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We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage
of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct
acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy
profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium
point identified by the sink of the game graph. It is important to note that in previous works this convergence has not
been guaranteed even if the Nash equilibrium point exists. The best reply dynamics result in a natural implementation of
the behavior of a Lyapunov-like function. Therefore, a Lyapunov game has also the benefit that it is common knowledge
of the players that only best replies are chosen. By the natural evolution of a Lyapunov-like function, no matter what, a
strategy played once is not played again. As a construction example, we show that, for repeated games with bounded non-
negative cost functions within the class of differentiable vector functions whose derivatives satisfy the Lipschitz condition,
a complex vector-function can be built, where each component is a function of the corresponding cost value and satisfies the
condition of the Lyapunov-like function. The resulting vector Lyapunov-like function is a monotonic function which can
only decrease over time. Then, a repeated game can be represented by a one-shot game. The functionality of the suggested
method is successfully demonstrated by a simulated experiment.
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1. Introduction

There are several disadvantages in the use of Nash equi-
libria (Goemans et al., 2005). The use of pure strate-
gies implies that pure Nash equilibria may not exist in a
game while, on the other hand, the use of mixed strate-
gies to find the equilibria do not particularly correspond
to acknowledged facts and sometimes represent an artifi-
cial solution of the game. Another constraint is related to
the prior knowledge of the equilibrium point. Bellman’s
equation is expressed as a sum over the state of a trajec-
tory needs to be solved backwards in time from the target
point. One of the most interested drawbacks of Nash equi-
libria is related to the convergence and stability of equilib-
rium points. Nash equilibria are considered a solution of
a game if the system arrives at such stable points. But,
in many games convergence to Nash equilibria is not as-

sured. In this sense, the most natural approach for finding
a Nash equilibrium of a given game is executing the best
reply dynamics. Even in repeated games where alternative
mechanisms for equilibrium play are proposed the conver-
gence is not guaranteed.

Another disadvantage is the proof that finding a Nash
equilibrium is an intractable problem (Chen and Deng,
2006; Daskalakis et al., 2006a) which motivates efforts
aimed at presenting an approximate Nash equilibrium as
an alternative solution (Lipton et al., 2003; Daskalakis et
al., 2006b; Kontogiannis et al., 2006), although negative
results about it arise as well (Chen et al., 2006; Daskalakis
et al., 2006b). For these reasons we propose an alternative
solution concept to analyze and improve such drawbacks.
In this paper we introduce the concept of a Lyapunov
game (Clempner, 2006) as a subclass of strictly dominated
games and potential games, analyzing its convergence and
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complexity properties. We propose an alternative solution
concept focusing on a class of games for which Lyapunov
theory is naturally applied and the convergence is guaran-
teed by a Lyapunov-like function.

In particular, we focus on strictly dominated games,
also called the iterated dominance equilibrium (Bernheim,
1984; Moulin, 1984; Pearce, 1984), in which a strategy
profile can be found by deleting a dominated strategy from
the strategy set of one of the players, recalculating to find
which remaining strategies are dominated, deleting one of
them, and continuing the process until only one strategy
remains for each player. The best reply dynamics result in
a natural implementation of the behavior of a Lyapunov-
like function. The dynamics begin choosing an arbitrary
strategy profile of the players (Nash, 1951; 1996; 2002;
Myerson, 1978; Selten, 1975). Then, in each step of the
process some player exchanges his/her strategy to be the
best reply to the current strategies of the other players.
A Lyapunov-like function monotonically decreases and it
results in the elimination of a strictly dominated strategy
from the strategy space. As a consequence, the problem
complexity is reduced. In the next step, the strategies that
survived the first elimination round and are not best replies
to some strategy profile are eliminated, and so forth. This
process finishes when the Lyapunov-like function con-
verges to a Lyapunov equilibrium point. It is important
to note that by the natural evolution of a Lyapunov-like
function, if a strategy was played once it is not played
again.

The dynamics of a game are represented by a directed
graph G, where an edge (si, sj) means that si has a higher
payoff than sj , i.e., V(sj) < V(si) (except at the sink, at
an equilibrium point, where V(si) = V(sj)). In a more
restrictive version, sj represents the best response to si.
The evolution of the game will be represented by a path in
G. Such a path may converge to a pure equilibrium. The
pure equilibrium is the sink of the graph G.

In Lyapunov games the natural existence of the equi-
librium point is assured by definition. In this sense, fixed-
point conditions for games are given by the definition of
the Lyapunov-like function, in contrast to the fact that a
Nash equilibrium must satisfy Kakutani’s fixed-point the-
orem (Kakutani, 1941). We claim that a Lyapunov game
has a single Lyapunov equilibrium point (by definition).

It is important to note that convergence is also guar-
anteed. A kind of discrete vector can be imagined over the
game graph. Each optimal action applied yields a reduc-
tion in the optimal cost-to-target value, until the equilib-
rium point is reached by the definition of the Lyapunov-
like function. It is important to note that a Lyapunov-like
function is constructed to respect the constraints imposed
by the system.

When a (repeated) game and its strategies are played
over and over, a learning mechanism is implemented to
justify an equilibrium play (Poznyak et al., 2000). Un-

fortunately, in “classical games”, the convergence is not
guarantees even if a Nash equilibrium point exists. On the
other hand, in one-shot games it is difficult for the play-
ers to identify the correct expectations about the strategy
choices of their opponents. In our case, the problem is
more difficult to justify because repeated games are trans-
formed to one-shot games replacing the learning mecha-
nism by a Lyapunov-like function. However, a Lyapunov-
like function definitely converges to a Lyapunov equilib-
rium point (Clempner, 2006).

