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Abstract

This paper deals with the convergence aspect of diffusive delay Lotka-Volterra sys-
tems with infinite delays. It is well known that such a system has a globally asymp-
totically stable steady state if the negative feedbacks of the intraspecific competi-
tions are dominant and instantaneous. It is shown here that such a globally asymp-
totically stable steady state continues to exist even if the instantaneous assumption
is removed, provided that solutions of the system are eventually uniformly bounded
and the delays involved in the intraspecific competitions are small. This work gen-
eralises several recent related ones.

1. Introduction

Ordinary differential equations have long played a central role in the mod-
elling of various real systems and will no doubt continue to serve as important
tools in future scientific investigations. However, frequently, more realistic
models require the inclusion of the effects of both time delays and spatial
variations. This is especially important in population dynamics, as pointed
out by Okubo [43] " . . . time and space are inseparable 'sister coordinates,'
and only when population of organisms are considered in both time and space
can the ecological situation be understood." Ideally, a real ecological system
should be modeled by differential equations (ODEs for discrete diffusions in
patchy environment, PDEs for continuous diffusions) with time delays.

Systematic study on abstract functional differential equations reaction-
diffusion systems with time delays has been documented in the recent papers
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of Martin and Smith [31-32]. Recent and specific results on Lotka-Volterra
type diffusive delay equations can be found in the work of Luckhaus [29],
Friesecke [7, 8], and Yamada [40]. Results for systems can be found in
Gopalsamy [10], Kuang and Smith [26], Martin and Smith [30, 32] and the
references cited therein.

The results of [10, 26, 30] are all concerned with the global stability of a
steady state of the considered diffusive delay Lotka-Volterra system. These
results have a distinct common feature: in order to show that a globally
asymptotically stable steady state exists in these systems, it is imperative to
assume, mathematically, that the negative feedbacks of the intraspecific com-
petitions are dominant and instantaneous. While the dominant requirement
sounds reasonable ecologically, the instantaneous requirement is certainly
rather artificial since some kinds of time delays are inevitable in any popu-
lation interactions. This ecological consideration is the main motivation of
the present paper.

Other motivations come from the recent works of Kuang [24] and Kuang
and Smith [25]. In these two papers, a technique is developed to remove the
instantaneous requirement for intraspecific competitions in order to establish
global stability of steady state in delayed Lotka-Volterra systems. Roughly,
we replace a delayed term, say u(t - T) , by u(t) + u'(£)r, where £e[t-r,t]
is determined by the mean value theorem. This involves the estimation of
u\t) in terms of u(t). In [24] and [25], it is shown that the attractivity
of a steady state remains unchanged as long as the delays involved in the
intraspecific competitions are small and initial values are selected in a proper
space. In this paper we attempt to do the same for diffusive delay systems.
In order to do so, we need to adopt the approach of Hutson and Moran
[21] to estimate Laplacians, and thus derivatives, with respect to time. Then
we combine the methods developed in Kuang and Smith [25] and Martin
and Smith [30] to establish the desired convergence. Our main result here
indicates somehow that a globally asymptotically stable steady state indeed
continues to exist even if the instanteous assumption is removed, provided
that solutions of the diffusive delay system are eventually uniformly bounded
and the delays involved in the intraspecific competitions are small enough.
This in some sense provides reasonable support for the usual practice of
ignoring time delay effects in models of population dynamics when the delay
lengths are deemed to be small.

This paper is organised as follows. In the next section we describe our
model in detail and introduce some proper notations and Banach spaces that
will be used in subsequent sections. Section 3 deals with the estimation of
partial derivatives with respect to the time coordinate. Section 4 contains
our main results. The last section is devoted to discussion.
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2. Preliminaries

In this paper we consider the following autonomous Lotka-Volterra type
diffusive delay system with infinite delays

dtu,(x, t) = dfiu^x, t) + b^x, t)Gt(uAx, •)), on Q x (0, oo); (2.1a)

duui(x,t) = 0, on0Qx(O,oo); (2.1b)

ul{x,e) = Zi{x,0), onn(-oo,0]; (2.1c)

where i= 1, 2 , . . . ,n, u = (u , , u2,... , un), x = (x{, ... , xN) and Q is
an open, connected and bounded region in R^ with d£l smooth enough,
say dCl € C2+a, 0 < a < 1. Furthermore, A denotes the Laplacian on Q,
dv denotes the outward normal derivative on dQ; dt and bi are positive
constants. The initial functions <̂ (.: Q x (-00, 0] —> R are always assumed to
be continuous and nonnegative, with ^t(x, 0) > 0, i — 1, 2, ... , n . In the
following, additional conditions will be imposed on £(.. Throughout the rest
of this paper, C(-oo, 0]" denotes the space of continuous functions from
(-oo, 0] into R" and for each x e il, ut(x, •) = (uit(x, •))" denotes the
member of C(-oo, Of defined by ut(x, d) = u(x,t + d) for 6 e (-oo, 0] .
The functional Gj in (2.1a) map C(-oo, 0]" into R and are assumed to
have the form

f £ / Jt(x, 6) d^AO),8i{ut, (x, •)) = rt - a, f uit{x, d) d/itf) + £ / u
J-ri j = i J-oo

(2. Id)
where a, > 0, r( > 0 and rt are real numbers; nt{6) are nondecreasing,
A*(-(0) - fiji-Tj) = 1; Hijifi) are bounded real-valued Borel measures on
(-oo, 0] with total variation |^.. | .

