P
ωHω,k(Yω,t/

P
kHω,kUk,t)P

tHω,k
, (16)

which coincide with the classical multiplicative updates.

3.2.3. IS-NMF

NMF with IS divergence (β = 0) is equivalent to con-
strained ML estimation for the model (9) with

Cω,t,k ∼ |πHω,kUk,t|−1 exp
¡−|Cω,t,k|2|Hω,kUk,t|−1

¢
.

(17)
Thereby, the following update rules are obtained based on
the EM algorithm:

Hω,k =
1

T

X
t

μ2ω,t,k + νω,t,k

Uk,t
, (18)

Uk,t =
1

Ω

X
ω

μ2ω,t,k + νω,t,k

Hω,k
, (19)

with
μω,t,k =

Hω,kUk,tP
kHω,kUk,t

Yω,t, (20)
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Hω,kUk,tP
kHω,kUk,t

X
l 6=k

Hω,lUl,t. (21)

4. NEWMULTIPLICATIVE ALGORITHMS

We consider the following optimization problem:

Minimize Jβ(θ) =
P

ω,t dβ (Yω,t|
P

kHω,kUk,t)

subject to ∀ω, k,Hω,k ≥ 0, ∀k, t, Uk,t ≥ 0,
where θ denotes the set {(Hω,k)Ω×K , (Uk,t)K×T} of all pa-
rameters. The main result of this paper can be summarized
in the following

Theorem 1. The objective functionJβ(θ) is non-increasing
under the following updates:

H← H ·
µ
(Y · (HU)β−2)UT
(HU)β−1UT

¶ϕ(β)
, (22)

U← U ·
µ
HT (Y · (HU)β−2)
HT (HU)β−1

¶ϕ(β)
, (23)

with

ϕ(β) =

⎧⎪⎨⎪⎩
1/(2− β) (β < 1)

1 (1 ≤ β ≤ 2)
1/(β − 1) (β > 2)

. (24)

The proof of the above theorem will be based on the aux-
iliary function approach, similarly to [10]. In the follow-
ing, we first explain the principle of the auxiliary function
method. Next, we introduce Lemma 1 and Lemma 2 which
will be useful for the construction of an auxiliary function.
Lemma 3 gives an auxiliary function for the objective func-
tion Jβ(θ). Finally, Theorem 1 is proven based on the prin-
ciple of the auxiliary function method and Lemma 3.
Let us first briefly review the concept of this approach.

LetG(θ) denote an objective function to be minimized w.r.t.
a parameter θ. A function G+(θ, θ̂) which satisfies

G(θ) = min
θ̂

G+(θ, θ̂) (25)

is then called an auxiliary function forG(θ), and θ̂ an auxil-
iary variable. The function G(θ) is non-increasing through
the following iterative update rules:

θ̂(s+1) ←argminθ̂ G+(θ(s), θ̂), (26)

θ(s+1) ←argminθ G+(θ, θ̂(s+1)), (27)

where θ̂(s+1) and θ(s+1) denote the updated values of θ̂ and
θ after the s-th step. Then by construction, we have

G(θ(s)) = G+(θ(s), θ̂(s))

≥ G+(θ(s), θ̂(s+1))

≥ G+(θ(s+1), θ̂(s+1)) = G(θ(s+1)). (28)



This proves that G(θ) is non-increasing. By iteratively up-
dating θ and θ̂,G(θ)will thus converge to a stationary point.
The auxiliary function will be suitably designed depend-

ing on the value of β. For β such that 1 ≤ β ≤ 2 [10, 11],
such an auxiliary function can be constructed thanks to the
following lemma, refered to as Jensen’s inequality:

Lemma 1. Let f : R 7→ R be a convex function. If λk(k =
1, 2, · · ·,K) satisfies ∀k, λk > 0 and

P
k λk = 1, then for

xk(k = 1, 2, · · ·,K) ∈ R,

f
¡X

k

xk
¢ ≤X

k

λkf
¡xk
λk

¢
. (29)

Equality holds when λk = xk/
P

k xk.