An important advantage of Lyapunov games is that
every ergodic system can be represented by a Lyapunov-
like function. The function replaces the recursive mecha-
nism with the elements of the ergodic system that model
how players are likely to behave in one-shot games. As a
construction example, we first propose a non-converging
state-value function that fluctuates (increases and de-
creases) between states of the game. Then, we show that
for repeated games with bounded nonnegative cost func-
tions within the class of differentiable vector-functions
whose derivatives satisfy the Lipschitz condition, a com-
plex vector-function can be built where each component
is a function of the corresponding cost-value and satisfies
the condition of the Lyapunov-like function. The result-
ing cost-value function is a monotonic function which can
only decrease (or remain the same) over time.

The optimal discrete problem is computationally
tractable. The cost-to-target values are calculated using
a Lyapunov-like function. The Lyapunov-like function is
used as a forward trajectory-tracking function. Every time
a discrete vector field of possible actions is calculated over
the game. Each optimal action applied decreases the op-
timal value, ensuring that the optimal course of action is
followed establishing a preference relation.

1.1. Organization of the paper. The remainder of this
paper is organized as follows. The next section presents
the necessary mathematical background and terminology
needed to understand the paper. Section 3 introduces the
Lyapunov game definition and derives conditions for the
uniqueness of the equilibrium point. Section 4 contains
the main technical results concerning to the fact that ev-
ery ergodic system (repeated game) can be represented by
a Lyapunov-like function, presenting the corresponding
simulated experiments, and the complexity for reaching
a Lyapunov (Nash) equilibrium point is also calculated.
Finally, in Section 5 some concluding remarks and future
work projects are outlined.

2. Preliminaries

2.1. Game description. In general, a non-cooperative
game is the triple G =

〈N , (Sι)ι∈N , (≤ι)ι∈N
〉
, where

• N = {1, 2, . . . , n} is a finite set of players,
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• Sι is a finite set of “pure” strategies (henceforth
called actions) of each player ι ∈ N ,

• (≤ι) is a binary relationship over S :=
∏

ι∈N Sι re-
flecting the preferences of the player t over the out-
comes.

It is assumed that the relation (≤ι) establishes a poset
on S, i.e., given r, s, t ∈ S, we expect the preference re-
lation (≤ι) to be fulfilled, and the following axioms hold:
reflexivity (r ≤ι r), antisymmetry (r ≤ι s and s ≤ι r im-
plies that r = s), transitivity (r ≤ι s and s ≤ι t implies
that r ≤ι t).

Although the preference relation is the basic primi-
tive of any decision problem (and generally observable),
it is much easier to work with a consistent cost function,

Uι : S → R+, (1)

because we only have to use n real numbers

U = {U1, . . . , Un} .

Definition 1. The cost function Uι (1) is said to be con-
sistent with the preference relationship (≤ι) of a decision
problem (S,≤) if and only if for any s, t ∈ S

Uι(s) ≤ Uι(t), (2)

which shortly is denoted as

s ≤Uι t. (3)

Denote by G =
〈N , (Sι)ι∈N , (Uι)ι∈N

〉
the correspond-

ing game.
For notational convenience we write S =

∏
ι∈N Sι

understanding the pure strategies profile, and S−ι =∏
j∈N|{ι} Sj , the pure strategies profile of all the play-

ers except the player ι. For an action tuple s =
(s1, . . . , sn) ∈ S we denote the complement action as
s−ι = (s1, . . . , sι−1, sι+1, . . . , sn) and, with an abuse of
notation, s = (sι, s−ι).

2.2. Association with a direct acyclic graph. Let us
associate to any game G =

〈N , (Sι)ι∈N , (Uι)ι∈N
〉

a di-
rect acyclic graph (Topkis, 1979). At this point let us
introduce some notation on partial order.

For any s ∈ S, let

• successors of s:

t ∈ suc(s) iff s �= t, s ≤Uι t and
∀q : (s ≤Uι q ≤Uι t) =⇒ (q = s) ∨ (q = t);

(4)

• predecessors of s:

t ∈ pre(s) iff t �= s, t ≤Uι s and
∀q : (t ≤Uι q ≤Uι s) =⇒ (q = t) ∨ (q = s).

(5)

Let GU be the graph whose set of nodes is S. For
each pair (s, t) ∈ S2 : (s, t) is an edge iff t ∈ suc(s) or,
equivalently, s ∈ pre(t).

Definition 2. We say that U is consistent with the pref-
erence relation (≤U) if GU has no cycles, namely, GU is a
direct acyclic graph.

From now on, we will consider only consistent cost
functions. Obviously,

∀s, t ∈ S : (s <Uι t) ∨ (s ≡Uι t) ∨ (t <Uι s). (6)

Thus, Uι induces a hierarchical structure on S.
The maximal elements are those with no predeces-

sors, i.e., nodes with a null inner degree in GU. The mini-
mal elements are those with no successors, i.e., nodes with
a null outer degree in GU.

Define the upper distance d+ among actions (s, t) ∈
S2 as follows:

d+(s, t) = 1 ⇐⇒ t ∈ suc(s),
d+(s, t) = 1 + r ⇐⇒
∃q : d+(s, q) = r & d+(q, t) = 1.

(7)

Similarly, the lower distance d− among actions
(s, t) ∈ S2 satisfies

d−(s, t) = 1 ⇐⇒ t ∈ pre(s),
d−(s, t) = 1 + r ⇐⇒
∃q : d−(s, q) = r & d−(q, t) = 1.

