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Abstract. The convergence properties of the new regularized Euclidean residual method for solv-
ing general nonlinear least-squares and nonlinear equation problems are investigated. This method,
derived from a proposal by Nesterov [Optim. Methods Softw., 22 (2007), pp. 469–483], uses a model
of the objective function consisting of the unsquared Euclidean linearized residual regularized by a
quadratic term. At variance with previous analysis, its convergence properties are here considered
without assuming uniformly nonsingular globally Lipschitz continuous Jacobians nor an exact sub-
problem solution. It is proved that the method is globally convergent to first-order critical points
and, under stronger assumptions, to roots of the underlying system of nonlinear equations. The rate
of convergence is also shown to be quadratic under stronger assumptions.
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1. Introduction. Finding values that minimize a specified norm ‖F (x)‖ of a
given vector-valued continuously differentiable function F ∈ R

m of several variables
x ∈ R

n is one of the cornerstones of computational mathematics. Although other
norms are of interest, we shall concentrate here on the Euclidean-norm case, for this
then leads to the equivalent nonlinear least-squares problem

min
x∈IRn

f(x)
def
= 1

2‖F (x)‖2(1.1)

involving the continuously differentiable f(x). This problem is not only of practical
importance for its own sake in applications such as parameter identification, image
registration, and data assimilation, but its solution also forms the basis of many meth-
ods for solving optimization problems involving constraints. It is, for example, crucial
when reducing constraint violation in several sequential quadratic programming tech-
niques (see Celis [5], Byrd, Schnabel, and Shultz [2], Omojokun [15], Vardi [21], Powell
and Yuan [16], etc.). The central problem of solving systems of nonlinear equations

F (x) = 0(1.2)

for n = m is also covered by the formulation (1.1) in the sense that one then wishes
to reduce the objective function f(x) to zero. More generally, first-order optimality
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2 BELLAVIA, CARTIS, GOULD, MORINI, AND TOINT

conditions for (1.1) require that

g(x) ≡ JT (x)F (x) = 0

involving the Jacobian J(x) of F (x), and it is these conditions that we seek to satisfy.
Nearly all efficient methods for the solution of this problem are variants of New-

ton’s method, in which (structured) quadratic approximations to f(x) are minimized.
However, such methods are well known not to be globally convergent and must then
be modified to include safeguards to guarantee convergence from arbitrary starting
points. Line-search and trust regions (in which the quadratic model is minimized in
a restricted neighborhood of the current iterate) offer two standard safeguards (see
Nocedal and Wright [14] or Conn, Gould, and Toint [6] for more details).

Interestingly, other techniques are possible, and methods based on adaptive regu-
larization have recently created some interest (see Griewank [9], Nesterov and Polyak
[13], Weiser, Deuflhard, and Erdmann [22], or Cartis, Gould, and Toint [3]). In such
methods, the smooth objective function’s model is minimized in a neighborhood im-
plicitly defined by a regularization term which penalizes the third power of the step
length. In this paper, we consider another new technique proposed by Nesterov [12]
for the special case of nonlinear systems (1.2). This technique is different from previ-
ous approaches in that it uses a nonsmooth model of ‖F (x)‖, based on a linearization
of F , rather than the smooth f(x) which is then regularized by a quadratic term.
However, as is the case for the cubic regularization, this model can be consistently
interpreted as an overestimation of the function ‖F (x)‖ when the Jacobian matrix
F is Lipschitz continuous, an intuitively appealing property. Another interesting1

feature of this technique is that it only involves the Jacobian of F and thus that its
expected performance depends on the condition number of that matrix (rather than
on its square) for zero residual problems. In his paper, Nesterov [12] proves interesting
global complexity results and fast local rate of convergence, under rather restrictive
assumptions requiring that m ≤ n, that J(x) is uniformly of full rank and globally
Lipschitz continuous, and that the model is globally minimized exactly at every itera-
tion. His global convergence analysis to first-order critical points is more general, but
it still requires the latter and global Lipschitz continuity of the Jacobian. Note that
this is a simplified version of the generalized class of proximal-point methods (e.g.,
Rockafellar [17]) applied to the model rather than actual objective ‖F (x)‖.

As discussed at the end of our paper (see section 5), this new class of methods
appears to compare favorably with a modern trust-region code in some nontrivial
examples. It is thus of interest to investigate its convergence properties, especially in
a weaker setting than that considered by Nesterov, allowing now for general (possibly
over- or underdetermined) nonlinear least-squares for both the global and local anal-
yses and without requiring the exact solution of subproblems. Furthermore, global
convergence is proved without concerns for the global or local Lipschitz continuity or
full-rank property of the Jacobian, while the fast local rate analysis requires only local
full-rank property, and minimal Lipschitz continuity, of the Jacobian. Section 2 first
describes the method in more detail. The global convergence analysis to first-order
critical points is then carried out in section 3 under very weak assumptions on the
step calculation. Section 4 then investigates how a more accurate step can be com-
puted and the implication of this improvement on the local convergence properties.

1Although not unique, several variants of the trust-region Gauss–Newton method share this
property. See Cartis, Gould, and Toint [4], for instance.
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Preliminary numerical results are presented in section 5. Finally, some conclusions
and perspectives are discussed in section 6.

Throughout the paper, a subscript will denote an iteration counter, and for a
particular iterate xk and relevant function h(x), hk will be shorthand for h(xk). The
(appropriately dimensioned) identity matrix will be denoted by I.

2. The method. We start by introducing the “modified Gauss–Newton
method” proposed by Nesterov [12] and its extension to the general nonlinear least-
squares case, which uses the same motivation. If we assume that J(x) is globally
Lipschitz continuous (with constant 2L) and since Taylor’s theorem gives that, for
some iterate xk,

F (xk + p) = F (xk) + J(xk)p+

∫ 1

0

(J(xk + tp)− J(xk))p dt,

we deduce from the triangle inequality that

‖F (xk + p)‖ ≤ ‖F (xk) + Jkp‖+ ‖p‖
∫ 1

0

‖J(xk + tp)− Jk‖ dt,(2.1)

≤ ‖F (xk) + Jkp‖+ L‖p‖2 def
= mN

k (p).(2.2)

Therefore, if we knew the constant L and if we were able to compute a step pk
minimizing the model mN

k(p), then the point xk+1 = xk+pk must improve ‖F (x)‖ and
hence the objective function f(x) of (1.1). Here we follow a more indirect approach
suggested by Griewank [9], Cartis, Gould, and Toint [3], and (in a simpler form)
by Nesterov and Polyak [13] and Nesterov [12], and introduce a dynamic positive
parameter σk and the nonsmooth model

m0
k(p)

def
= ‖F (xk) + Jkp‖+ σk‖p‖2(2.3)

of ‖F (x)‖ around xk. Cartis, Gould, and Toint [3] provide rules for adapting the
parameter σk in a numerically efficient manner. In this regard, it is important to note
that the model (2.3) is an exact penalty function for the problem

min
p∈IRn

‖p‖2 subject to Jkp = −F (xk),

and for all σk sufficiently small, its minimizer solves F (xk) + Jkp = 0, if such system
is compatible (see Nocedal and Wright [14, section 15.3]). We would thus expect
the Newton step (satisfying Jkp = −F (xk),) to be taken asymptotically for small
enough σk.

In Nesterov [12], the solution of the subproblem

min
x∈IRn

mN

k (p)(2.4)

is expressed in terms of the solution of a one-dimensional optimization problem with
a nonnegative simple bound, while Cartis, Gould, and Toint [4] rely, for the min-
imization of m0

k in (2.3), on the equivalent differentiable constrained optimization
problem

min
x∈IRn,ν∈IR

ν + σk‖p‖2, subject to ‖F (xk) + Jkp‖2 = ν2(2.5)
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for some ν ≥ 0. The first-order optimality conditions for (2.5) take the form(
σkp
1

)
= ξ

(
Jk

T (F (xk) + Jkp)
−2ν

)
(2.6)

for any p such that the residual ν = ‖Fk+Jkp‖ is nonzero2 and for some multiplier ξ.
Letting

Bk
def
= Jk

TJk, Fk
def
= F (xk), and gk

def
= JT

k Fk,(2.7)

the vector p solves (2.6) if p = p(λ) where λ > 0 and

(Bk + λI)p = −gk, λ = 2σk ‖Fk + Jkp‖.(2.8)

Note that if there is a p for which Fk + Jkp = 0, then this p satisfies (2.8) along with
λ = 0, and this case must be checked for before attempting to find another vector p̃
and a scalar λ̃ > 0 which solve (2.8).