Note that minimizing the auxiliary function obtained thr-
ough the above lemma then leads to update equations which
are none other than the classical multiplicative update equa-
tions. However, Jensen’s inequality cannot be applied to
β < 1 and β > 2, because dβ(y|x) is then not convex w.r.t.
x. We are going to alleviate this problem by decomposing
the objective function into several terms which are going
to be either convex or concave depending on the value of
β, and then use adequate inequalities to build an auxiliary
function. Indeed, if we write the objective function as

Jβ(θ) = 1

β(β − 1)
X
ω,t

Yω,t +
1

β

X
ω,t

ÃX
k

Hω,kUk,t

!β

− 1

β − 1
X
ω,t

Yω,t

ÃX
k

Hω,kUk,t

!β−1
, (30)

we can see that, with respect to each parameter, the second
term is convex for β ≥ 1 and concave for β < 1, while
the third term is convex for β ≤ 2 and concave for β > 2.
To cope with concave terms, as in [15, 4], we shall use the
following lemma:

Lemma 2. Let f : R 7→ R be a continuously differentiable
and concave function. Then, for any point z,

f(x) ≤ f 0(z)(x− z) + f(z). (31)

If β satisfies β ≥ 1, Lemma 1 leads to the following
inequality for the second term:

1

β

ÃX
k

Hω,kUk,t

!β

≤ 1

β

X
k

λω,t,k

µ
Hω,kUk,t
λω,t,k

¶β
, (32)

where ∀k, λω,t,k ≥ 0 and
P

k λω,t,k = 1. Let θ̂ denote
the set of auxiliary variables {(λω,t,k)Ω×T×K , (Zω,t)Ω×T},
where Zω,t ∈ R will be used later on. We defineQ(β)ω,t(θ, θ̂)
as the right-hand side of Eq. (32). The equality holds when

λω,t,k =
Hω,kUk,tP
kHω,kUk,t

. (33)

If β now satisfies β ≤ 1, we apply Lemma 2 and obtain
the following inequality for the second term:

1

β

³X
k

Hω,kUk,t
´β

≤ Zβ−1
ω,t

³X
k

Hω,kUk,t − Zω,t

´
+

Zβ
ω,t

β
. (34)

We defineR(β)ω,t(θ, θ̂) as the right-hand side of Eq. (34). The
equality holds when

Zω,t =
X
k

Hω,kUk,t. (35)

Note thatQ(β)ω,t(θ, θ̂) = R(β)ω,t(θ, θ̂) when β = 1.
The following inequalities for the third term can be de-

rived similarly:

− 1

β − 1
³X

k

Hω,kUk,t

´β−1
≤
⎧⎨⎩−Q

(β−1)
ω,t (θ, θ̂) (β ≤ 2)

−R(β−1)ω,t (θ, θ̂) (β ≥ 2)
. (36)

The equality holds when λω,t,k and Zω,t satisfy Eq. (33)
and Eq. (35).
We can deduce the following lemma from the above.

Lemma 3. The function

J+
β (θ, θ̂) =

X
ω,t

Yω,t
β(β − 1) +

X
ω,t

S(β)ω,t (θ, θ̂), (37)

where

S(β)ω,t (θ, θ̂)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R(β)ω,t(θ, θ̂)− Yω,tQ(β−1)ω,t (θ, θ̂) (β < 1)

Q(β)ω,t(θ, θ̂)− Yω,tQ(β−1)ω,t (θ, θ̂) (1 ≤ β ≤ 2)
Q(β)ω,t(θ, θ̂)− Yω,tR(β−1)ω,t (θ, θ̂) (β > 2)

, (38)

is an auxiliary function for Jβ(θ). J+
β (θ, θ̂) is minimized

w.r.t. θ̂ when θ̂ satisfies Eq. (33) and Eq. (35).