(8)

Thus

d+(s, t) = d−(t, s). (9)

The upper height of a node s is

h+(s) = max
t:t is maximal

d+(s, t). (10)

The lower height of a node s is

h−(s) = max
t:t is minimal

d−(s, t). (11)

2.3. Individual and common hierarchies.

Definition 3. Let S �= ∅, Uι : Sι → R+ and Uκ : Sκ →
R+ be two real vector-functions. We say that

(a) Uι is an (ι, κ)-eq-order of Uκ if

∀s1, s2 ∈ S : (Uι(s1) = Uι(s2))
=⇒ (Uκ(s1) = Uκ(s2)).

(In this case, (S/ ≡Uι) is a homeomorphic image of
(S/ ≡Uκ) since both are linearly ordered sets.)
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(b) Uι is an (ι, κ)-ineq-order of Uκ if

∀s1, s2 ∈ S : (Uι(s1) ≤ Uι(s2))
=⇒ (Uκ(s1) ≤ Uκ(s2)),

(In this case, the ordering ≤Uι is included, as a set,
in the ordering ≤Uκ .) Hence, GUκ is homomorphic
image of GUι , i.e., GUκ can be realized as a subgraph
of GUι .

(c) Uι is an (ι, κ)-tonal-order of Uκ if

∀s1, s2 ∈ S : sgn(Uι(s1) − Uι(s2))
= sgn(Uκ(s1) − Uκ(s2)),

where sgn : R → R is defined as

sgn(xt) :=

⎧
⎨

⎩

1 if xt > 0,
0, if xt = 0,
−1, if xt < 0.

(12)

(In this case, GUκ is isomorphic to GUι .)
Given two cost-functions Uι, Uκ : S → R+ it is in-

teresting to decide whether there is a common hierarchy to
the hierarchies in S induced by individual cost functions
Uι, Uκ that, in fact, defines how the game considered is re-
alized. We may proceed with two equivalent approaches.

2.3.1. Common hierarchy construction based on the
“product” of individual orders. Let R

N be ordered
with the product of the usual ordering in R (lexico-
graphic), namely,

(a1, a2, . . . , ap) ≤ (b1, b2, . . . , bp)
⇔ (∃m > 0) (∀i > m) (ai = bi) ∧ (am <m bm) .

Then

∀s, s′ ∈ S : s ≤(U1,U2,...,Un) s′

⇔ (U1(s), U2(s), . . . , Un(s))
≤ (U1(s′), U2(s′), . . . , Un(s′)),

and hence, by this ordering, we construct a graph
G(U1,U2,...,Un) on S.

2.3.2. Common hierarchy construction based on the
“union” of individual orders. Let GUι and GUκ be
graphs on S obtained by functions Uι and Uk, respec-
tively. Let GUι∗Uκ be the union of GUι and GUκ , that
is,

((s, t) is an edge of GUι∗Uκ) ⇔
((s, t) is an edge of GUι)∨((s, t) is an edge of GUκ) .

GUι∗Uκ has no cycles provided that no (GUι and GUκ )
has cycles. Nevertheless, this condition is not sufficient to
obtain GUι∗Uκ free of cycles.

3. Lyapunov games

3.1. Vector Lyapunov-like functions. Let G(V , E) be
referred to as a game graph such that the nodes V are ele-
ments of S and the edges E are

E = {(s, s′) : ∃ι s′ = (s′ι, s−ι) ∧ s′ ≤U s} .

A sink (see, e.g., Goemans et al., 2005; Mirrokni
and Vetta, 2004; Fabrikant et al., 2004; Fabrikant and Pa-
padimitriou, 2008), is a node with no outer degree (no out-
going edges) in the game graph G. The next definition will
be in force throughout the paper.

Definition 4. Let V : S → R
N
+ be a vector continuous

map. Then, V is said to be a vector Lyapunov-like func-
tion (see, e.g., Lakshmikantham et al., 1991) associated
with the given game G(V , E) iff it satisfies the following
properties :

(1) there is a s∗, called below a Lyapunov equilibrium
point such that Vι(s∗) = 0;

(2) Vι(s) > 0 for all s �= s∗and all ι ∈ N ;

(3) Vι(s) → ∞ as s → ∞ for all ι ∈ N ;

(4) ΔVι = Vι(s′) − Vι(s) < 0 for all s′ ≤V s : s, s′ �=
s∗and all ι ∈ N .

Now we are ready to formulate the first important
proposition concerning the game G(V , E).

Definition 5. An equilibrium point s∗ ∈ V with respect
the game graph G(V , E) is a sink node.

Proposition 1. Let the set S be finite and V be a vec-
tor Lyapunov-like function associated with the given game
G(V , E). Then V are consistent with the preference rela-
tion (≤V).

Proof. Let (≡V) be the equivalence relation on S induced
by V :

∀s, t ∈ S : s ≡V t ⇐⇒ V(s) = V(t).

Then the collection of equivalence classes

{S/ ≡V} =
⋃

ι∈N S/ ≡V= {π(s)|s ∈ S} ,

where π(s) is a partition on S, is a poset isomorphic to a
subset of R. Thus, {S/ ≡V} is linearly ordered and, con-
sequently, it is a lattice. The structure {S/ ≡V} is indeed
trivial: all elements in S giving the same value under V

are identified in this quotient set. On the other hand, for
the relation (≤V) the following holds:

∀s, t ∈ S : s ≤V t ⇐⇒ V(s) ≤ V(t).