The system (2.1a-d) can be used to model the population dynamics of a
closed ecological system containing n interacting species (which means there
is no immigration and emigration); ut(x, /) may represent the population
density of the /th species at time t and location x and r = {rx, r2, ... ,rn)
may stand for the vector of intrinsic population growth rates.

It is natural from a biological point of view to seek a solution of (2.1a-
d) corresponding to nonnegative initial data belonging to the Banach space
CB(Cl x (-oo, 0]) of bounded and continuous functions that map fl x
(—oo, 0] into R" , with the uniform norm

M(x,6)\\= sup \i(x,6)\, (2.2)
xea,e<o

where £ € BC{il x (-oo, 0]) and | • | is a chosen norm on R" . Observe that

https://doi.org/10.1017/S0334270000009036 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009036


474 Yang Kuang and Hal L. Smith [4]

G;(ut(x, •)) can be rewritten as

G,(«,(x, •)) = r,.(0 - at f uit{x, d) d/itf) + £ / ° uJt{x, 6) d/i^d) ,
J-*i j=\ J-x

(2.3)
where T = max{T{-: / = 1, 2 , . . . , « } , and

Since for t < r, rt(t) is known, we see that u(x, t) is a solution of (2.1a-d)
with infinite delays if and only if it is a solution of the following nonau-
tonomous system with bounded delays

r,(t)-atf uit(x, d)dni{d)dtut{x, t) = rf,.AM,.(x, 0 + b,ut(x, t)

7=1

on Q x (0, oo]);
(2.5a)

dvu((x,t)=0, onaf ix(0,oo) ; (2.5b)

ul(x,6)=ei(x,8), onnx[-T,0], (2.5c)

where r((t) are defined as in (2.4). Therefore, local existence, uniqueness and
continuability of a mild solution of (2.1a-d) follow from results in [31, 32].
By a mild solution of (2.1a-d), we mean a continuous function u: [0, t*) —>
C(Q, R") which satisfies a certain integral equation obtained by applying the
variation of constant formula to the abstract formulation of (2.1a) as a delay
differential equation in the space C(il, R") (see either of [31, 32]). It is
shown in [31] that this mild solution u{t) is a strong solution (continuously
differentiate) of the abstract delay differential equation in C{£1, R") for
t > T and thus is a classical solution for t > x. In the following we shall
simply assume that our solutions are classical ones.

If u = (M,)" is a solution of (2.1a-d) on Q x (-00, t*], t* > 0, and

M{ = sup{\Git(u(x, -))|: (x, t) e Q x [0, **]},

then
diAui - biuiMi < dtu( < </,A«. 4- biuiMi

and it follows by the comparison and maximum principle (see Smoller [36])
that:
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(i) £,.(*, 0) = 0, xeU, implies M,(X, () = 0 f o r x e i i , < > 0 ;
(ii) ^(XQ , 0) > 0 for some x0 e Q implies that ut{x, t) > 0 for all

x e f i , r > 0 .
In this paper we always assume that:

(2.1 a-d) has a unique, spatially homogeneous steady (HO)
state solution u* = (w*, u\, ... , «*) such that

M - > 0 , G , ( M ' ) < 0 and u*Gi(u*) = 0. (2.6)

Such a steady state is called a saturated equilibrium by Hofbauer and Sigmund
[20]. In the following we shall call u* a saturated steady state.

It is easy to see that bounded solutions of system (2.1 a-d) may not have
precompact orbits in BC(Cl x (—oo, 0]). This makes the usual properties
(nonempty, connected, compact and invariant) of positive limit sets invalid.
In order to overcome this difficulty, we choose the following well-known more
friendly spaces [1, 14, 15, 17]:

{•= ^(*,0)eC(Ox(-oo,O],R"):||<^= sup '-
xen,e<o

<t>{x, 6)1 g{6) is uniformly continuous on

where g: (—00, 0] —»[1, 00) satisfies

Qx(-oo,0]l ,

g: (—oo, 0] is a continuous nonincreasing func- (gl)
tion on (-oo, 0] such that g(0) = 1;

g{s+u)/g(s) —> 1 uniformly on (-oo ,0] as u -+ 0~ ; (g2)

g(s) ->oo a s i - » -oo . (g3)

Clearly, UCg is a Banach space with norm

- = •

UCg is a strong fading memory space (in the sense of [14, 17] which im-
plies that bounded solutions of an autonomous system (such as (2.1 a-d))
corresponding to initial data <f> e BC(il x (-oo, 0]) have precompact or-
bits in UC (rigorous proof of this statement can be obtained by modifying
similar arguments presented in [17]). Thus positive limit sets are nonempty
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and have their usual properties. A further reason for choosing UC is that

BC(Q, x ( -co, 0])' <-> UC with continuous inclusion for g satisfying (gl)-
(g3).

