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CONVERGENCE OF A CLASS

OF CUBIC INTERPOLATORY SPLINES

A. CHATTERJEE AND H. P. DIKSHIT

Abstract. The interpolation problem of matching a cubic spline at one inter-

mediate point and cubic spline with multiple knots at two intermediate points

between the successive knots are studied when the interpolatory points are not

necessarily equispaced.

1. Introduction. The interpolation problems of matching a cubic spline at one

intermediate point and cubic spline with multiple knots (see [1, p. 125]) at two

intermediate points between the successive knots have been studied in [3]. The

problems of matching the integral means of splines between successive knots with

the same means of a given function for quadratic and cubic splines have been

respectively settled by Sharma and Tzimbalario [4] and Dikshit [2]. It may be

observed that the results [3, Theorem 1] and [2, Theorem 1] do not cover the

interpolation problem when the points of interpolation are not equispaced. The

object of the present paper is to study the problems of one point interpolation by

cubic splines and two point interpolation by cubic splines with multiple knots when

the interpolatory points are not necessarily equispaced.

2. Existence and uniqueness (equidistant knots). Let us consider the partition P of

[0, 1] given by P: 0 = x0 < x, < • • • < x„ = 1 such that x, — x,_, = p for i =

1,2,...,«. For a positive integer m, we define by ITm the class of polynomials of

degree m or less. We say that s(x) is a pp function of degree m over F if the

restriction s¡(x) of s(x) over [x,_„ x,] is in Ilm for / = 1, 2, . . . , n. The class

5(3, P) of cubic splines is the set of pp functions of degree three which are in the

class C2[0, 1].

Considering the points

y¡(a) = y i = xi-\ + a¡P>       i=\, . ..,n,

with 0 < a, < 1, we propose the following:

Problem A. Under what restrictions on a¡ does there exist a unique spline in

S(3, P) satisfying the interpolatory condition

Ay,)-s(y¡),     i = \,...,n, (2.1)

where thef(y¡)'s are given functional values!

Received by the editors January 28, 1980.

1980 Mathematics Subject Classification. Primary 41A05, 65D05; Secondry 41A15, 65D07.
Key words and phrases. Cubic spline, interpolation, nonequispaced interpolatory points, existence and

uniqueness, convergence.

© 1981 American Mathematical Society

0002-9939 /81 /0000-0 321 /$02.50

411

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



412 A. CHATTERJEE AND H. P. DIKSHIT

In order to investigate Problem A, we observe that since s(x) G S(3, P), s"(x) is

linear; therefore, for the interval [x,_,, x,], we may write

6ps(x) = M,(x - x,_,)3 + M_,(x,. - x)3 + 3A¿x - y,) + B,        (2.2)

where M¡ = s"(x¡) and A¡, B¡ are appropriate constants which have to be de-

termined.

We are now set to answer Problem A with the following

Theorem 1. Let f be \-periodic. Then there exists a unique l-periodic spline s(x) in

the class S(3, P) satisfying the interpolatory condition (2.1) if for all i either 0 < a¡ <

1/3 or 2/3 < a,. < 1.

It may be observed that in the interpolation problem considered in [3], a, is a

constant so that the points of interpolation are required to be equispaced.

Proof of Theorem 1. Using the requirement that s(x) is in the class C^O, 1], we

get

Ai+x-Ai = 2MiP2, (2.3)

Bi+X - B,. = 3al+xPAi+x + 3(1 - a,)pA,. (2.4)

Thus, in view of the interpolatory condition (2.1), we get

aUibtMi+2 +[(-af+x + «,3+2 + 6a,+2)Z>,. - a?+xbi+x]Mi+x

+ [(6«, - «,3+1 + af)bi+x - af+xbi]Mi + a,3e,+,Ai,._,

= 6p-2[bi+xAf(yi) - bAf(yi+l)] (2-5)

where a, = 1 - a¡, b,,= 1 - a, + a, + , and A/( v,) = f(y,) - f(yi+x).

It is clear that the coefficients of Mi+2, M¡_x are nonnegative. We next observe

that the coefficients of A/1+, and M¡ are positive in both the cases: (i) 0 < a, < 1/3

and (ii) 2/3 < a¡ < 1. Considering (i), we see that a,3+2 — a,3+, > (7/27) whereas

a?+, < 1/27; therefore, the coefficient of Mi+X is not less than (76, — bi+x)/21

which is positive since lb¡ > bi+x. We also see that if (ii) holds, then 6a,+2 — a,3+,

> 3 whereas af+x < 1; therefore, the coefficient of Mi+l is not less than 3b¡ — bi+x

> 0. By a parallel reasoning we may show that the coefficient of M¡ is also positive

in each of the two cases.

In (2.5), the excess of the coefficient of M¡ over the sum of the coefficients of

Mi+2, Mi+X and M,_, is

c, =[1 - 3a2 + 2a,3 - 3a2+, + 2a3+,]¿>,.+ ,

+ [l-3a2+1 + 2a^,-3a2+2]è,.. (2.6)

If we now assume that, for all », 0 < a, < 1 /3, then c, is clearly seen to be positive

since b¡, bi+x and their coefficients are all positive. Thus, the coefficient matrix of

(2.5) is diagonally dominant whenever 0 < a, < 1/3.