This relation is reflexive and transitive, and it is anti-
symmetric since the Lyapunov-like function V is a one-
to-one mapping. Thus, (≤V) is an ordering in S. �

Corollary 1. Let GV be the graph induced by the
Lyapunov-like functions V. Then GV is free of cycles.
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3.2. Best reply strategies. Consider a game graph
G(V , E).

Definition 6. A strategy δι ∈ Sι is said to be the best
reply to a given strategy-profile of the other players s−ι =
(s1, . . . , sι−1, sι+1, . . . , sn) if for all sι ∈ Sι we have that
V(δι, s−ι) ≤ V(sι, s−ι) (in the component-wise sense).
For each player ι ∈ N and each strategy-profile of the
other players s−ι ∈ S−ι denote the set of best replies by
bι(s−ι), i.e., the set of actions that player ι cannot improve
upon:

bι(s−ι)
:= {δι ∈ Sι |∀sι ∈ Sι : Vι(δι, s−ι) ≤ Vι(sι, s−ι)} .

A strategy δι ∈ Sι is called a never best reply if

min
δι∈bι(s−ι)

V(δι, s−ι) < V(sι, s−ι) (never-best-rep)

for each s−ι ∈ S−ι.

Remark 1. A Lyapunov-like function is a monotonic
function that asymptotically converges to an equilibrium
point. The best reply dynamics represent the natural be-
havior of a Lyapunov-like cost function given by Defi-
nition 4. Then, throughout this paper only games with
single-value best reply functions will be considered.

For each player ι ∈ N and each strategy-profile of
the other players s−ι ∈ S−ι, the individual best reply bι :
S−ι → 2Sι is assumed to be single valued, i.e.,

bι(s−ι) = arg min
sι∈Sι

V(sι, s−ι).

Here bι : S−ι → 2Sι denotes the individual best reply
that minimizes the preference ordering over Sι × S−ι of
player ι. The best-reply function for a game G is given
by b : S → S with b(s) =

∏n
ι=1 bι(s−ι). Below we will

show that the best reply provides a natural way of thinking
about equilibrium points.

Definition 7. A strategy sι ∈ Sι is said to be strictly
dominated if for every strategy-profile of the other players
s−ι = (s1, . . . , sι−1, sι+1, . . . , sn) there exists a strategy
δι such that V(δι, s−ι) < V(sι, s−ι). We say that, if sι

is dominated by some δι, then it is dominated, otherwise,
then it is undominated.

Theorem 1. Let G(V , E) be a game graph. If a strategy
sι is strictly dominated in Sι, it is never a best reply.

Proof. Following the definition of never best reply,
given that sι is strictly dominated by some δι, we have
that Vι(δι, s−ι) < Vι(sι, s−ι), which explains the desired
statement. �

Dominance is not only a sufficient condition for there
never being a best reply, but it is also a necessary one.

Corollary 2. Let G(V , E) be a game graph. If a strategy
δι is dominant in Sι, then it is a best reply.

Definition 8. The dominance solution of game G(V , E)
is defined as the set

D(G) =
∞⋂

l=1

θl(S)

such that for l = 0 we have that θ0 = S, and for l ≥ 1 and
for every player ι ∈ N we have that sι ∈ θl

ι if there is no
s′ι ∈ θl−1

ι such that for all s−ι ∈ θl−1
ι

Vι(s′ι, s−ι) < Vι(sι, s−ι).

A game graph G(V , E) is called strictly dominated (dom-
inance solvable) if, and only if, there exists a unique strat-
egy s ∈ D(G). This means that a game G(V , E) is
a strictly-dominated game if given a sequence of games
G0, . . . , Gl satisfies recursively the following conditions:

1. G0 = G.

2. For a given j, 0 ≤ j ≤ l, Gj+1 is a subgame of Gj

achieved by the elimination of a strictly-dominated
strategy from the strategy space of one player in Gj .

3. The strategy space of each player in Gl is of size 1.

Thus, a game (with the rules discussed above) is ob-
tained by iterated elimination of never best replies from a
game G(V , E) after a number of elimination steps. Note
that, in any analysed game G, no player ι ∈ N has never
best replies and the strategy space of each player in D(G)
is of size 1.

3.3. Lyapunov game definition and equilibrium
uniqueness.

Definition 9. A Lyapunov game is a game based on the
Lyapunov-like function V.

In this case it is possible to specify Definition 9 by
establishing that a Lyapunov game is a strictly dominated
game in which the iterated elimination of strictly domi-
nated strategies, based on the Lyapunov-like function V,
results in a single strategy-profile.

Remark 2. The process of iterated elimination of strate-
gies based on the evolution of the Lyapunov-like function
V can be understood as a formal description of the inter-
nal process of the reasoning of a player in which natural
common knowledge of the players is that only best replies
are chosen.

From Definition 4 of the Lyapunov-like function, the
following claims hold.
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Remark 3. Let G(V , E) be a strictly dominated game.
The strategy s∗ ∈ S is a Lyapunov equilibrium point if
and only if s∗ is a fixed point of the best reply function b,
i.e., s∗ ∈ b(s).

Remark 4. Let G(V , E) be a Lyapunov game. If the best
reply function b associated with G is single valued, then
G has a Lyapunov equilibrium point.

Remark 5. Starting from s0 and proceeding with the
iteration, eventually the trajectory given by

s0 <Vι s1 <Vι · · · <Vι sm <Vι . . .

(with s0, s1, . . . , sm being elements of the trajectory) con-
verges to s∗, i.e., the optimum trajectory is obtained iter-
atively. Since at an optimum trajectory an optimum strat-
egy s∗ holds, we have that

∀s, s∗ : Vι(s∗) < Vι(s).