It is known (Lemma 2.1 in [12] and [27]) that with the above assumptions
made for system (2.1a-d), there is a g(s), satisfying (gl)-(g3), such that

\MUg\= f g{s)\dnu{e)\<<p, i , j = \ , . . . , n .

We chose the norm | • | in R" as

where ^ = (^, ^ ) g R " . Thus, for g(s) satisfying (gl)-(g3), <f>{x, 6)
e UC , we have

\\(j>\\g= s u p m a x I '*' : i = l , . . . , n \ .

As usual, C(Q, R"), respectively C*(O, R"), will denote the set of con-
tinuous, respectively k times continuously differentiate functions f i -»R"
with their standard norms that will be denoted by || • ||, respectively || • ||c*.

3. Estimation of Laplacian

The purpose of this section is to provide an estimate of Aut(x, t) in terms
of \\ut{x, 6) - u*\\ . We first estimate | |M(-,0C'II in terms of \\ut\\g . The
following lemma is adapted from Lemma 2.1 in Hutson and Moran [21].

LEMMA 3.1. There is a polynomial Bx{x, y) = axx + a2y + a3y
2, where

positive constants a , , a2 and a3 are independent of uo(x, 6) such that

||M(-, 0 | | C I < # I ( I I " , _ I ( * , 0)11^, \\ut{x, 6)\\g), fort>\. (3.1)

PROOF. With v = u{, d = di in turn, each equation may be written in the
form

dtv - (dA - a)v = q{x, t), (3.2)

where
q(x, 0 = a«,.(x, /) + biUi{x, /)G,.(M/(x, •)), (3.3)

a n d v(x ,0) = vQ.
By [41, page 88], for some positive constant a (depending only on Q),

under both homogeneous Neumann and Dirichlet conditions, (A - al) gen-
erates an analytic semigroup in E = L (£1) for p > 1, and with -A the
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associated operator, there is a 8 > 0 such that Re a (A) > 8, where a {A)
denotes the spectrum of A. Equation (3.2) may then be written as

^+Av = Q, (3.4)

with A = -dA + a, and Q(s) = g{-, s) e E, and with mild solution

v(t) = e-Atv0 + f e'A{'-s)Q(s) ds. (3.5)
Jo

Note that

\q(x,t)\<\\uit(x,d)\\Aa + bi 1
(3.6)

where

\Hijg\= f
J—o

Denote

{ (
Thus,

\q(x, 01 < \\ut(x, 0)11^ + a\\ut(x, d)\\g), (3.8)
which implies that

From [19, page 26], we have for a > 0,

pae-/"||£<C(a)rae-<", (3.9)

where C(a) is bounded for a in any compact interval of (0, oo) and
bounded as a -» 0+ . Here || • Ĥ  is also used to denote the operator norm.
Choosing a e (0, 1), applying Aa to (3.5), and then taking norms, we obtain

• f'wA'e-^-'XWQit-l+s^ds
Jo

( a ) r p'-il]E

max \\Q(t-l +s)\\E / ' ( I -s)-ae-S{l~s)ds\ ,
><s<i Jo J0<s<l

(3."1O)
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by (3.9). Clearly, there is a positive constant ft = /?(Q) depending only on
the domain Q such that

\\vo\\E < P\\vo{x, 0)\\g, \\Q[t)\\E < fi\\q{-, OIIL-(S). (3.11)

Also, there is a positive constant y = y(a, d), such that

f (l-s)~ae~S{1~s)ds<y. (3.12)
Jo

Observe that max,_,<^, \\us\\g < ~g\\ut\\g , where (cf.v(g2))

~g = sup{g(s - l ) /^(^)}.
s<0

We denote that y — yq and <f = aq~. Hence, we have

\\Aav{t)\\E < pC{a)[\\ut_x{x, 0)\\g + y\\ut(x, e)\\g(tj+a\\ut(x, 0)\\g]. (3.13)

From the definition of the fractional space Ea [19, page 29], and a standard
imbedding theorem [19, page 39], respectively, we obtain

c U, 0<v<2a-Nlp,

where k is independent of v. Taking a — 3/4, p = IN, v = 1, we have

Now see that the lemma is proved by letting

a, = kfiC(a), a2 = k0C(a)yt] and a3 = kfiC(a)ya.