Proof of Lemma 3. Eq. (32) and Eq. (34) show that

Jβ(θ) ≤ J+β (θ, θ̂). (39)

The equality holds when θ̂ satisfies Eq. (33) and Eq. (35).
Thus, Eq. (33) and Eq. (35) minimizes J+

β (θ, θ̂) w.r.t. θ̂. ¤
We are now ready to prove Theorem 1.

Proof of Theorem 1. Lemma 3 gives us an auxiliary func-
tion of Jβ(θ). According to the principle of the auxiliary



functionmethod, we need to prove that minimizingJ+β (θ, θ̂)
w.r.t. θ and θ̂ iteratively lead to the update rules, Eq. (22)
and Eq. (23).
First, we focus on minimizing J+

β (θ, θ̂) w.r.t. θ. The
derivative of J+

β (θ, θ̂) w.r.t.Hω,k is

∂J+
β (θ, θ̂)

∂Hω,k
= Vβ(θ)−Wβ(θ), (40)

where

Vβ(θ) =
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P
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1−β
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β
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. (42)

The second derivative is

∂2J+β (θ, θ̂)
∂Hω,k∂Hω0,k0

= {V 0β(θ)−W 0
β(θ)}δω,ω0δk,k0 , (43)

where δi,j is 1 if i = j, otherwise 0 and

V 0β(θ) =
(
0 (β < 1)

(β − 1)Hβ−2
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P
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1−β
ω,t,kU

β
k,t (β ≥ 1) ,
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(
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P
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ω,t,kYω,tU
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k,t (β ≤ 2)

0 (β > 2)
.

Thus, J+
β (θ, θ̂) is a convex function in H. Setting the first

derivative to zero, we obtain the update rule forHω,k:

Hω,k =
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(44)
U can be discussed similarly.
Next, we consider the auxiliary variables θ̂. Eq. (33)

and Eq. (35) minimize J+
β (θ, θ̂) w.r.t. θ̂. Thus, minimiz-

ing Eq. (33) and Eq. (35) into Eq. (44) gives the following
update rule:

Hω,k ← Hω,k

ÃP
t Yω,t (

P
kHω,kUk,t)

β−2
Uk,tP

t (
P

kHω,kUk,t)
β−1 Uk,t

!ϕ(β)

.

The update rule for Uk,t can be obtained similarly. The up-
date rules for H and U can be simply rewritten as Eq. (22)
and Eq. (23). ¤
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Fig. 1. Evolution in log-log scale of the objective function
with β = 0.

5. EXPERIMENTS

The convergence speed is compared with existing algorithms.
The classical multiplicative algorithm for NMF will be de-
noted as “MU”, the EM-based algorithm as “EM”, and the
proposed multiplicative algorithm based on the auxiliary
function method as “AUX”. NMF is often applied to anal-
ysis of audio signals. Here, we use as input data matrix
the magnitude spectrogram of 8 second length music sig-
nal (generated from RWC-MDB-P-2001 No.25 [16]) down-
mixed tomonaural and downsampled to 16kHz. It was com-
puted using the short time Fourier transform with a 32 ms
long Hanning window and with 16 ms overlap.
We compared the performances of all the algorithms for

three different values of β, namely β = 0, 0.5, 2. Fig. 1
shows the results for β = 0. In this case, EM is the slow-
est and MU the fastest, while AUX is slightly slower than
MU. As shown in Fig. 2, for β = 2, AUX (which is then
equivalent to MU) is again faster than EM. Finally, the re-
sults for β = 0.5 are shown in Fig. 3. In all cases, MU is
slightly faster than AUX, however, the convergence of our
algorithm is theoretically proven.

6. CONCLUSIONS

In this paper, we proposed a convergence-guaranteed mul-
tiplicative algorithm for NMF with β-divergence. The form
of the updates is similar to that of the conventional multi-
plicative algorithm but with a different exponent term. We
confirmed through basic experiments that the proposed al-
gorithms converge faster than EM algorithms. Future work
will include the extension of our auxiliary function approach
to the derivation of convergence-guaranteed algorithms for
constrained NMF methods which involve an objective func-
tion as well as penalty terms, for example to promote spar-
sity or smoothness.
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