Thus, the existence of s∗ is guaranteed by the Lyapunov-
like function where the infimum is asymptotically ap-
proached or the minimum is attained.

Lemma 1. Let G(V , E) be a Lyapunov game. Then,
the Lyapunov-like function V has an asymptotically ap-
proached infimum or reaches a minimum.

Proof. Suppose that s∗ is an equilibrium point. We want
to show that V has an asymptotically approached infimum
(or reaches a minimum). Therefore, s∗ is a sink. Then it
follows that the strategy attached to the action(s), follow-
ing s∗, is zero. Therefore, let us assume the value of V

cannot be modified. Since the Lyapunov-like function is
a decreasing function of the strategies s ∈ S (by Defini-
tion 4), an infimum or a minimum is attained in s∗. �

Theorem 2. A Lyapunov game G(V , E) has a unique
Lyapunov equilibrium point.

Proof. By the definition of a strictly-dominated game
G(V , E), a subgame is achieved by the elimination of
a strictly dominated strategy from the strategy space of
one player leading to a single strategy profile. Let s∗ =
(s∗ι , s−ι) be the profile of strategies that results form the
elimination process. Suppose that s∗∗ = (sι, s−ι) �= s∗

is also a Lyapunov equilibrium point. Proceeding with the
iteration of the elimination process, the strategy sι will be
removed (at some time) from the strategy space. Since, at
the optimum trajectory the optimum strategy s∗∗ holds, it
follows that the Lyapunov-like function satisfies the con-
dition

V(s∗ι , s−ι) < V(s′ι, s−ι) < V(sι, s−ι)

for every s−ι ∈ S−ι. This is in contradiction with the
fact that a Lyapunov-like function is a strictly decreasing
function except at the equilibrium point, by Definition 4.

�

Remark 6. Let G(V , E) be Lyapunov game. Given an
arbitrary strategy profile of the players, the best reply dy-
namics satisfy recursively the following conditions:

1. Choose a player whose strategy is not the best reply
to the current strategies of the other players.

2. Change the strategy of that player to the best reply
strategy (there is only one).

3. Repeat Steps 1 and 2 until a Lyapunov equilibrium
point is reached.

Remark 7. It is important to note that the best reply dy-
namics represent the monotonic decreasing natural evolu-
tion of a Lyapunov-like function.

The best reply is an implementation of a Lyapunov-
like function by Definition 6 and then the following prop-
erty holds.

Remark 8. Let G(V , E) be a Lyapunov game. The best
reply dynamics converge to a Lyapunov equilibrium point.

3.4. Examples.

Example 1. The Battle of the Sexes is a two-player game
used in game theory to conceptualized coordination. The
game can be illustrated by a couple. The husband would
like to go to a party while the wife would like to go to the
opera. Both players prefer engaging in the same activity
over going alone. The game is depicted by Table 1.

Table 1. Game of Example 1.
Wife\Husband Opera Party

Opera 2 ,1 0 ,0

Party 0 ,0 1 ,2

The game has two pure Lyapunov equilibrium points
(2, 1) and (1, 2). Convergence to one of these Lyapunov
equilibrium point by the best reply dynamics is always
guaranteed from any initial strategy profile. �

Example 2. The repeated Prisoner’s Dilemma(PD)
(Axelrod, 1984) game with transitions (in the classical for-
mulation this problem is considered as a static one-step
game which has nothing in common with transitions) is
used here as a first conceptual approximation of an inter-
acting conflict arising between mutual support and selfish
exploitation. The same mathematical description finds ap-
plication in other repeated games dealing with The arms
race model and The security model.

The PD game is usually illustrated by a practical sit-
uation where two men are arrested for a crime. The po-
lice tell each suspect separately that if he testifies against
the other, he will be rewarded for defecting him. Each
prisoner has two possible strategies: to cooperate (not to
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Table 2. Game of Example 2.
Player1\Player2 Cooperate Defect

Cooperate(not testify) R,R S ,T

Defect (testify) T ,S P ,P

testify) or to defect from the other (testify). If both play-
ers defect, there is a mutual punishment (payoff of P , the
punishment corresponding to mutual defection). If neither
testifies, there is a mutual reduction of punishment, result-
ing in a payoff value of R. However, if one testifies and
the other does not, the testifier receives considerable pun-
ishment reduction (payoff of S, the “sucker” payoff for
attempting to cooperate against defection), and the other
player receives the regular punishment (payoff of T , the
temptation for defection).

This game has usually two equilibrium points: one
non-cooperative (both prisoners testifying) and the other
one cooperative (none of the prisoners testifying to the
police). Each player wants to minimize the time spent
in jail, or, equivalently, maximize the time spent out of
jail. Let us suppose that P , R, S, T denote values for time
spent out of jail for the next 10 years, such that T > R >
P > S, where T = 10, R = 5, P = 3, S = 1.

Each player wants to minimize the time spent in jail.
Let us suppose that T > R > P > S and consider the
min function (Clempner, 2006) to be a specific (best re-
ply) Lyapunov-like function able to lead a player to an
equilibrium point. It is easy to see that we have the struc-
ture of a dilemma like the one in the story. On the one
hand, suppose that Player 2 does not testify. Then Player 1
obtains R for cooperating and T for defecting, and so
he/she is better off defecting, since T > R. On the other
hand, suppose that Player 2 does testify. Then Player 1 ob-
tains S for cooperating and P for defecting, and so he/she
is again better off defecting, since P > S. The strategy
testify (defect) for Player 1 is said to strictly dominate the
strategy not testify (cooperate): whatever his/her opponent
does, he is better off choosing to testify, rather than to not
testify. By symmetry testifying also strictly dominates not
testifying for Player 2. Thus two “rational” players will
defect and receive a payoff of (P, P ).