It is reasonable to assume that in realistic biological models, intraspecific
competition operates. As a consequence, we assume that every solution of
(2.1a-d) will enter and remain in a fixed bounded L°° neighborhood of the
origin. For Y c R^, denote

X0 = {ueC{a,Rn):u(x)e Y, xeU}. (3.15)

We assume the following throughout the rest of this paper:

There is a compact neighborhood Y of the origin
R^ such that for every

H o ( jc ,0)€£C(f ix(-oo,O])nC(nx(-oo,O]) , (HI)

there is a finite time *0(M0) such that the corre-
sponding solution «(•, t) € XQ for t > *0(M0) .
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In the following, we denote

Mx = max{\y\ : y & Y}. (3.16)

Clearly, (HI) implies that for every uo(x, 0) e BC(U x (-oo,0]) n

C2(Q x (-oo, 0]), there is a ^(MQ) > tQ{u0) such that

I K O c ^ U ^ M , , forr>^(M0). (3.17)

We thus have:

COROLLARY 3.1. Assume (HI) holds and uo(x, d) e BC(U x (-oo, 0]) n
C2(Q x (-oo, 0]). Then there exist positive constants /?, and fi2, both inde-
pendent of uo(x, 6), such that

PROOF. We note that /?, — ax + a2, 02 = a3. The conclusion follows from
Lemma 3.1.

For convenience, we would like to denote

M2 = filMl+ft2Mf, (3.19)

wij(x,t) = ~ui(x,t), 1 = 1 , . . . , n , j=l,...,N, (3.20)

qij{x,t) = —[biui{x

It is easy to see that wf. satisfies
(3.21)

t i j l i j qiJ(x,t), onQx(0,oo), (3.22)

wij(x,0) = -~^j(x,e), on Qx (-oo,0], (3.23)

wtJ(x, t) = a>u{x , t ) , o n dQ. x ( 0 , o o ) , (3.24)

where wij{x, t) satisfies \wij\ < M2, t > <,(u0) + 1 . Corollary 3.1 implies
that there is a t2 - t2{u0) > ^,(M0) , such that for t > t2(u0),

\\wijt(x,d)\\g<M2. (3.25)

Denote Wti{x, t) - wtj{x, t + t2). Then W(j{x, t) satisfies

dtWu(x, t) = d^W^x, 0 + qu(x ,t + t2), on Q x (0, oo), (3.26)

WiJQ(x, d)\\g < M2, and \W.j{x, t)\ < M2, {x, t) e 9Q x (0, oo), by
Corollary 3.1. Now we see that W.j has almost the same properties as that
of ut(x, t). We can therefore apply Lemma 3.1 to obtain
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LEMMA 3.2. Assume that uQ{x, 6) e BC(U x (-00, 0]) n C3(Q x (-00, 0]).
There is a polynomial B2(x, y) = ylx + y2y + y3y

2, where positive constants
y{, y2 and y3 are independent of uQ(x, 6), and a l(u0) > 1, such that for
t>i(u0),

IK,-(-> 011c' < * 2 ( I K i - i ( * . e)Wg> Uwu,(x> 0)11*)- (3-27)

Indeed, similar to Corollary 3.1, we have

I K / - , oiic' ^ (vi + y-L>Mi + y3
Mi f o r t z i(u0). (3.28)

Note that Aut(x, t) = £ ^ , wtj(x, t) and M2 = fixM{+ P2M\ . We thus
have:

THEOREM 3.1. In (2.1a-d), assume that (HI) holds and uo(x, 0) e
BC{U x (-00, 0]) D C3(U x (-00, 0]). Then there exist positive constants
5t, i = I, ... , 4, independent of uo(x, 6), and a 7(u0) > 1, such that for
t > l(u0), i=l, ... ,n,

|AKI.(*,0l<5>/i"1- (3-29)
1=1

Now we are ready to state and prove the main result of this section.

THEOREM 3.2. Assume that assumptions of Theorem 3.1 are satisfied and
u* = ( «* , . . . , «* ) is the unique saturated equilibrium of (2.1a). There is
a constant S = d(Mx), independent of u((x, 6), and a 7(M0) > 1 such that
for t>t(u0),

\dtut(x,t)\<S\\ut(x,e)-uX, i = l , . . . , « . (3.30)

PROOF. Assume first that u* = 0. Then

! « , . ( * , 0 1 = \ u , ( x , t) - u*\ < \ \ u t ( x , 6) - u \ \ g . (3.31)

We need only to adjust our estimates in the proof of Lemma 3.1. In the
estimate of (3.8), we will have