In this paper, we consider a slightly more general model of the form

mk(p)
def
=

√
‖Fk + Jkp‖2 + μk‖p‖2 + σk‖p‖2(2.9)

for some scalar μk ≥ 0 and attempt to find a step p by (possibly approximately)
solving

min
p∈IRn

mk(p).(2.10)

If μk > 0 and Fk �= 0, the model mk(p) is continuously differentiable, but this is
not the case if μk = 0 since its first and second derivatives are both undefined when
Fk + Jkp = 0. However, it always enjoys the following desirable property.

Lemma 2.1. Suppose that σk > 0. Then the model mk(p) is strictly convex for
all μk ≥ 0.

Proof. Indeed, since mk(p) = φ(p) + σk‖p‖2, where

φ(p)
def
=

√
‖Fk + Jkp‖2 + μk‖p‖2,(2.11)

and the function σk‖p‖2 is strictly convex, mk(p) is strictly convex if φ(p) is convex.
But the functions g1(p) = ‖Fk + Jkp‖, g2(p) = √

μ
k
‖p‖ are convex and nonnegative

for all p ∈ R
n. It then follows that φ(p) is convex.

If J(x) is globally Lipschitz continuous, then (2.1) and the inequality m0
k(p) ≤

mk(p) again ensure that mk(p) consistently overestimates ‖F (x+ p)‖ if σk ≥ L.
The algorithm adopted to solve (1.1) then uses the model mk along the lines of

the adaptive cubic overestimation (ACO) method proposed by Cartis, Gould, and
Toint [3]. As in this method, an approximate solution of (2.10) is allowed, in the
sense that one accepts any step p such that the model (2.9) at p produces a value of
the model smaller than that achieved by the Cauchy point given by

pck = −αkgk, αk = argmin
α≥0

mk(−αgk),(2.12)

2If Fk + Jkp = 0, the linear independence constraint qualification (LICQ) fails for (2.5) and the
first-order conditions (2.6) do not apply.
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with gk being given by (2.7). Observe that αk is uniquely defined in this last expression
since mk is strictly convex.

We may now state our algorithm more formally as Algorithm RER (2.1) which
follows. As is usual in trust-region methods, the iteration k will be called successful
if ρk ≥ η1 and unsuccessful otherwise.

It is important to note at this point that the denominator in (2.14) is always
strictly positive whenever the current iterate is not a first-order critical point (this is
proved in Lemma 3.2 below) and hence that the algorithm is well defined. Moreover,
this also ensures that the sequence of successive ‖F (xk)‖ is nonincreasing. For future
reference, we also state the following simple properties of Algorithm 2.1.

Algorithm 2.1. Regularized Euclidean residual (RER) algorithm

An initial point x0 and the constants μ0 ≥ 0, σ0 > 0, 1 > η2 > η1 > 0,
γ2 ≥ γ1 > 1, γ3 > 0, εg > 0, and εF > 0 are given.

For k = 0, 1, . . . until ‖gk‖ < εg or ‖F (xk)‖ < εF do

Step 1: Compute an approximate minimizer pk of mk(p) such that

mk(pk) ≤ mk(p
c
k),(2.13)

where pck is given in (2.12).

Step 2: Compute

ρk =
‖F (xk)‖ − ‖F (xk + pk)‖

‖F (xk)‖ −mk(pk)
.(2.14)

Step 3: Set

xk+1 =

{
xk + pk if ρk ≥ η1,
xk otherwise.

Step 4: Set

σk+1 ∈
⎧⎨
⎩

(0, σk] if ρk ≥ η2 (very successful),
[σk, γ1σk ) if η1 ≤ ρk < η2 (successful),
[γ1σk, γ2σk ) otherwise (unsuccessful).

(2.15)

Step 5: Set

μk+1 =

{
min(μk, γ3‖Fk+1‖) if ρk ≥ η1,
μk otherwise.

(2.16)

Lemma 2.2.

(i) The sequence {μk} is nonnegative, monotonically nonincreasing, and such that
μk ≤ min[μ0, γ3‖Fk‖]. As a consequence, the initial choice μ0 = 0 implies that
μk = 0 for all k, in which case mk(p) = m0

k(p) at every iteration.
(ii) If there exists a limit point x∗ of the sequence {xk} of iterates generated by

Algorithm RER such that F (x∗) = 0, then all limit points of {xk} are roots
of F (x) = 0.
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Proof. (ii) Since the sequence {‖Fk‖} is nonincreasing and bounded below, it
is convergent. Then the existence of a limit point x∗ such that F (x∗) = 0 implies
that all limit points share this property, and thus, every limit point of {xk} is a zero
of F .

Nesterov [12] also proposes a simpler dynamic update of the regularization pa-
rameter, which, in our notation, amounts to choosing η1 = η2 = 1, γ1 = γ2 = 2, and
σk+1 = 1

2σk whenever ρk ≥ 1. When the Jacobian is Lipschitz continuous, this strat-
egy may be proved to be efficient in the sense that it needs on average one increase in
σk for one decrease. A similar property holds for our present choices (see Theorem 6.1
in Cartis, Gould, and Toint [3]), and we believe that our greater flexibility (and, in
particular, the possibility to choose η1 to be a small positive constant) is important
for the practical efficiency of the algorithm.

3. Global convergence analysis. We first make note of a simple bounding
result, whose proof follows by inspection.

Lemma 3.1. For all α ∈ [0, 1], we have that 1
2α ≤ 1−√

1− α ≤ α.
In order to prove global convergence to first-order critical points, we first derive

an easy consequence of the fact that an iterate is not first-order critical.
Lemma 3.2. Assume that gk �= 0. Then, for μk ≥ 0,

Fk �= 0, 〈gk, (Bk + μkI)gk〉 > 0, and 〈pk, (Bk + μkI)pk〉 > 0(3.1)

and also that

mk(p
C

k) < ‖Fk‖.(3.2)

Proof. The first statement in (3.1) immediately results from our assumption
that gk = JT

k Fk �= 0, from which we also deduce that ‖Bk‖ = ‖JT
k Jk‖ > 0. Moreover,

JT
k Fk ∈ range(JT

k ) = null(Jk)
⊥ and thus Jkgk = JkJ

T
k Fk is nonzero. The first

inequality in (3.1) then results from the identity 〈gk, (Bk + μkI)gk〉 = ‖JkJT
k Fk‖2 +

μk‖gk‖2. We also observe that the inequality 〈∇xmk(0), gk〉 = ‖gk‖2/‖Fk‖ > 0
ensures that −gk is a descent direction for mk at 0 and thus that (3.2) follows from
(2.12). Finally, mk(pk) ≤ mk(p

C

k) < ‖Fk‖ because of (3.2) and (2.13). Thus Jkpk is
nonzero, and the last inequality of (3.1) follows from 〈pk, (Bk + μkI)pk〉 = ‖Jkpk‖2 +
μk‖pk‖2.

We now provide a lower bound on the decrease attained at the Cauchy step.
Lemma 3.3. Assume that gk �= 0. Then we have that

‖Fk‖ −mk(pk) ≥ ‖Fk‖ −mk(p
c
k) ≥

‖gk‖2
4‖Fk‖ min

[
1

2σk‖Fk‖ ,
1

‖Bk + μkI‖
]
,(3.3)

where we consider the Euclidean matrix norm.
Proof. For any α ≥ 0, we deduce from (2.9) and (2.11) that

mk(−αgk) = φ(−αgk) + σkα
2‖gk‖2 = ‖Fk‖

√
1− π(α) + σkα

2‖gk‖2,(3.4)

where

π(α) =
2α‖gk‖2 − α2gTk (Bk + μkI)gk

‖Fk‖2 ,

and the denominator of this last expression is nonzero because of Lemma 3.2. Trivially,
we have that 1− π(α) ≥ 0; moreover, π(α) > 0 for any α ∈ (0, ᾱ), where

ᾱ =
2‖gk‖2

gTk (Bk + μkI)gk
,
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which is also well defined for μk ≥ 0 because of Lemma 3.2. Choosing α ∈ (0, ᾱ), it
follows that 0 < π(α) ≤ 1. By Lemma 3.1, this implies that

√
1− π(α) ≤ 1−π(α)/2,

and (3.4) then yields that

mk(−αgk)− ‖Fk‖ ≤ ‖Fk‖
(
1− 2α‖gk‖2 − α2gTk (Bk + μkI)gk

2‖Fk‖2
)
+ σkα

2‖gk‖2 − ‖Fk‖

= − α

2‖Fk‖
[
2‖gk‖2 − αgTk (Bk + μkI)gk

]
+ σkα

2‖gk‖2

≤ α‖gk‖2
‖Fk‖

(
−1 +

α

2
‖Bk + μkI‖+ σkα‖Fk‖

)
.(3.5)

The right-hand side of the last inequality is negative for any α ∈ (0, α̂) with

α̂ =
2

‖Bk + μkI‖+ 2σk‖Fk‖ .