It is important to note that the unstable strategy
cooperate-cooperate with a score of (R, R) is better for
both players than the strategy defect-defect with the payoff
(P, P ). The instability of the cooperate-cooperate strat-
egy means that it is the interest of both players to unilater-
ally change strategy from cooperate to defect. But if both
payers change strategies simultaneously, then they lose,
since R > P and T > P . �

4. Existence of a Lyapunov-like function

4.1. Existence.

Theorem 3. Let G(V , E) be a game graph. Then a
Lyapunov-like function can be constructed iff s∗ ∈ N is
reachable from s0.

Proof. (=⇒) If there exist a Lyapunov-like function V,
then, by Definition 4, s∗ is reachable. (⇐=) By induc-
tion, construct the optimal inverse path from s∗ to s0. The
node of a system sm is observed in descending order and
an edge leading to the strategy profile sm−1 is chosen. We
choose the trajectory function V(s) as the best choice set
of nodes. We continue this process until s0 is reached.
Then the trajectory function V is a Lyapunov-like func-
tion. �

Remark 9. The goal of the previous theorem is to as-
sociate to any game graph G a Lyapunov-like function
which monotonically decreases on the trajectories of G.

4.2. Lyapunov function construction for repeated
(or ergodic) games. Consider a sequence {sm}m≥1 of
strategies sm ∈ S, where m = 1, 2, . . . is time (or iterat-
ing) index. For these games we will construct a Lyapunov-
like function V(s) (which is, obviously, not unique) as a
complex vector-function,

V(s) := (V1(s), . . . , Vm(s))ᵀ
,

where each component Vi(s) is a function of the corre-
sponding cost-value Ui(s), namely,

Vi(s) := V̊i(Ui(s)), i = 1, . . . , m. (13)

Here we will show how to construct the functions V̊i(Ui)
such that the function V(s) with the components (13)
would satisfy. Conditions 1–4 in Definition 4.

Theorem 4. (On a Lyapunov function construction) For
repeated (ergodic) games with bounded non-negative cost
functions

Ui ∈
[
0, U+

i

]
, min

j �=i
|Ui − Uj | = εi > 0,

i = 1, . . . , m. (14)

within the class of differentiable vector-function V̊i(Ui)
whose derivatives satisfy the Lipschitz condition

∣
∣
∣
∣

d
dUi

V̊i(U′
i) −

d
dUi

V̊i(U′′
i )
∣
∣
∣
∣ ≤ L |U′

i − U
′′
i | (15)

for all admissible U
′
i, U

′′
i , i = 1, . . . , m, one of the pos-

sible Lyapunov-like vector function V(s) has the compo-
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nents

V̊i(Ui) =

⎧
⎪⎪⎨

⎪⎪⎩

V̊i(Ui (sm−1)) exp{− (αi/γm,i)
Ui (sm−1)} if γi > εi > 0,

−β̊i/αiV̊i(Ui (sm−1)) if γi ≤ 0,

γm,i := ΔUi (sm, sm−1) = Ui (sm) − Ui (sm−1) ,

β̊i := L
2

(
U

+
i

)2
,

(16)
with the initial condition V̊i(s0) satisfying

V̊i(s0) ≥ 1
2αi

L
(
U

+
i

)2
exp

(αi

εi

)

− β̊i

αi
> 0

(17)

and any αi such that

1 ≥ αi

2ε2
i

exp

((
αi

εi

)(
1 + U

+
i

)
)
(
U

+
i

)2
(18)

when |ΔUi (sm, sm−1)| ≥ εi > 0, i = 1, . . . , m for any
γi �= 0, which implies

Vi(sm) := V̊i(Ui(sm))
≤ (1 − αi) Vi(sm−1)χ (|γm,i| ≥ εi > 0)

+ Vi(sm−1) [1 − χ (|γm,i| ≥ εi > 0)]
= Vi(sm−1) [1 − αiχ (|γm,i| ≥ εi > 0)]
≤ Vi(sm−1)αi ∈ (0, 1) .

(19)

Proof. By the condition (15) and in view of Lemma 21.1
on a finite increment by Poznyak (2008), it follows that

V̊i(Ui (sm)) = V̊i(Ui (sm−1)

+ ΔUi (sm, sm−1)) ≤ V̊i(Ui (sm−1))

+
d

dUi
V̊i(Ui (sm−1))ΔUi (sm, sm−1)

+
L

2
‖ΔUi (sm, sm−1)‖2 .

(20)

For any fixed number m, write

γm,i := ΔUi (sm, sm−1) ,

and let us try to find a function V̊i(Ui) which satisfies

d
dUi

V̊i(Ui)γm,i +
L

2
γ2

m,i ≤ −αiV̊i(Ui). (21)

(a) Suppose now that γm,i ≥ εi > 0. Then the function
Ṽi(Ui) := V̊i(Ui) + β̊i/αi satisfies

d
dUi

Ṽi(Ui)γm,i ≤ −αiṼi(Ui).