\q(x,t)\<\\ut{x,e)-u\\8{ti

and obviously

The inequality (3.14) can thus be replaced by

\\ut{x,e)-u\\g. (3.32)
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Assume now that u* £ 0. Then G,(u*) = 0. In (3.2) we let v = «,.(*, t) -
u*. We thus have

and

\Q(x,t)\<

In this case, (3.14) should be replaced by

IKO||C. < gkpC{a) \\ + y

\ut(x,6)-u\\

•)]}
x\\u,(x,e)-u%. (3.33)

Denote

gkfiC(a)mJ[l+g(n

l+y

Then we have shown that for t > t{(u0) + I,

\\ui(-,t)\\cl<Al\\ut{x,e)-uX,

(3.34)

(3.35)

By modifying the arguments that lead to Lemma 3.2, we easily arrive at for
' > ̂ ("o) > *i(Mo) + ^ > w n e r e l(u0) as defined in Lemma 3.2,

IK-IK-, Ollc' < [y, + r2 + y^M^Uu+x, o) - u\, ( 3 J 6 )

i,j= 1 , . . . , « ,
and where yf., / = 1, 2, 3 , are defined in Lemma 3.2. Let

A2 = NA][yl + y2 + y3A,Af,]; (3.37)

then
|AM,.(X , 01 < A2||«r(x, 9) - u*\\g. (3.38)

Clearly,

|d,«,.(x, 01 < di\Au,{x, 01 + *,-|«,-(Jc, t)Gj(ut(x, 0)| • (3.39)

Denote

G; = max < fe; r; + I a. + > /*..... I Af, , bM: I a. + > w.._ I > . (3.40)
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We have

&,.|H,.(X, t)Gt{ut{x, -))| <oj\\ut{x, <9) - M*||^-

(3.39) thus implies that

\ d t U i { x , t)\ < (rf,.A2 + c o ) \ \ u t ( x , 0) - u \ \ g .

The proof of the theorem is completed by letting

S — max{SiA2 + co : I < i < n}.

4. Main results

We say that system (2.1a-d) is diagonally dominant if

yl . ' = 1 , •••»«• (4-1)

Throughout this section, we assume that system (2.1a-d) is diagonally dom-
inant and denote g — g(s) as a function which satisfies (gl)-(g3), ai >
£"=il^u gl> i = 1, . . . , « , and g(s) = 1 for s € [ - T , 0 ] , where T =
maxJTj, i = 1, ... , n} . Clearly, such a g(s) always exists as long as (2.1a-
d) is diagonally dominant. Also, we always denote u* = {u\, ..., u*n) as the
unique saturated equilibrium of (2.1a-d).

For £, e R" , we define

Mj|:i = l , . . . , n } , (4.2)

1^-1**1). (4.3)

Also, let C(Q)" be the space of continuous functions u : Q, -» R" and define
W and J on C(Q)n as

W{u] = max{ K[«( jc) ] :xeQ}, (4.4)
J(u) = {x:W[u]=V[u(x)]}. (4.5)

It is easy to check that if

^ ^ l ^ M (4.6)

for all M, z e C(H)" , then for u(x) ^ M* on Q,

£>_ ^[«](z) = min{sgn(M/.(x) - M')z(.(x) : JC e / ( « ) , i € /(M(JC))} (4.7)

where sgn(r) is 1 if r > 0 and - 1 if r < 0.
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Let A be the closure in C(Q)" of the linear operator B denned by

Bu = (rf,-AM,.)", for all u e («,)" e D{B),

D{B) = {M : u G C3(n)" and d^u = 0 on df i} .

Also, define the map F = (F,.)": C(Q x (-00, 0]) -» C(Q)n by

I W ) ] ( * ) = M / ( * , 0 ) G , ( * ( * , • ) ) , * e fl, / = 1 , . . . , « . ( 4 . 8 )
Note that (2.1a) can be written in the abstract form

dtu = Au + F(ut). (4.9)

The results in Rothe [42, page 15] indicate that A generates an analytic
semigroup T = {T(t): t > 0} on C(il)n , and so by variation of constants,
(4.9) can be integrated and written in the form

u(t) = T(t-s)u(s)+ [ T(t-r)F(ur)dr fort>s>0. (4.10)
Js

Noting that T{t)u* = u* for t > 0 and applying the maximum principle
shows that

W[T{t)y] < W\y] for all t > 0 and y e C(Q)" . (4.11)

If t > 0 and 0 < A < t, we have from (4.10) and the continuity of T and
F that

u(t) - hF(ut) = T(h)u(t -h) + o(h),

where h~l\o{h)\ -» 0 as A -> 0+ . Hence,

^ [ M ( 0 - hF{ut)] < W[T{h)u(t - h)] + o(h)

< W[u(t-h)] + o(h),

and it follows that if d~ /dt denotes the lower Dini derivative, then

^ W[u(t)] < D_ W[u(t)](F(ut)) (4.12)

for t > 0 and solutions u to (2.1a-d).
Throughout the rest of this section, we assume that

y , | , / = ! , . . . , « , (H2)

where <5 is defined as in Theorem 3.2.