For the other case we observe that the excess of the coefficient of Mi+X over the

sum of the coefficients of Mi+2, M¡ and M,_, in (2.5) is

dt =[-1 + 3a2+I - 2a3+, + 3a2+2 - 2a3+2]Z>,.

+ [ -3 + 6a,. - 3a2 + 3a2+, - 2af+, ] bi+,. (2.7)
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But, if we assume that, for all I", 2/3 < a, < 1, then the coefficients of b¡ and bi+x in

(2.7) are positive monotonie nondecreasing functions of a,+„ ai+2 and a„ a,+,

respectively whenever 2/3 < a„ aI+„ a,+2 < 1« Thus d¡ > 0 and the coefficient

matrix of (2.5) is diagonally dominant. This completes the proof of Theorem 1.

3. Error bounds (one point interpolation). In this section we obtain error bounds

for the spline interpolant of Theorem 1. For simplicity, we assume throughout this

section that for all i

a, - Ö/+1 = k (3.1)

where A: is a constant. In what follows, we shall use the notation that, for the

function fix), f¡ = f(x¡). We shall prove the following.

Theorem 2. Let f be a l-periodic function in the class C^O, 1] and s(x) be its

spline interpolant in S(3, P) of Theorem 1. Then for r = 0, 1, 2,

\\(s-ff\x)\\ < n'-2(K+Kr\k\)w(f";l/n)

where w denotes the modulus of continuity and K, Kr are positive constants.

Proof of Theorem 2. Writing M, — f" = e¡, we have from (2.5) after some

simplifications,

af+2^+2 + (-2^+1 + a,3+2 + 64+2)*,+!

+ (6«,. - 2«3+1 + a3)e,. + afe,_x = F; (3.2)

where

F,. = 3(1 - k)\f"(u,) + f"(ui+x)) - af+2f/'+2 - a3/.'!,

- (-2a3+, + a,3+2 + 6a1+2)/';, - (6a,. - 2a,3+, + af)f/'

and u¡,ui+x are some points in (y¡,yi+x) and (y¡+\,yi+2) respectively. Writing

¿(¿") =/"(«,)-/", we have

F> = al2Af"+x + (-2a,3+, + 3a2+, + 3a,+, - 2 - 6a,.+,* + 3k)Af!'

+ (a,3 - 3a2+, + 3a,+1 - 1 - 6ai+,À: + 3* - 3*2)A/.'l,

+ (3 - 6k + 3k2)[d(f") + d(f"+x)] (3.3)

so that

||F,.|| < (A,' + N[\k\)w(f"; \/n) (3.4)

where N'x, N2 are appropriate positive constants.

We now proceed to obtain the error bound for the case when 0 < a, < 1/3 for

all i and observe that similar bounds hold for the other case. In view of the

assumption that a¡ — a,+, = k, we see from (2.6) that the row max norm of the

coefficient matrix in (3.2) is not less than

2 - 3a2 + 2a3 - 6a,2+, + 4a3+, - 3a2+2 (3.5)

which in its turn is not less than 8/9, since (3.5) is a positive monotonie nonincreas-

ing function of a„ ai+x, a1+2 whenever 0 < a,- < 1/3 for all 1. Thus, the row max

norm of the inverse of the coefficient matrix in (3.2) does not exceed 9/8, so that,
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from (3.2) and (3.4) we have

||e,|| < (A," + K2\k\)w(f"; \/n) (3.6)

where A," = 9A,'/8 and ^ = 9^/8.

Since s"(x) is linear, it follows from (3.6) that

||*"(x) - f"(x)\\ <(K+ K2\k\)w(f"; \/n) (3.7)

where K = A," + 1.

It may be observed that s'(x) — f'(x) vanishes for at least one point v¡ in

(y¡,yi+x) by Rolle's Theorem. Thus, from (3.7) we get

\\s'(x) - /'(x)|| < n~\K + A-,|A:|)w(/"; \/n) (3.8)

when we observe that, for x G [yi,yi+x], \x — t>,| < «"'(1 + \k\). A further integra-

tion yields

M*) - /Mil < -¡¡¡{K + K0\k\)w{^f"; 1). (3.9)

This completes the proof of Theorem 2.

Remark 3.1. Taking k = 0 in (3.1), so that ai+x = a, for all i, it may be easily

seen from (3.3) that ||F,|| < (88/9)w(/"; l/n). Thus, it follows that

\\(s" - f")(x)\\ < I2w(f";l/n). (3.10)

This case of Theorem 2 corresponds to the result proved in [3, Theorem 1], where

we have 15 in place of 12 in the inequality (3.10).

4. Cubic spline with multiple knots. Even those pp functions which do not satisfy

the maximum (nontrivial) smoothness requirement have been discovered to be

quite interesting (see [1, p. 125]). The set of 1-periodic pp functions of degree 3

which are in C'[0, 1] define the class S*(3, P) of periodic cubic splines with

multiple knots. In §§4 and 5 we shall study the following problem of interpolation

by pp functions of the class S*(3, P).