Therefore,

Ṽi(Ui) ≤ V̊i(Ui (sm−1)) exp
(
− αi

γ m,i

Ui

)

and hence we may take

V̊i(Ui) = V̊i(Ui (sm−1)) exp
(
− αi

γ m,i

Ui

)
− β̊i

αi

Since |γi| ≤ U
+
i , in order to guarantee that V̊i(Ui) ≥

0, the value Ṽi(0) should satisfy

Ṽi(s0) exp
(
− αi

γm,i
Ui

)
− β̊i

αi

≥ Ṽi(s0) exp
(
− αi

εi

)
− 1

2αi
L
(
U

+
i

)2 ≥ 0

or, equivalently,

Ṽi(s0) ≥ 1
2αi

L
(
U

+
i

)2
exp

(αi

εi

)
.

Taking into account that the function
exp {− (αi/γm,i) Ui} is twice differentiable, we
may conclude that

L = max
Ui

∣∣
∣
∣

d2

dU2
i

V̊i(Ui)
∣∣
∣
∣

= max
Ui

[( αi

γm,i

)2

Ṽi(s0) exp
(
− αi

γm,i
Ui

)]

=
(αi

εi

)2

Ṽi(s0) exp
(αi

εi
U

+
i

)

which implies (18) guaranteeing the nonnegativity of
V̊i(Ui). Therefore, substituting (20) into (21) leads to

V̊i(Ui(sm)) ≤ (1 − αi) Vi(sm−1)χ (γm,i ≥ εi > 0) .

(b) Consider the case γm,i ≤ 0, which, together with (20),
implies that

V̊i(Ui (sm)) = V̊i(Ui (sm−1))χ (γm,i ≤ 0)

(c) The case 0 ≤ γm,i < εi is excluded by the assumption
(14).

Combining the recursions in (a) and (b), we obtain
(14). The theorem is thus proven. �

Remark 10. By the inequality 1 − x ≤ exp (−x), it
follows that

Vi(sm) = Vi(sm−1) [1 − αiχ (γm,i ≥ εi > 0)]
≤ Vi(sm−1) exp (−αiχ (γm,i ≥ εi > 0))
≤ · · ·
≤ Vi(s0)

exp

(

−αi

m∑

t=1

(χ (γt,i ≥ εi > 0))

)

→ 0
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as m → ∞ if
∞∑

t=1

χ (γt,i ≥ εi > 0) = ∞.

Remark 11. Based on the above remark, the Lyapunov
function can be suggested as

Vi(sm)

= Vi(s0) exp

(

−αi

m∑

t=1

(χ (γt,i ≥ εi > 0))

)

. (22)

Example 3. Consider the repeated Prisoner’s Dilemma
game with the following cost functions:

S := {CC, CD, DC, DD} ,

Table 3. Game of Example 3.
Player1\Player2 Cooperate Defect

Cooperate(not testify) R,R S ,T

Defect (testify) T ,S P ,P

U1 (CC) = 5, U1 (CD) = 1,

U1 (DC) = 10, U1 (DD) = 3,

U2 (CC) = 5, U2 (CD) = 10,

U2 (DC) = 1, U2 (DD) = 3.

In this case,

ε1 = ε2 = 2, U
+
1 = U

+
2 = 10, α1 = α2 =

1
15

.

For a given initial condition, take Ṽ1(s0) = 100 and
Ṽ2(s0) = 100. The following results have been obtained:

• In Figs. 1 and 3 the state-value function behavior is
shown (where during game repetition the states of the
players fluctuate according to the given strategies)
showing a completely non monotonic behavior.

• In Figs. 2 and 4 the corresponding Lyapunov-
like functions are plotted definitely demonstrating a
monotonic decreasing behavior.

Example 4. Consider the Battle of the Sexes game with
the following cost functions:

S := {OO, OP, PO, PP} ,

U1 (OO) = 2, U1 (OP ) = 0,

U1 (PO) = 0, U1 (PP ) = 1,

U2 (OO) = 1, U2 (OP ) = 0,

U2 (PO) = 0, U2 (PP ) = 2.

Fig. 1. Cost function for Prisoner’s Dilemma Player 1.

In this case,

ε1 = ε2 = 1, U
+
1 = U

+
2 = 2, α1 = α2 =

1
4
.

For a given initial condition, take Ṽ1(s0) = 1000 and
Ṽ2(s0) = 1000. The following results have been ob-
tained:

• In Figs. 5 and 7 the state-value function behavior is
shown (where during game repetition the states of the
players fluctuate according to the given strategies)
showing a completely nonmonotonic behavior.

• In Fig. 6 and 8 the corresponding Lyapunov-like
functions are plotted definitely demonstrating a
monotonic decreasing behavior.

4.3. Completeness.

Proposition 2. (Cauchy criterion) Let G(V , E) be a Lya-
punov game and V its corresponding Lyapunov-like func-
tion. The realized trajectory s0, s1, . . . , sm converges to
some value if and only if the following holds: for every
δ > 0 we can find M such that |sl − sm| < δ whenever
m, l > M .

Proof. Since ∃εi : |V(si+1) − V(si)| > εi (with εi > 0)
and s∗ ≤V s, there are m, l > M such that |sl − sm| < δ
and δ → 0. It is clear that the Cauchy criterion is satisfied
and the realized trajectory has a limit. �

Theorem 5. Let G(V , E) be a Lyapunov game, and V its
corresponding Lyapunov-like function. Let s0, s1, . . . , sm

be a realized trajectory which converges to s∗ such that

∃εi : |Vι(si+1) − Vι(si)| > εi(withεi > 0).

Furthermore, set ε = min{εi}. Then the best re-
ply dynamics converge to a Lyapunov equilibrium point
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Fig. 2. Lyapunov-like function for Prisoner’s Dilemma
Player 1.

Fig. 3. Cost function for Prisoner’s Dilemma Player 2.

Fig. 4. Lyapunov-like function for Prisoner’s Dilemma
Player 2.