REMARK 4.1. It is easy to see that (H2) is equivalent to

h
p - 1 i=l, ... ,n.
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In other words, this is a typical "smallness assumptions delay."
We define further that

K y ) (4.13)

It is clear that 'Viu^ = \\ut- u*\\ . The following lemma is crucial to the
main result, Theorem 4.1, of this paper.

LEMMA 4.1. If uo(x, 6) e BC (Ux(-oo, 0])nC3(Qx(-oo, 0]) and for some
t0 > ~t(u0), V(ut) = W{u(-, i)), where u((x, 0) is the solution o/(2.1a-d),
then

'='o

where l(u0) is as in Theorem 3.2. Moreover, equality holds only if u{x, t) =
u*, x eU.

PROOF. We denote <j){x, 6) = ut (x, 6) and assume that t0 > t(u0). If

<f>{x, 6) = u* for all x e Q, then the lemma is obvious, so we assume this
is not the case. It follows that <j>{x, 0) ^ u . Assume that W{4>{x, 0)) =
\4>j(x0, 0) - u*\. Formulas (4.7) and (4.12) indicate

~W{<t>{x, 0)) < sgn(4>i(x0, 0) - O W * o ' 0)Gi(cl>(x0, •)).

It sufl5ces to show that if 4>j{x0, 0) > 0 and ^,(x0, 0) # u*, then

sgn(cl>i(x0,0)-ui)Gi(cj>(x0,-))<0.

If u* = 0 , we have sgn(<£.(.x0, 0) - «*) = 1 and Gt(u*) < 0, and if u* > 0,
we have G({u*) = 0 . We thus have

- ai / (0,(*o' ^) ~ O ^ i ( ^ )
(4.14)

Note that

/ (<f>t(x0, 6) - u]) dfi^d) = 0,(xo, 0) - u* + f dd&ixo,
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where £(0) € ( 0 , 0 ) . By Theorem 3.2, we have

|00^, . (xo , £(0))| < S\6\ \\ut - u \ < < 5 T , # , . ( X 0 , 0 ) - U , \ .

This implies that

It is easy to verify that

,.(*0, 0) - u*)

< E f (l^
J=l J-°°

< ( E i ^ i 11^(^,0)-«;i. (4.i6)

Inequalities (4.15) and (4.16) clearly imply that

^ , j ,(x0, 0) - u*\ < 0,

proving the lemma.

LEMMA 4.2. Z,ef ut(x, 6) be the solution of (2.1a-d) with uo(x, 8) €
BC(Qx(-oo, 0])nC3(Qx(-
is nonincreasing on [0, oo).
BC(Clx(-oo, 0])nC3(Qx(-oo, 0]). Thenfor t > t(uQ),themap t

PROOF. That Lemma 4.1 implies the above lemma is fairly standard (see,
e.g., [13, 28]). Nevertheless, we prove it here for completeness.

Suppose the lemma is false. Then for some *0 > 7(u0),

( , h ) { )
lim inf <0~ _ -JsL > 0, (4.17)

and hence there exist hn —* 0+ as n-»oo and a > 0 such that

)
^ > a , « > 1 . (4.18)
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In particular, we must have "Viu, ) > 2^(w, _h ) . We claim that
'O 'O " n

Otherwise, ^ ( M , ) > W{u{-, t0)) implies that there exists s0 < 0, xo

such that

o o o o o ) . (4.19)

If n is chosen such that t0 - hn > t0 + s0, then

V(u(xo,tQ + so)) = g(sQ)

which contradicts (4.18) and hence ^ ( M , ) = W(u{-, t0)) as claimed. By
Lemma 4.1, we have

rW,(,-»)-yW,t))
h^o+ -h

But

W{u{-,tQ-hn))-W{u{-,tQ))

- w{u(-, t0 - hn)) - r-(uto) < ^{uto_h)

which clearly implies that

W(u(.,to-hn))-W(u(-, t0)) ^ ̂ K-hn)-^(\) ^
-K ~ -K

contradicting (4.20). This completes our proof.
Now we are ready to state and prove our main result of this paper.

THEOREM 4.1. Assume that (H1)-(H2) hold for the system (2.1a-d) and
uo(x, 6) € BC(Ux (-00, 0])nC3(Qx (-00, 0]). Then the solution ut{x, 6)
tends to u as t —• +00 (in UC norm).

PROOF. By Lemma 4.2, we know that there is a c > 0, such that

It suffices to show that c — 0; so assume for contradiction that c > 0 . Since
the semigroup T in (4.10) is compact, the w-limit set QJ(UO(X , 6)) of ut

is nonempty, compact and invariant (in the UC space). In particular, if
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<f> 6 co(u0(x, 6)) and v is the mild solution to (4.19) with MO(X , 0) replaced
by <j), then

0<c = ̂ {vt) f o r a l l f > 0 . (4.21)

Now for each t > 0, select x ( € f l and i e { 1 , . . . , « } so that

W[v(.,t)) = \vi{xt,t)-ui\.