Note that ᾱ > α̂ as

ᾱ ≥ 2‖gk‖2
‖Bk + μkI‖‖gk‖2 >

2

‖Bk + μkI‖+ 2σk‖Fk‖ .

Now, introduce

α∗ =
1

2max(2σk‖Fk‖, ‖Bk + μkI‖) .(3.6)

Clearly, α∗ < α̂. Then, from (3.5), we obtain

mk(−α∗gk)− ‖Fk‖ ≤ α∗‖gk‖2
‖Fk‖

(
−1 +

α∗

2
‖Bk + μkI‖+ σkα

∗‖Fk‖
)

≤ α∗‖gk‖2
‖Fk‖

(
−1 +

1

2

)

= − ‖gk‖2
4‖Fk‖

1

max(2σk‖Fk‖, ‖Bk + μkI‖) ,

which completes the proof since mk(pk) ≤ mk(p
c
k) ≤ mk(−α∗gk) because of (2.12)

and (2.13).
Using a similar methodology, we now derive a bound on the step.
Lemma 3.4. Assume that gk �= 0. Then we have that

‖pk‖ ≤ 2‖gk‖
σk‖Fk‖ .(3.7)

Proof. The fact that mk(pk) < ‖Fk‖ gives that ‖pk‖ > 0, 〈gk, pk〉 ≤ 0, and

‖Fk‖
√
1− τk(pk) + σk‖pk‖2 < ‖Fk‖,(3.8)

where

τk(pk)
def
= −2〈gk, pk〉+ 〈pk, (Bk + μkI)pk〉

‖Fk‖2 =
2|〈gk, pk〉| − 〈pk, (Bk + μkI)pk〉

‖Fk‖2 ,(3.9)
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and also that 0 < τk(pk) ≤ 1. Note that τk(pk) is well defined because of Lemma 3.2.
Hence, we have that

σk‖pk‖2 < ‖Fk‖
[
1−

√
1− τk(pk)

]
≤ ‖Fk‖τk(pk) = 2|〈gk, pk〉| − 〈pk, (Bk + μkI)pk〉

‖Fk‖ ,

where we have used Lemma 3.1. This yields, using (3.1) and the Cauchy–Schwarz
inequality, that

σk‖Fk‖ ‖pk‖2 < 2|〈gk, pk〉| − 〈pk, (Bk + μkI)pk〉 ≤ 2|〈gk, pk〉| ≤ 2‖gk‖ ‖pk‖.(3.10)

Dividing both sides by ‖pk‖ then gives (3.7). To proceed in our analysis we make a
further assumption on the Jacobian of F (x).

Assumption 3.1. Let {xk} be the sequence generated by Algorithm RER. Then
there exists a positive constant κJ such that, for all k ≥ 0 and all x ∈ [xk, xk + pk],

‖J(x)‖ ≤ κJ.(3.11)

Note that the monotonic nature of the sequence {‖Fk‖} implies that, for all k,

‖Fk‖ ≤ ‖F0‖.(3.12)

We then immediately deduce from (3.11) and Lemma 2.2 that, for k ≥ 0,

‖Bk + μkI‖ ≤ κ2J + γ3‖F0‖ def
= κD.(3.13)

Another consequence of (3.11) is that in the conditions of Lemma 3.4, (3.7) implies

‖pk‖ ≤ 2κJ

σk
, k ≥ 0.(3.14)

Next we give a bound on the error between the objective function and the model at
the new candidate iterate.

Lemma 3.5. Suppose that F : Rn �→ R
m is continuously differentiable. Then, for

k ≥ 0,

‖F (xk + pk)‖ −mk(pk) ≤ ‖pk‖
∫ 1

0

‖J(xk + tpk)− Jk‖ dt− σk‖pk‖2.(3.15)

Furthermore, if Assumption 3.1 holds, then

‖F (xk + pk)‖ −mk(pk) ≤ 2κJ

σk

∫ 1

0

‖J(xk + tpk)− Jk‖ dt, k ≥ 0.(3.16)

Proof. The mean value theorem implies that

F (xk + pk) = F (xk) + Jkpk +

∫ 1

0

[
J(xk + tpk)− Jk

]
pk dt,

which further gives that

‖F (xk + pk)‖ ≤ ‖Fk + Jkpk‖+ ‖pk‖
∫ 1

0

‖J(xk + tpk)− Jk‖ dt.
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Therefore, using (2.11) and the inequality
√
a2 + b2 ≥ a for all a, b ≥ 0, we obtain

that

‖F (xk + pk)‖ −mk(pk) = ‖F (xk + pk)‖ − φ(pk)− σk‖pk‖2

≤ ‖Fk + Jkpk‖ − φ(pk) + ‖pk‖
∫ 1

0

‖J(xk + tpk)− Jk‖ dt
−σk‖pk‖2

≤ ‖pk‖
∫ 1

0

‖J(xk + tpk)− Jk‖ dt− σk‖pk‖2,

as desired. The bound (3.16) now follows from (3.14) and (3.15).
Next we show that provided there are only finitely many successful iterations, all

later iterates are first-order critical.
Theorem 3.6. Let F : Rn �→ R

m be continuously differentiable. Suppose that
Assumption 3.1 holds and that there are only finitely many successful or very successful
iterations. Then xk = x∗ for all sufficiently large k and g(x∗) = 0.

Proof. After the last successful iterate is computed, indexed by say k0, the con-

struction of the algorithm implies that xk0+1 = xk0+i
def
= x∗, for all i ≥ 1. Since all it-

erations k ≥ k0+1 are unsuccessful, the updating rule (2.15) implies that σk+1 ≥ γ1σk,
with γ1 > 1, for all k ≥ k0 + 1, and so,

σk → +∞, as k → ∞.(3.17)

If ‖gk0+1‖ > 0, then ‖gk‖ = ‖gk0+1‖ def
= ε > 0 for all k ≥ k0 + 1. It now follows from

(3.3), (3.12), and (3.13) that

‖Fk‖ −mk(pk) ≥ ε2

8‖F0‖2 min

{
1

σk
,
2‖F0‖
κD

}
, k ≥ k0 + 1,

and so, as (3.17) implies 1/σk → 0, we have

‖Fk‖ −mk(pk) ≥ ε2

8‖F0‖2σk for all k ≥ k0 + 1 sufficiently large.(3.18)

This, (2.14), and (3.16) imply

0 ≤ 1− ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≤ 16κJ‖F0‖2ε−2

∫ 1

0

‖J(xk + tpk)− Jk‖ dt

for all k ≥ k0 + 1 sufficiently large; the first inequality above holds, since ρk ≥ 1
implies that k is very successful, which contradicts that k ≥ k0 + 1 is unsuccessful.
Note that xk + tpk = x∗ + tpk for all k ≥ k0 + 1 and that due to (3.14), (3.17), and
t ∈ [0, 1], we have x∗ + tpk → x∗ as k → ∞. Since Jk = J∗, k ≥ k0 + 1, and J is
continuous, we now conclude that

‖J(xk + tpk)− Jk‖ → 0, k → ∞, t ∈ [0, 1],

and so, ρk → 1 as k → ∞. This implies that for all k sufficiently large, ρk ≥ η2
and thus k is very successful. This contradicts that k ≥ k0 + 1 is unsuccessful. Thus
gk0+1 = g∗ = 0.