Problem B. Under what restrictions on a, does there exist a unique spline s(x) in

the class S*(3, P) satisfying the interpolatory conditions:

Ky.) = s(yt)    and   /(/,) = s(ti),       i=l,...,n, (4.1)

where y¡ = x,_, + a¡p, t¡ = x,_, + 3^/4 and the /(y,)'j and fit,)'s are given func-

tional values'!

Observing that any s(x) in S*(3, P) is also in C^O, 1] and writing m¡ = s'(x,), we

have

p3s(x) = -(\/3)mj>[p + 5(x,. - x)](x - x,_,)2 - (l/3)m,._,/>(x,. - x)3

+ (Di+X - D,)(p + 2(x, - x))(x - x,_,)2 + Dj>3. (4.2)

For convenience, we set J¡ = (9 + 12a, — 16a,2)"1 and d = 27p/(32)2. Now using

the interpolatory condition s(t¡) = f(t¡), we have

M) = -16am,. - (16/81)am,._, + 32p~xd(Di+x - Z>,) + Dr (4.3)
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Eliminating Z), + 1 — D¡ between (4.2) and (4.3) and using the other interpolatory

condition in (4.1), we have

J,rxD¡ = (9/2)afpmi + (l/6)(l3a,2 - 30a,. + 18>w,_,

+ 27(3 - 4a,.)-1(/( v,) - /(/,)) + jfftt,).

Thus, from (4.3) we have

-l44af+xJi+xmi+x + (22 - /f)m,. - 16(1 - a,) /,m,_,

= d'l[-f(t¡) + (21/32)Bi+x(t,y) + (5/32)Bi(t,y)],       (4.4)

where 7f = 5(3 + 4a,.)/,. + 27(5 - 4a,+,)/,+1 and

B,(t,y) =/(/,) - 27(3 - 4a,rV,(/(/,.) - f(y¡)).

The coefficients of mi+x and w,_, are clearly not positive since 0 < a, < 1. Thus,

we see that the difference of the coefficient of m¡ over the sum of the positive

values of the coefficients of m¡_, and mi+x is

8(4- 5/,. -21Ji+x) (4.5)

which is positive, since for 0 < a, < 4/5, J¡ does not exceed (1/8.36). This, of

course, implies that the coefficient of m¡ is positive. Thus, the coefficient matrix of

the equation (4.4) is diagonally dominant and we have proved the following.

Theorem 3. Let f be l-periodic and for all i either 0 < ai < 3/4 or 3/4 < a, <

4/5. Then there exists a unique spline s(x) in the class S*(3, P) satisfying the

conditions of Problem B.

Remark 4.1. The interpolation Problem B for equispaced points of interpolation

y¡ = x¡_x + lp and r, = x,_, + mp has been studied for nonequidistant knots in [3,

Theorem 2] under the restriction that 1/2 < / + m < 3/2. Taking m = 3/4 it may

be observed that Theorem 3 has the scope of covering interpolatory conditions for

a wider choice of / for equidistant knots. For example, if we take a, = / for all z" in

Theorem 3 then for the case 3/4 < a, < 4/5, 3/4 + / > 3/2.

5. Error bounds (two point interpolation). In order to estimate the error for the

spline interpolant of Theorem 3, we see that the right side of the equation (4.4) is

32/r1 [(/(/,+1) -/(/,)) - 27G,+,(f,y) - 5G,(f,y)]

= 32f(cv) - 216F.+,/'(m,+1) - 40J/'(«,)

where the points u¡ are in (/,, y,), the points v¡ are in (t¡, ti+x) and G¡(t,y) =

y,.(3 - 4a,)-1(/(/,) - /(y,)).

Thus, writing e = s — f and

F(z, i) = /'(z,.) - f¡_ „        F(i, z) = /'(z,) - f{,

we see that (4.4) may be written as

-144a2+,y,+ ,e;+1 + (22 - J*)e¡ - 16(1 - a,.)2/,.<_,

= 32F(/, v) + 9Af - Af'_x - 21F*+X

-5F*- 108a, + ,F.+ xAf¡ - 20a,J,A/.'_, (5.1)

where FT = J¡(5F(u, i) + 3F(i, u)).
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As already observed, /, does not exceed (1/8.36) for relevant values of a, and

hence the expression in (4.5) is not less than 288/209. Thus the row max norm of

the inverse of the coefficient matrix in (4.4) does not exceed 209/288. In view of

this it follows from (5.1) that

\e;\<K(ai)w(f';p) (5.2)

where K(a¡) is a positive function of a,. Hence by a reasoning used already in [3,

p. 249], we have

He'll < Kw(f; l/n) (5.3)

where K is some positive constant.

We have thus proved the following:

Theorem 4. Let f be a l-periodic function in the class C'[0, 1] and s(x) be its

spline interpolant in S*(3, P) of Theorem 3. Then for r = 0, 1,

\\(s -/)(r)(x)|| < (l/n)l-rKw(f; l/n) (5.4)

where K is a positive constant.

(5.3) is (5.4) with r = 1. The other inequality follows directly by integration.
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