Fig. 5. Cost function for Battle of the Sexes Player 1.

s∗within O(max(Vι(s0)/ε)), where Vι(s0) is the initial
value of the Lyapunov-like function.

Proof. Suppose that G(V , E) is not bounded. Thus s∗ is
never reached. Then s∗ is not the last state in the strictly
dominated game G. Hence it is possible to find some out-
put transition to s∗. Since at the optimum trajectory the
optimum strategy s∗ holds, we have that the Lyapunov-
like function satisfies V(s) < V(s∗). Therefore, it is pos-
sible to reduce the trajectory function value over s∗ by at
least ε. As a result, it is possible to obtain a lower value
than C (that is a contradiction). Then, for a player ι, the
equilibrium point s∗ is reached in a time step bounded by
O(Vι(s0)/ε). �

Proposition 3. Let G(V , E) be a Lyapunov game. Then,
V converges to an equilibrium point s∗.

Proof. We have to show that Vι converges. By the previ-
ous theorem the equilibrium point s∗ is reached in a time
step bounded by O(max(Vι(s0)/ε)). Therefore, Vι con-
verges to s∗. �

This paper considers games where each player can
observe other players’ current-period strategies and not
all players may revise their strategies in every period.
In every period, players decide whether to monitor other
players and whom to monitor. The following compu-
tational complexity for finding a Lyapunov equilibrium
point holds.

Theorem 6. Let G(V , E) be Lyapunov game. The Lya-
punov best reply dynamics converge to a Lyapunov equi-
librium point in O

(
Σl

ι=1 (|Eι|)
)

steps, where |Eι| is the
size of the edges for player ι.

Proof. Given a game graph G(V , E), let si be a strategy
strictly dominated by strategy sj . Then the edge (si, sj)
means that sj has a lower payoff than si, i.e., V(sj) <
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V(si) means that the node sj represents the result of min-
imizing the cost-function. Suppose that Player ι observes

Fig. 6. Lyapunov-like function for Battle of the Sexes Player 1.

Fig. 7. Cost function for Battle of the Sexes Player 2.

Fig. 8. Lyapunov-like Function for Battle of the Sexes Player 2.

other players’ current-period strategies and tries to play
strategy si. So, Player ι must choose a different strat-
egy because si is strictly-dominated by strategy sj . By
the best reply dynamics in Definition 6, the predecessors
of sj in the game graph G will be eliminated and si and
its previous nodes will not be selected again. Continu-
ing with the process, each player can observe other play-
ers’ current-period strategies but not all players may re-
vise their strategies in every period. After l players, an
arbitrary strategy s will not be chosen again because it
is strictly dominated. As a result, the strategy selection
process for player ι is restricted to the size of the edges
(|Eι|) in the game graph G. Then the Lyapunov best re-
ply dynamics converge to a Lyapunov equilibrium point
in O

(
Σl

ι=1 (|Eι|)
)

steps. �

5. Conclusion and future work

We introduced the concept of Lyapunov game as a sub-
class of strictly dominated games and potential games:

• In Lyapunov games, natural existence of the equilib-
rium point is assured by definition, in contrast to the
fact that a Nash equilibrium must satisfy Kakutani’s
fixed-point theorem.

• Convergence is also guaranteed to exist. A
Lyapunov-like function definitely converges to a
Lyapunov equilibrium point.

• A Lyapunov equilibrium point presents properties of
stability that are not necessarily present at a Nash
equilibrium point.

• In this sense, a Lyapunov equilibrium point is a Nash
equilibrium point, but the opposite is not necessarily
true.

We present here an approach to finding an equilib-
rium point using a Lyapunov-like function as the best re-
ply dynamics in strictly dominated games. It begins with
a given strategy profile of the players, in each step letting
some player to choose a strategy using a Lyapunov-like
function that represents the best reply to the current strate-
gies of the others.

By definition, a Lyapunov-like function monotoni-
cally decreases and converges to a Lyapunov equilibrium
point identified by the sink of the game graph. It is im-
portant to note that in previous work this convergence has
not been guaranteed even if the Nash equilibrium point
exists. The best reply dynamics result in a natural im-
plementation of the behavior of a Lyapunov-like function.
Therefore, a Lyapunov game has also the benefit that it is
common knowledge of the players that only best replies
are chosen. By the natural evolution of a Lyapunov-like
function, a strategy played once is not played again.
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Since a Lyapunov-like function is to respect the sys-
tem constraints, it will lead the system from the source
state to the equilibrium point. Each optimal action ap-
plied produces a monotonic progress towards an equilib-
rium point. As a result, the process converges and will
certainly happen in a forward sense.

We also show that the best reply dynamics using a
Lyapunov-like function guarantee that convergence in si-
multaneous order is O(max(Vι(s0)/ε)), where Vι(s0) is
the initial value of the Lyapunov-like function and in asyn-
chronous order is O

(
Σl

ι=1 (|Eι|)
)

steps where |Eι| is the
size of the edges for Player ι in the game graph. This
computational complexity complements the result of the
completeness of computing a Nash equilibria obtained by
Goemans et al. (2005), Fabrikant et al. (2004) as well as
Fabrikant and Papadimitriou (2008) for potential games.

There are a number of questions related to classical
game theory that may in the future be addressed satis-
factorily within this framework. In this sense, as future
work we will extend the present idea to support the short-
est path problem (Tarapata, 2007), methods for comput-
ing Pareto sets (Toth and Kreinovich, 2009) and its re-
lationship with Lyapunov and dynamic routing protocols
(Griffin and Shepherd, 2002).
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