The following theorem states that at least one limit point of the sequence {xk} is
a stationary point of problem (1.1).
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Theorem 3.7. Assume F : Rn �→ R
m is continuously differentiable and that

Assumption 3.1 holds. Then

lim inf
k→∞

‖gk‖ = 0.(3.19)

Proof. Note that if gk = 0 for some k, then Algorithm RER terminates and
(3.19) holds (finitely). Also, if there are finitely many successful iterations, Theorem
3.6 implies the above. Thus without loss of generality, we may assume that gk �= 0
for all k and that there are infinitely many successful iterations, and let

S = {k ≥ 0 | iteration k is successful or very successful}.
To show that {‖gk‖} is not bounded away from zero, let us assume the contrary;
namely, that there exists ε > 0 such that

‖gk‖ ≥ ε for all k ≥ 0.(3.20)

Let us first prove that (3.20) implies that

∞∑
k∈S

1

σk
< +∞.(3.21)

It follows from (2.14), (2.15), (3.3), and (3.20) that

‖Fk‖ − ‖Fk+1‖ ≥ η1
ε2

4‖Fk‖ min

{
1

2σk‖Fk‖ ,
1

‖Bk + μkI‖
}
, k ∈ S,

and furthermore, from (3.12) and (3.13), that

‖Fk‖ − ‖Fk+1‖ ≥ η1ε
2

8‖F0‖2 min

{
1

σk
,
2‖F0‖
κD

}
, k ∈ S.(3.22)

Since {‖Fk‖} is bounded below and monotonically nonincreasing, it is convergent,
and hence, the minimum in the right-hand side of (3.22) will be attained at 1/σk as
the left-hand side of (3.22) converges to zero. Thus we have

‖Fk‖ − ‖Fk+1‖ ≥ c0
σk

for k ∈ S sufficiently large,

where c0
def
= η1ε

2/(8‖F0‖2), which summed up over all k ≥ 0 sufficiently large—larger
than some k0—gives

‖Fk0‖ − lim
k→∞

‖Fk‖ ≥ c0

∞∑
k∈S,k=k0

1

σk
,

and so, since {‖Fk‖} is convergent, (3.21) holds.
Next we estimate the ratio ρk in (2.14). For its denominator, note that (3.21)

implies

1/σk → 0, k ∈ S, k → ∞.(3.23)

Thus (3.3), (3.12), (3.13), and (3.20) imply, similarly to (3.18), that

‖Fk‖ −mk(pk) ≥ ε2

8‖F0‖2σk for all k ∈ S sufficiently large.(3.24)
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It follows from (2.14), (3.16), and (3.24) that

1− ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≤ 16κJ‖F0‖2ε−2

∫ 1

0

‖J(xk + tpk)− Jk‖ dt(3.25)

for all k ∈ S sufficiently large. Now let us argue that the sequence of iterates {xk},
k ≥ 0, is a Cauchy sequence and hence convergent. The construction of the algorithm,
(3.14), and (3.21) imply

‖xk+l − xk‖ ≤
k+l−1∑
i=k

‖xi+1 − xi‖ =
k+l−1∑
i=k,i∈S

‖pi‖ ≤ 2κJ

k+l−1∑
i=k,i∈S

1

σi
→ 0 as k → ∞,

and hence, {xk} converges to some x̃. Furthermore, ‖xk + tpk− x̃‖ ≤ ‖xk − x̃‖+ ‖pk‖
for all t ∈ [0, 1]. Also, (3.14) and (3.23) imply that ‖pk‖ → 0, k ∈ S, k → ∞. Thus

xk + tpk → x̃, k ∈ S, k → ∞ for all t ∈ [0, 1],

and we conclude

‖J(xk+tpk)−Jk‖≤‖J(xk+tpk)−J(x̃)‖+‖Jk−J(x̃)‖→0, k ∈ S, k → ∞ ∀t ∈ [0, 1],

which implies, together with (3.25), that either ρk ≥ 1 or ρk → 1, k ∈ S, k → ∞.
Both these conditions imply that k is a very successful iteration for k ∈ S sufficiently
large, which together with (2.15), gives that σk+1 ≤ σk, k ∈ S sufficiently large. Now,
if all k belong to S for k sufficiently large (i.e., there are no unsuccessful iterations
for k sufficiently large), then the latter inequality contradicts (3.23), and so (3.20)
cannot hold. Otherwise, recalling that we assumed S to be infinite (which implies not
all iterations can be consecutively unsuccessful for all k sufficiently large), let {ki}
denote an (infinite) subsequence of very successful iterations such that {ki − 1} is
unsuccessful for all i (since all k ∈ S are very successful for all k sufficiently large,
without loss of generality, we can ignore successful iterates; also, if such a subsequence
{ki} does not exist, then we are in the previous case of all iterates being very successful
for all k sufficiently large). Then, from (2.15), we have σki ≤ γ2σki−1 for all i, which
together with (3.23), implies that

1/σki−1 → 0, i→ ∞.(3.26)

It follows that the inequality in (3.24) holds for k replaced by ki−1 for all i sufficiently
large. Hence, (3.25) holds for ki − 1 for all i sufficiently large. Further, (3.14) and
(3.26) imply ‖pki−1‖ → 0, i → ∞, and thus, since xk → x̃, k → ∞, we have
xki−1 + tpki−1 → x̃, i → ∞. As above, we can now conclude that either ρki−1 ≥ 1
or ρki−1 → 1, i → ∞. But this implies that ki − 1 is a very successful iteration for
all i sufficiently large. This contradicts our assumption that ki − 1 is an unsuccessful
iteration for all i. Thus all iterations are very successful for sufficiently large k, a case
which we have already addressed.

Note that Theorems 3.6 and 3.7 only required Jk to be bounded above; the bound
(3.11), however, will be needed next.

To be able to show that the whole sequence {gk} converges to zero, we employ
the additional assumption below.

Assumption 3.2. The Jacobian J is uniformly continuous on the sequence of it-
erates {xk}; i.e.,

‖J(xti)− J(xli)‖ → 0, whenever ‖xti − xli‖ → 0, i→ ∞,(3.27)

where {xti} and {xli} are subsequences of {xk}.
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Clearly, Assumption 3.2 is satisfied if J is uniformly continuous on R
n; it is also

satisfied if J is Lipschitz continuous on R
n.

The next theorem states that all limit points of the sequence {xk} are stationary
points of problem (1.1). It also indicates a case where such limit points solve the
problem of finding a root of F (x) = 0.

Theorem 3.8. Let F : Rn �→ R
m be continuously differentiable and suppose that

Assumptions 3.1 and 3.2 hold. Then

lim
k→∞

‖gk‖ = 0.(3.28)

Furthermore, if m ≤ n and there exists a limit point x∗ of the sequence {xk} of iterates
generated by Algorithm RER such that F (x∗) = 0 and J(x∗) is of full rank, then all
limit points of {xk} are roots of F (x) = 0.

Proof. To prove (3.28), assume that there exists an infinite subsequence {ti} ⊂ S
such that

‖gti‖ ≥ 2ε for all i(3.29)

for some ε > 0. By (3.19), for each ti there is a first successful iteration li > ti such
that ‖gli‖ < ε. Thus {li} ⊆ S and

‖gk‖ ≥ ε, ti ≤ k < li, and ‖gli‖ < ε.(3.30)

Letting K = {k ∈ S | ti ≤ k < li}, we observe that this index subset is also infinite.
Moreover, (2.14), (3.3), (3.12), (3.13), and (3.7) imply that, for k ∈ K,

‖Fk‖ − ‖Fk+1‖ ≥ η1ε

16‖F0‖ min

[
2‖gk‖
σk‖Fk‖ ,

4ε

κD

]
≥ η1ε

16‖F0‖ min

[
‖pk‖, 4ε

κD

]
.(3.31)

The sequence {‖Fk‖} is monotonically nonincreasing and bounded below; hence, it
converges, and so, the left-hand side of (3.31) converges to zero, implying that

‖pk‖ → 0, k ∈ K, k → ∞,

on the right-hand side of (3.31). Thus (3.31) becomes

‖Fk‖ − ‖Fk+1‖ ≥ κg‖pk‖ for all ti ≤ k < li, k ∈ S, i sufficiently large,(3.32)

where κg

def
= η1ε/(16‖F0‖). Summing up (3.32) and using xk+1 = xk + pk gives

‖Fti‖ − ‖Fli‖ ≥ κg

li−1∑
k=ti,k∈S

‖pk‖ = κg

li−1∑
k=ti

‖xk+1 − xk‖ ≥ ‖xti − xli‖(3.33)

for all i sufficiently large. Again, using that {‖Fk‖} is convergent, the left-hand side
of (3.33) converges to zero, and thus,

li−1∑
k=ti,k∈S

‖pk‖ → 0 and ‖xti − xli‖ → 0 as i→ ∞.(3.34)

We now show that the second limit in (3.34) implies that

‖gti − gli‖ → 0 as i→ ∞.(3.35)
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We have

‖gti − gli‖ ≤ ‖JT
ti ‖ · ‖Fti − Fli‖+ ‖Fli‖ · ‖Jti − Jli‖ for all i.