If t > 0 is such that V[v{xt, t)] = c and vt(xt, t) > 0 , then Lemma 4.1
implies that

< 0

AO -h
But this implies that for some small h,

^ ( v t - h ) > W M - , t - h ) ] > W [ v ( - , t ) ] = c , (4.22)

a contradiction to (4.21). We thus have two cases to consider
(i) W [ v ( x , t)] < c , for all t > 0 ;
(ii) For some L e { 1 , . . . , « } , v, (x, t) = 0 and hence c = v* .

0 0

Consider first case (i). Let 5, > 0 such that £(s,) > 1. For t > - 5 , ,

c = max{W[v{x,s)], r + 5 , < s < < } - (4.23)

Then for such a / , we must have

^•(vt)<max{c,c/g(Sl)}<c, (4.24)

a contradiction.
Consider now case (ii). Without loss of generality, we may assume that

M* # M* , / # j , since otherwise we can choose et > 0 such that e,w* / ejU* ,
i ^ j , and make the change of variable ui = e^ui. Since limi_>_oo g(s) —
+oo, there is a a > 0, such that

MJg(-a)<c/2. (4.25)

Clearly, we must have

\Vj{x,t)-u]\<u*o, ( x , 0 e Q x [ 0 , o o ) , iQ±j, (4.26)

since otherwise we will again have vAx, i) = 0 and thus obtain u* = u* ,
J J 'o

lo ^ ^ ' contradicting our previous assumption.
By continuity and compactness, we have

max{|vy.(x, 0 - u)\ : (x, t) e H x [0, a], j jt iQ} < u*o. (4.27)

Since va e W(M0, (X, 6)), there is a sequence <fc —> oo such that vt -» wCT

in C/C^ norm. Therefore, there is a A" > 0 such that for k>K,

max{|M,(x, tk + 6)-u*\ : x e Q , -a < 6 < 0} < M* . (4.28)
7 / i 0 • ' ' ' - ' ' o
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By Lemma 4.2, we know <V(ui ) \ u* = c. Hence for k > K, we must have

u*o < ^ ( \ ) = max{|M/o(;c, tk + 0)-u*\:x eQ, -CT < 0 < 0 } . (4.29)

Since M, —• «,. = 0 as A: —» +cx>, we may assume that K is sufficiently
'o't 'o

large so that 0 < ut (x, tk+d) < u* for all (x, 0) e Q x [ - i , 0] and k> K.
Furthermore, we have w,(x, t) > 0 and, therefore, for k>K,

'o

max{|M,. (JC, t. + 6) - u* \ : x e Q, -a < d < 0 < u*
'0 " '0 '0

an obvious contradiction to (4.29). This contradiction shows that c must
equal 0 and the proof is thus complete.

A more general version of Theorem 4.1 takes the form:

THEOREM 4.2. Assume that (HI) holds for system (2.1a-d) and uQ{x, 6) e
BC{U x (-00, 0]) nC 3 ( f lx (-00, 0]). Assume further that there exist ct>0,
i — I, ... , n, such that

a,.(l - A J T , . ) > ctJ2c-x\^jg\, r = max{c, . /cy : i, j = 1 , . . . , « } , ( H 3 )

w defined as in Theorem 3.2. 77^n the solution ut(x, 6) tends to
u* as t —» +oo (in UC norm).

PROOF. We may denote Ut(x, t) = C;M,(X, t), then U(t) = {Ux(t), ... ,
Un(t)) satisfies

dtUi(x, t) = d ^ x , 0 + &.£/,.(*, tjUMix, •)), i = 1 , . . . , » ,

where

° Ut{x, tf°
J-

L e t c = m a x { c ( : / = 1 , . . . , « } . T h e n T h e o r e m 3.2 g ives

\dtUt(x, t)\<Ci8\\u{x, t)-uX=SC-i'C\\u{x, t ) - u \

<rd\\U(x,t)-U\,

where U* = (C,M* , . . . , cnu*n). The theorem now follows immediately from
Theorem 4.1 by letting at = afj1, u^d) = CjU^d).

By virtue of the proof of Theorem 4.1, we have obtained the following
result that generalises Theorem 1 (the result that partially motivated this
work) in Martin and Smith [30].
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THEOREM 4.3. In system (2.1a-d), assume that / ° T uit(x6) dfi^d) = ut(x, t)
(e.g., ni{6) = \, fii(d) = O,for 0 < 0) and uo(x,'6) e BC(Ux (-oo, 0]) n
C3(Q x (-00, 0]). Assume further that there exist c( > 0, i = I, ... , n,
such that

7=1

Then its solution ut{x,6) tends to u* as t -* +oo (in UCg norm).