Recalling (3.11), (3.12), and (3.27), (3.35) holds provided ‖Fti −Fli‖ → 0. To see the
latter, employ Taylor’s theorem and (3.11) to get

‖Fti − Fli‖ ≤
li−1∑

k=ti,k∈S
‖Fk − Fk+1‖ ≤ κJ

li−1∑
k=ti,k∈S

‖pk‖,

whose right-hand side tends to zero due to (3.34). This proves (3.35). We have now
reached a contradiction since (3.29) and (3.30) imply ‖gti − gli‖ ≥ ‖gti‖ − ‖gli‖ ≥ ε.
Hence (3.29) cannot hold, and we conclude that (3.28) must hold.

Finally, assume that {xkj} converges to x∗ with J(x∗) being of full rank and
m ≤ n. Then (3.28) ensures that ‖Fkj‖ converges to zero because the singular values
of Jkj must remain uniformly bounded away from zero by continuity (for j large
enough). We may now conclude our proof by using Lemma 2.2(ii).

Note that roots of F (x) = 0 must be second-order critical points of problem (1.1);
our last theorem may then be interpreted as guaranteeing convergence to such points
if the Jacobian remains uniformly full-rank over the iterates. Of course, a guarantee
of convergence to second-order points that are not roots of F cannot be given in
the framework of the present first-order Gauss–Newton-like method, where the model
ignores all second-derivative terms ∇xxFi(x).

Note that Theorem 3.8 still holds if we require both Jk to be bounded above and
J to be uniformly continuous on the line segments in between successful iterates.

Theorems 3.6, 3.7, and 3.8 extend results concerning the convergence of
trust-region methods given in Moré [10]; see also Thomas [19].

4. Beyond the Cauchy point. In practice, more model reduction is sought
than that achieved at the Cauchy step, with the objective of improving the speed
of convergence. We thus need to investigate the properties of the model further and
to describe how a better step can be computed before stating improved convergence
results.

4.1. The model and its minimizer. In this section we characterize the mini-
mizer of the model mk(p).

Lemma 4.1. Let F : R
n �→ R

m be continuously differentiable, and assume
‖gk‖ �= 0.

(i) If the vector p∗k is the solution of (2.10), then there is a nonnegative λ∗k such
that (p∗k, λ

∗
k) solves

(Bk + λI)p = −gk,(4.1)

λ = μk + 2σkφ(p),(4.2)

where φ(p) is given in (2.11).
(ii) If μk > 0, then there exists a unique solution (p∗k, λ

∗
k) of (4.1) and (4.2), and

p∗k solves (2.10).
(iii) If μk = 0 and there exists a solution (p∗k, λ

∗
k) of (4.1) and (4.2) with λ∗k >

0, then p∗k solves (2.10). Otherwise, the solution of (2.10) is given by the
minimum norm solution of the linear system Bkp = −gk.
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Proof. (i) If p∗k solves (2.10) and μk = 0, then (4.1) and (4.2) follow from (2.8).
On the other hand, if μk > 0, then φ(p) is positive, mk(p) is differentiable for any p,
and the gradient ∇mk(p) has the form

∇mk(p) =
gk +Bkp+ μkp

φ(p)
+ 2σkp.(4.3)

Thus, ∇mk(p) vanishes when (4.1) and (4.2) are satisfied.
As ∇mk(p

∗
k) = 0, it follows that p∗k solves (4.1) and (4.2) along with

λ∗k = μk + 2σkφ(p
∗
k).(4.4)

(ii) If μk > 0, as mk(p) is differentiable for any p, it follows that a solution
(p∗k, λ

∗
k) of (4.1) and (4.2) satisfies

∇mk(p
∗
k) = 0.

Then the strict convexity of mk(p) implies that p∗k solves (2.10) and (p∗k, λ
∗
k) is the

unique solution of (4.1) and (4.2).
(iii) Let μk = 0. We recall that the first-order conditions (2.6) hold for any p

such that ν = ‖Jkp + Fk‖ �= 0. Then, if there exist p∗k and λ∗k > 0 satisfying (4.1)
and (4.2), p∗k solves (2.6) with ν �= 0, and this implies that p∗k solves (2.10). On
the other hand, if all the solutions (p∗k, λ

∗
k) of (4.1) and (4.2) are such that λ∗k = 0,

then p∗k satisfies Jkp
∗
k = −Fk. This implies that there is no solution of the first-

order conditions and LICQ must fail. Thus ν = 0 in (2.5), and the minimizer p∗k
satisfies Jkp

∗
k = −Fk. Since mk(p) = σk‖pk‖2 for all p such that Jkp = −Fk,

we can conclude that the solution p∗k of (2.10) is the minimum norm solution to
Bkp = −gk.

Next we let p(λ) be the minimum norm solution of (4.1) for a given λ ≥ 0 and
p∗k = p(λ∗k), the minimum of mk(p). The following lemma is an intermediate result
toward proving an upper bound on the scalar λ∗k.

Lemma 4.2. Assume ‖gk‖ �= 0, and let p(λ) be the minimum norm solution of
(4.1) with λ ≥ 0. Assume furthermore that Jk is of rank � and its singular-value
decomposition is given by UkΣkV

T
k , where Σk = diag(ς1, . . . , ςν), with ν = min(m,n).

Then, denoting r = UT
k Fk, we have that

‖p(λ)‖2 =
�∑

i=1

ς2i r
2
i

(ς2i + λ)2
and ‖Fk + Jkp(λ)‖2 =

�∑
i=1

λ2r2i
(ς2i + λ)2

+
m∑

i=�+1

r2i .(4.5)

Proof. (See also Lemmas 2.2 and 4.1 in Cartis, Gould, and Toint [4].) The defining
equation (4.1) and the singular-value decomposition of Jk give that

p(λ) = −Vk(ΣT
k Σk + λI)+ΣT

k r,

where the superscript + denotes the Moore–Penrose generalized inverse. Taking the
squared norm of this expression then yields the first part of (4.5). We also deduce
that

Fk + Jkp(λ) = Uk

(
r − Σk(Σ

T
kΣk + λI)+ΣT

k r
)
,

whose squared norm then gives the second part of (4.5).
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Lemma 4.3. Assume ‖gk‖ �= 0, and let p(λ) be the minimum norm solution of
(4.1) with λ ≥ 0. Then the function φ(p(λ)) is monotonically increasing in (μk,+∞)
and

φ(p(λ)) ≤ ‖Fk‖.(4.6)

Moreover, if p∗k = p(λ∗k) is the minimizer of mk(p), then

λ∗k ∈ [μk, μk + 2σk‖Fk‖ ].(4.7)

Proof. Using (2.11) and (4.5), we deduce that

φ(p(λ)) =

√√√√ �∑
i=1

(λ2 + μkς2i )

(λ + ς2i )
2
r2i +

m∑
i=�+1

r2i(4.8)

and

φ′(p(λ)) =
1

φ(p(λ))

�∑
i=1

(λ − μk)ς
2
i

(λ+ ς2i )
3
r2i .

Thus φ(p(λ)) is monotonically increasing in (μk,+∞). Moreover, we deduce from
(4.8) that

lim
λ→∞

φ(p(λ)) =

√√√√ m∑
i=1

r2i = ‖Fk‖,(4.9)

and we conclude that (4.6) holds. Finally, (4.7) trivially follows from (4.2) and
(4.6).

Note that if φ(p(λ∗k)) > 0, then it follows from (4.2) that λ∗k > 0; this is the case
whenever μk > 0.

4.2. Computing the trial step using factorizations. We now consider tools
for computing an approximate minimizer pk of the model mk (see Step 1 of Algorithm
RER). In practice, we look for a step pk satisfying the sufficient decrease condition
(2.13) and such that

pk = p(λk), (Bk + λkI)pk = −gk,(4.10)

where λk is an approximation to λ∗k in (4.4). Our procedure is based on the observation
that the optimal scalar λ∗k solves the so-called secular equation given in (4.2); i.e.,

ρ(λ) = λ− μk − 2σkφ(p(λ)) = 0.(4.11)

In what follows, we suppose that ρ(λ) admits a positive root, and we explore ways
to solve (4.11) by root-finding methods and propose alternative one-dimensional non-
linear equations in the variable λ. It is easy to see that ρ′(λ) may change sign in
(μk,+∞), while ζ(λ) in the equation

ζ(λ)
def
= (λ− μk)

2 − 4σ2
k(φ(p(λ)))

2 = 0

is increasing for λ ∈ [λ∗k,+∞) but is not guaranteed to be convex. Therefore, applying
Newton’s method to these nonlinear equations safely needs an accurate initial guess.
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As an alternative to the secular equation (4.11), we consider the problem of finding
the positive root of the function −ρ(λ)/λ; i.e.,

ψ(λ) = 2σk
φ(p(λ))

λ
+
μk

λ
− 1 = 0.(4.12)

The following result establishes desirable properties of this formulation.
Lemma 4.4. The function ψ(λ) is convex and strictly decreasing in (μk,+∞), and

the Newton method applied to (4.12) will converge globally and monotonically to the
positive root λ∗k of (4.2) for any initial guess λ(0) ∈ (μk, λ

∗
k). The secant method has

the same properties for any initial guesses λ(0), λ(1) such that μk < λ(0) < λ(1) ≤ λ∗k.
Proof. By (4.5) and a result by Boyd and Vandenberghe [1, p. 87], we verify

that the functions of λ given by

‖Fk + Jkp(λ)‖
λ

=

√√√√ �∑
i=1

(
ri

ς2i + λ

)2

+
m∑

i=�+1

(ri
λ

)2

and

‖p(λ)‖ =

√√√√ �∑
i=1

(
ςiri
ς2i + λ

)2

are convex and nonnegative on (μk,+∞). (See also Lemma 4.1 in Cartis, Gould, and
Toint [4] for the case where μk = 0.) Moreover,

(‖p(λ)‖)′ = − 1

‖p(λ)‖
�∑

i=1

ς2i r
2
i

(ς2i + λ)3
< 0,

and hence ‖p(λ)‖ is decreasing. As a consequence,
√
μk‖p(λ)‖/λ is also convex and

nonnegative. Applying again the cited result by Boyd and Vandenberghe [1, p. 87],
we deduce that

φ(p(λ))

λ
=

√(‖Fk + Jkp(λ)‖
λ

)2

+

(√
μk‖p(λ)‖
λ

)2

is convex and the convexity of μk/λ finally ensures that of ψ(λ).
Now, since ψ(λ) > −1 for all λ ∈ (μk,∞) and has a horizontal asymptote at −1

for λ → ∞, we deduce that ψ(λ) must be strictly decreasing in (μk,∞). Thus λ∗k
(whose existence is assumed) is the unique positive root of (4.12), and the convergence
properties of both the Newton method and the secant method applied to (4.12) follow
from Lemma A.1 in Cartis, Gould, and Toint [4].

In order to apply the Newton method to (4.12), we need

ψ′(λ) = −2σk
λ2

φ(p(λ)) +
2σk
λ
φ′(p(λ)) − μk

λ2
.(4.13)

Differentiating (4.1) with respect to λ, we get

(Bk + λI)∇λp(λ) + p(λ) = 0,(4.14)
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where ∇λp(λ) is the gradient of p(λ). Furthermore, by using (4.1), we obtain that

φ′(p(λ)) =
2(Bkp(λ) + gk)

T∇λp(λ) + 2μkp(λ)
T∇λp(λ)

2φ(p(λ))

=
(μk − λ)p(λ)T∇λp(λ)

φ(p(λ))

=
(λ− μk)p(λ)

T (Bk + λI)−1p(λ)

φ(p(λ))
.

If the Cholesky factorization Bk + λI = RTR is available, then ψ′(λ) takes the form

ψ′(λ) = −2σk
λ2

φ(p(λ)) +
2σk(λ− μk)‖R−T p(λ)‖2

λφ(p(λ))
− μk

λ2
,(4.15)

and we have all the necessary ingredients for computing the Newton method for (4.12).
We also observe that, since ψ(λ) is convex in (μk,+∞), a Newton step from an initial
λ(0) with ψ(λ(0)) < 0 will underestimate the root λ∗k and a suitable value between μk

and λ∗k can therefore always be found, possibly by bisection. The complete strategy
then gives Algorithm 4.1.

Algorithm 4.1. The Newton method for (4.12) using the Cholesky

factorization

An initial λ(0) > μk is given.

For � = 0, 1, . . . until convergence do

1. Compute Bk + λ(�)I = RTR .

2. Solve RTRp(λ(�)) = −gk.

3. Solve RT z(λ(�)) = p(λ(�)).

4. Compute ψ(λ(�)) and ψ′(λ(�)) given in (4.12) and (4.15).

5. Set λ̄(�) = λ(�) − ψ(λ(�))

ψ′(λ(�))
.

6. If λ̄(�) > μk, set λ
(�+1) = λ̄(�). Otherwise, set λ(�+1) = 1

2 (μk + λ(�)).

Practical versions of the above algorithm should not iterate until convergence to
λ∗k is obtained with high accuracy but return an approximate solution to λ∗k, producing
an approximate step pk. In practice, Algorithm 4.1 must iterate until

λk ∈ (μk, λ
∗
k](4.16)

and condition (2.13) is met. Unfortunately, this requires the computation of pck. Note
that because

mk(−αgk) = φ(−αgk) + σkα
2‖gk‖2

=
√
‖Fk‖2 − 2α‖gk‖2 + α2gTk (Bk + μkI)gk + σkα

2‖gk‖2,
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it follows that pC

k = −αC

kgk, where α
C

k ∈ (0, ‖gk‖2/gTk (Bk + μkI)gk) is the unique
solution to the scalar nonlinear equation

2σk‖gk‖2 αkφ(−αkgk) = ‖gk‖2 − αkg
T
k (Bk + μkI)gk.(4.17)

In practice, αC

k can be computed, solving this equation by a root-finding method, at
the cost of computing the Hessian-vector product in the last term of (4.17). Note
also that (4.16) holds as soon as bisection stops in Algorithm 4.1, and this may be
encouraged by choosing λ(0) very close to μk.

4.2.1. Local convergence analysis. We may now complete our convergence
results under the condition that an approximate model minimizer is computed.

Assumption 4.1. The step pk is computed to satisfy (2.13), (4.10), and (4.16).
More specifically, we are able to prove that, when {xk} admits a limit point x∗ such
that F (x∗) = 0 and J(x∗) is of full rank, then the iterations must be very successful
for k sufficiently large, irrespective of the relative values of m and n. The following
assumption is needed for the latter to hold.

Assumption 4.2. Let {xk} be the sequence generated by Algorithm RER. Then
there exists a constant κS > 0 such that, if ‖x− xk‖ ≤ κS and x ∈ [xk, xk + pk], then

‖J(x)− J(xk)‖ ≤ 2κL‖x− xk‖ for all k.(4.18)

Clearly, (4.18) is automatically satisfied when J(x) is globally Lipschitz continuous
over R

n. Note that if Assumption 4.2 replaces Assumption 3.2 in the conditions of
Theorem 3.8, then the latter still holds. To see this, note that the first limit in (3.27)
for the subsequences of interest in the proof of Theorem 3.8 is implied by (4.18) and
the first limit in (3.34).

We first prove that the error between the objective function and the model de-
creases quickly enough with the step length.

Lemma 4.5. Assume that F : Rn �→ R
m is continuously differentiable and that

Assumption 4.2 holds. If ‖pk‖ ≤ κS, then

‖F (xk + pk)‖ −mk(pk) ≤ (κL − σk)‖pk‖2.(4.19)

Proof. The bound (4.19) follows from (3.15) since (4.18) applies for x = xk + tpk
due to ‖pk‖ ≤ κS.

We now prove that the iteration must be very successful when σk is sufficiently
large.