PROOF. We observe that the boundedness of ut(x, 6) follows from the
proofs of Lemmas 4.1 and 4.2. The rest of the proof is similar to that of
Theorem 4.2 (in fact, simpler than it).

5. Discussion

To some extent, this work can be viewed as continuations and generali-
sations of that of Martin and Smith [30] and Kuang and Smith [27], and is
closely related to the work of Kuang and Smith [28]. In [30], Lotka-Volterra
type diffusive delay systems with bounded delays and dominating negative
feedbacks are considered. Reference [27] deals with systems similar to (2.1a)
but without diffusion. Reference [28] discusses delayed Lotka-Volterra sys-
tems with infinite delays but with discrete diffusions. Roughly, our results in
this paper suggest that if a Lotka-Volterra system has globally asymptotically
stable steady state when the negative feedback of the intraspecific competi-
tion is instantaneous, then it remains to have such a globally stable steady
state, provided that the delay involved in the intraspecific competition is suf-
ficiently small. This, indeed, in some sense, confirms our intuition that small
delays are negligible in these dynamical systems.

Our results here are also closely related to the recent ones of Friesecke [7],
in which he considers the scalar equation

dtu-Au = f(u(t),u(t-t)) (5.1)

with either homogeneous Neumann or Dirichlet boundary conditions. Here
f(u(i), u(t - %)) = u(t)(l - u(t — T)) is its typical example. The main result
in [7] states that for a given K > 0, there is a T0 = T O ( / , Q, K) such that
for x < T0, all trajectories u of(5A) with limjau

2(t)dx < K tend to steady
states of (5.1). For f(u, v) satisfying the negative feedback condition

fim / ( " ' ^ < 0 , uv>0; (5.2)
|u|, M-.+00 UV
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it is shown in Luckhaus [29] that solutions of (5.1) are indeed bounded as long
as T is small enough. Surprisingly, in [8], Friesecke succeeded in showing
that for large T , small fi, solutions of

dtu - fiAu = u{t)(l -u(t-T))

can grow exponentially to infinity as / —» +oo. This somehow indicates that
our assumption (HI) is both biologically and mathematically reasonable. It
should be pointed out here that the results stated in this paper are indepen-
dent of that of [7].

Generally, boundedness of solutions in diffusive delay systems is difficult
to prove mathematically. This can be seen from the work of Luckhaus [29].
However, for some diffusive delay population interaction models, this may
be easy to show if some (no matter how weak) instantaneous intraspecific
competitions are present. The following are two examples of this kind.

EXAMPLE 1. Diffusive delay Lotka-Volterra competition model [32]:

ro
d^d^u, - aiiUi(x, 0 - E CU

x e f i c R " , t>0, \<i<n, (5.3)

dvui = 0, xedQ., t>0, (5.4)

ui(x,t) = <f>i(x,t)>0, xeU, / e [ - T , 0 ] , (5.5)

di, b{ and au are positive, c( and T are nonnegative; ?/( is nondecreasing
on [ -T , 0], and »/l-J-(0

+) - f/,,(-O = 1. Let ux{t) be the solution of the
initial value problem

M, =bxux{\ -anux), M0 = maxw,(x,0). (5.6)

Define ut(x, t) = ut(t), x € Q. Clearly, w, satisfies (5.4) and Aut = 0.
Also,

1 -dtux-dxAux-bxux

> 0 = dtux - dxAux - bxux

j=\

n ,0

"~ 2-^Cij I Uj\X ' uifi)

for (x, t) e f l x [ 0 , +oo).
(5.7)
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Thus, by Theorem 10.1 in Smoller [36], we conclude that

491

- 1
Clearly, lim/_f+oo «,(<) = a n < +o°. Similarly, we can show that

- l
t U r n ^ u t ( x , t ) < a u , i. = 1 , . . . , n .

EXAMPLE 2. Diffusive delay Lotka-Volterra food chain [23]:

0,11,. - diAui + ft(u), (x, t) e Q x (0, +oo),

with (5.4) and (5.5), and

(5.8)

j=x

= 1,

,5,. - a,,.
j=\

j=\

uj(x,t + e)dt]ji(6)

V, - «„.«,. + E % f uj(x ,
;=1 J-X»i

-8- 6) dnnj{6)nj{

= n,

where bt, <5, and au are positive, ptj, q(j and TtJ are nonnegative. By
an argument similar to that presented in the previous example, we can first
show that

Next one can show that

,iJ5oM2(*» 0 - ^ I I U 2 2 2

By repeating this argument, one can easily show that solutions of (5.6) are
eventually uniformly bounded.
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For a related account of boundedness of solutions, invariance and com-
parison in diffusive delay systems, the readers are referred to [32].

For more details about estimates of the constant S that first appeared in
Theorem 3.2, see Henry [19, pages 26-39].
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