Lemma 4.6. Let F : Rn �→ R
m be continuously differentiable, and suppose that

Assumptions 3.1 and 4.2 hold. Assume that gk �= 0 and that

σk ≥ max

[
κL,

2κJ

κS

]
.(4.20)

Then ρk ≥ 1, iteration k is very successful, and σk+1 ≤ σk.
Proof. Note that (3.14) and the second term in the maximum in (4.20) imply

that

‖pk‖ ≤ 2κJ

σk
≤ κS.

We can now apply Lemma 4.5 and deduce that (4.19) holds. But the right-hand side
of this inequality is nonpositive because of (4.20), and hence, since

1− ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
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and since ‖Fk‖ −mk(pk) > 0 by construction (also see (3.3)), we deduce that ρk ≥
1 > η2. The conclusion then follows from the mechanism of the algorithm.

The following lemma then shows that the sequence of parameters {σk} is bounded
above.

Lemma 4.7. Let F : R
n �→ R

m be continuously differentiable. Suppose that
Assumptions 3.1 and 4.2 hold and that gk �= 0 for all k. Then there exists a constant
σmax > 0 such that, for all k ≥ 0,

σk ≤ σmax.(4.21)

Proof. Note that for any k ≥ 0, we know from Lemma 4.6 that (4.20) implies
that σk+1 ≤ σk. Hence, applying the updating rule (2.15), the parameter σk cannot
be larger than γ2 times the right-hand side of (4.20). Since the initial value σ0 may
exceed this value, the bound on σk takes the form

σk ≤ max

[
γ2κL,

2γ2κJ

κS

, σ0

]
def
= σmax

The next lemma gives useful asymptotic bounds on quantities of interest.
Lemma 4.8. Let F : Rn �→ R

m be continuously differentiable. If x∗ is a limit
point of the sequence {xk} such that F (x∗) = 0 and J(x∗) is of full rank, then, for xk
sufficiently close to x∗,

‖Fk‖ ≤ θ‖xk − x∗‖,(4.22)

‖gk‖ ≤ ‖Jk‖ ‖Fk‖ ≤ θ‖Fk‖,(4.23)

where θ
def
= 2max[‖J(x∗)‖, ‖J(x∗)+‖] . If Assumption 4.1 holds in addition, then

‖pk‖ ≤ θ2‖gk‖ ≤ θ3‖Fk‖ ≤ θ4‖xk − x∗‖.(4.24)

Moreover, if Assumptions 3.1 and 4.2 hold, then

λk ≤ χ‖Fk‖,(4.25)

with χ
def
= γ3 + 2σmax, and iteration k is very successful.

Proof. Since J(x∗) is of full rank, we may choose ε to be a positive scalar such
that, for any xk ∈ S(x∗, ε), Jk is of full rank, ‖Jk‖ ≤ θ, and ‖Jk+‖ ≤ θ. Consequently,
‖B+

k ‖ ≤ θ2 for xk ∈ S(x∗, ε). For such an xk, we see that

‖Fk‖ ≤
∥∥∥∥F (x∗) +

∫ 1

0

[J(x∗ + t(xk − x∗))] (xk − x∗) dt
∥∥∥∥ ≤ θ‖xk − x∗‖,

which is (4.22). Using the definition of θ, we then have that

‖gk‖ ≤ ‖Jk‖ ‖Fk‖ ≤ θ‖Fk‖,
which is (4.23), and by (4.10) (as implied by Assumption 4.1), that

‖pk‖ ≤ ‖(Bk + λkI)
+‖ ‖gk‖ ≤ θ2‖gk‖ ≤ θ3‖Fk‖ ≤ θ4‖xk − x∗‖,

proving (4.24). Suppose now that Assumptions 3.1 and 4.2 hold, and reduce ε if
necessary to ensure that

‖Fk‖ ≤ min

[
1

2σmaxθ2
,
κS

θ3
,

1− η2
4κDκLθ4

]
(4.26)
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for all xk ∈ S(x∗, ε), where κS is given by Assumption 4.2. Then (4.16) (also implied
by Assumption 4.1), (4.7), and Lemmas 4.7 and 2.2 give that

λk ≤ λ∗k ≤ μk + 2σk‖Fk‖ ≤ χ‖Fk‖,
which is (4.25). Observing that (4.24) and (4.26) imply that ‖pk‖ ≤ κS, we may also
verify that

ρk = 1− ‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≥ 1− (κL − σk)‖pk‖2

‖Fk‖ −mk(pk)
≥ 1− κL‖pk‖2

‖Fk‖ −mk(pk)
,

where we used Lemma 4.5 to derive the first inequality. But the bound ‖B+
k ‖ ≤ θ2

ensures that the minimum singular value ofBk is larger or equal to 1/θ2 and, therefore,
because of (4.26), that

‖Bk + μkI‖ ≥ ‖Bk‖ ≥ 1

θ2
≥ 2σmax‖Fk‖ ≥ 2σk‖Fk‖.

As a consequence, the first term in the minimum of (3.3) is the largest, and we deduce,
using (3.13), that

‖Fk‖ −mk(p
c
k) ≥

‖gk‖2
4‖Fk‖‖Bk + μkI‖ ≥ ‖gk‖2

4κD‖Fk‖ .

Using this inequality, (2.13), and (4.24), we then obtain that

ρk ≥ 1− 4κDκL‖pk‖2
‖gk‖2 ‖Fk‖ ≥ 1− 4κDκLθ

4‖Fk‖;

i.e., ρk ≥ η2 because of (4.26).
We now prove that, ifm ≥ n and there exists a limit point x∗ such that F (x∗) = 0

and J(x∗) is of full rank, then x∗ is an isolated solution of F (x) = 0 and the complete
sequence {xk} converges to x∗.

Theorem 4.9. Let F : Rn �→ R
m be continuously differentiable, and suppose that

Assumption 4.1 holds and that m ≥ n. If x∗ is a limit point of the sequence {xk} such
that F (x∗) = 0 and J(x∗) is of full rank, then {xk} converges to x∗.

Proof. Since J(x∗) is of full rank n, J(x∗)+ J(x∗) = In. Thus, by continuity,
‖In−J(x∗)+J(x∗+t(x−x∗))‖ becomes arbitrarily small in a suitable neighborhood of
x∗. For any x sufficiently close to x∗ to ensure that ‖In−J(x∗)+J(x∗+ t(x−x∗))‖ ≤
1/2, the mean value theorem then yields that

‖J(x∗)+F (x)‖ =

∥∥∥∥(x− x∗)−
∫ 1

0

(
In − J(x∗)+J(x∗ + t(x− x∗))

)
(x− x∗) dt

∥∥∥∥ ,
≥

(
1−

∫ 1

0

1

2
dt

)
‖x− x∗‖.

Using this inequality, we then obtain that, for any such x,

‖F (x)‖ ≥ ‖J(x∗)+F (x)‖
‖J(x∗)+‖ ≥ 1

2‖J(x∗)+‖‖x− x∗‖,(4.27)

and we conclude that x∗ is an isolated limit point of the sequence {xk}. Consider now
a subsequence {xkj} converging to x∗. We may then apply (4.24) for j sufficiently large
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and deduce that ‖pkj‖ converges to zero. Using Lemma 4.10 in Moré and Sorensen
[11], we finally conclude that {xk} converges to x∗.

In the following theorem we consider the case where x∗ is an isolated solution of
the overdetermined (m ≥ n) system F (x) = 0, and we show that convergence is fast
in this case if one is ready to strengthen somewhat the assumptions on the Jacobian.

Theorem 4.10. Let F : Rn �→ R
m be continuously differentiable. Suppose that

m ≥ n and that Assumptions 3.1, 4.1, and 4.2 hold. Assume that x∗ is a limit point
of the sequence {xk} such that F (x∗) = 0 and J(x∗) is of full rank. Suppose moreover
that J(x) is Lipschitz continuous (with constant κ∗) in a neighborhood of x∗ if m > n.
Then {xk} converges to x∗ Q-quadratically.

Proof. From Theorem 4.9 we know that {xk} converges to x∗. Let ε, θ, and
χ be chosen as in Lemma 4.8 to ensure that (4.18) and (4.22)–(4.26) hold, which
ensure that iteration k is successful and that ‖pk‖ ≤ κS. By (4.27), we obtain, for
xk ∈ S(x∗, ε), that

‖xk + pk − x∗‖ ≤ 2θ‖F (xk + pk)‖
≤ 2θ(‖F (xk + pk)− Fk − Jkpk‖+ ‖Fk + Jkpk‖)
≤ 2θ(κL‖pk‖2 + ‖Fk + Jkpk‖).(4.28)

Because (4.24) gives that ‖pk‖ ≤ θ4‖xk − x∗‖, we only need to bound ‖Fk + Jkpk‖ to
prove Q-quadratic convergence.

Let Jk = UkΣkV
T
k = (Uk,1, Uk,2)ΣkV

T
k , where Uk,1 ∈ R

m×n, Uk,2 ∈ R
m×(m−n),

and Σk = diag(ς1, . . . , ςn). Then we have that

UT
k,1 = UT

k,1(J
T
k )+JT

k

because (JT
k )+JT

k is the orthogonal projection onto the range of Jk. As a consequence,
we may write that

‖UT
k,1(Fk + Jkpk)‖ = ‖UT

k,1

[
(JT

k )+(Bkpk + gk)
]‖.

If we substitute (4.10) in the right-hand side and use (4.22), (4.24), and (4.25), we
obtain that

‖UT
k,1(Fk + Jkpk)‖ ≤ χθ‖Fk‖ ‖pk‖ ≤ χθ6‖xk − x∗‖2.(4.29)

Moreover, if m > n, we verify easily that

‖UT
k,2(Fk + Jkpk)‖ = ‖UT

k,2Fk‖.(4.30)

We now bound this last quantity as in Fan and Yuan [7]. Specifically, let qk = −J+
k Fk,

in which case Jkqk = −JkJ+
k Fk = −Uk,1U

T
k,1Fk. Since qk minimizes ‖Fk + Jkp‖, we

obtain that

‖UT
k,2Fk‖ = ‖Uk,2U

T
k,2Fk‖

= ‖Fk + Jkqk‖
≤ ‖Fk + Jk(xk − x∗)‖
≤ κ∗‖xk − x∗‖2.

(4.31)

Combining together the triangle inequality and (4.29)–(4.31), we find that

‖Fk + Jkpk‖ ≤ ‖UT
k,1(Fk + Jkpk)‖ + ‖UT

k,2(Fk + Jkpk)‖ ≤ (χθ6 + κ∗)‖xk − x∗‖2,
which concludes the proof in view of (4.24) and (4.28).
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The final theorem in this section studies the local convergence for underdeter-
mined systems, that is, when m ≤ n. In this case, if x∗ is a limit point of the
sequence {xk} and J(x∗) is of full rank, then F (x∗) = 0, but in general x∗ is not an
isolated solution of F (x) = 0.

Theorem 4.11. Let F : Rn �→ R
m be continuously differentiable. Suppose that

m ≤ n and that Assumptions 3.1, 4.1, and 4.2 hold. If x∗ is a limit point of the
sequence {xk} and J(x∗) is of full rank (and thus F (x∗) = 0), then {xk} converges to
x∗ Q-quadratically.

Proof. Again let ε, θ, and χ be chosen as in Lemma 4.8 to ensure that (4.18) and
(4.22)–(4.26) hold, which ensure that iteration k is successful and that ‖pk‖ ≤ κS. If
necessary, reduce ε further to ensure that

θ3ε(χθ2 + κLθ
4) ≤ 1

2
.(4.32)

Let ψ be a positive scalar such that

ψ ≤ ε

1 + 2θ4
,(4.33)

and assume xk ∈ S(x∗, ψ) for some k ≥ k0, in which case (4.24) immediately gives
that

‖pk‖ ≤ θ4ψ.(4.34)

To ensure that the sequence {xk} is convergent, we need to show that it is a
Cauchy sequence. We achieve this objective by proving, by recurrence, that, if xk ∈
S(x∗, ψ), then

xk+� ∈ S(x∗, ε) and ‖pk+�+1‖ ≤ 1

2
‖pk+�‖(4.35)

for all � ≥ 0. Consider the case � = 0 first. Since (JT
k )+JT

k = Im, we deduce from
(4.10) and (4.25) that

‖Fk + Jkpk‖ ≤ ‖(JT
k )+‖ ‖Bkpk + gk‖ ≤ θ ‖Bkpk + gk‖ ≤ χθ ‖Fk‖ ‖pk‖.(4.36)

Thus using successively the triangle inequality, (4.34), and (4.33), we verify that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖+ ‖pk‖ ≤ (ψ + θ4ψ) ≤ ε;(4.37)

i.e., xk+1 ∈ S(x∗, ε). Then (4.24) yields that, for any such iterate,

‖pk+1‖ ≤ θ3‖Fk+1‖ = θ3‖F (xk + pk)‖,(4.38)

since iteration k is successful. As a consequence, we see that

‖pk+1‖ ≤ θ3‖Fk + Jkpk + (F (xk + pk)− Fk − Jkpk)‖
≤ θ3(χθ‖Fk‖+ κL‖pk‖) ‖pk‖,(4.39)

where we used (4.18) and (4.36). Now using (4.22), (4.24), (4.34), and the bound
ψ ≤ ε implied by (4.33), we have that, whenever xk+1 ∈ S(x∗, ε),

‖pk+1‖ ≤ θ3ε(χθ2 + κLθ
4) ‖pk‖ ≤ 1

2
‖pk‖,(4.40)
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where the last inequality results from (4.32). Hence, (4.35) holds for � = 0. Assume
now that (4.35) holds for iterations k+ j, j = 0, . . . , �− 1. Using this assumption, the
convergence of the geometric progression of factor 1

2 , and (4.34), we obtain that

‖xk+� − x∗‖ ≤ ψ +
�−1∑
j=0

‖pk+j‖ ≤ ψ +
�−1∑
j=0

(
1

2

)j

‖pk‖ ≤ ψ + 2 ‖pk‖ ≤ ψ + 2θ4ψ,

and hence, xk+� ∈ S(x∗, ε) because of (4.33). As for � = 0, we then use (4.34) and the
successful nature of iteration k+ � (itself implied by the inclusion xk+� ∈ S(x∗, ε)) to
deduce that

‖pk+�+1‖ ≤ θ3‖F (xk+� + pk+�)‖ ≤ θ3(χθ‖Fk+�‖+ κL‖pk+�‖) ‖pk+�‖.
But, by (4.24) and our recurrence assumption,

‖pk+�‖ ≤ θ4‖xk+� − x∗‖ ≤ θ4ε,

and thus, using (4.22), we deduce that

‖pk+�+1‖ ≤ θ3ε(χθ2 + κLθ
4) ‖pk+�‖ ≤ 1

2
‖pk+�‖,

which concludes our proof of (4.35). We may thus conclude from (4.34) and (4.35)
that, if xk ∈ S(x∗, ψ), the successive steps after k satisfy the inequalities

‖pk‖ ≤ θ4ψ and ‖pk+�+1‖ ≤ 1

2
‖pk+�‖, � = 0, 1, . . . .(4.41)

This in turn implies that {xk} is a Cauchy sequence and, as a consequence, that {xk}
converges. Since x∗ is a limit point of the sequence, we deduce that limk→∞ xk = x∗.

We finally show the Q-quadratic convergence rate by noting that, because of
(4.41),

‖xk+1 − x∗‖ ≤
∞∑

j=k+1

‖pj‖ ≤
∞∑
j=0

(
1

2

)j

‖pk+1‖ = 2 ‖pk+1‖.

But (4.39), (4.22), and (4.24) together imply that

‖pk+1‖ ≤ θ3(χθ2‖xk − x∗‖+ κLθ
4‖xk − x∗‖) θ4‖xk − x∗‖ = θ9(χ+ κLθ

2)‖xk − x∗‖2.
Combining these last two inequalities then completes the proof.

4.3. Computing the trial step in a subspace. If the factorization of Bk is
unavailable because of cost or memory limitations, an alternative approach to compute
a trial step consists in minimizing mk(p) over a sequence of nested Krylov subspaces
(see Cartis, Gould, and Toint [3, 4]). In each subspace a secular equation is solved and
the dimension of the subspace is progressively increased until the gradient of the model
is sufficiently small. Suitable strategies are then adopted to recover an approximate
solution at a low computational cost. The requirement to satisfy the Cauchy con-
dition (2.13) is then automatically fulfilled by including gk in each subspace, which
is obtained by initializing the Krylov sequence with that vector. Note, however,
that (4.10) no longer holds in this framework, making the analysis of section 4.2.1
inapplicable.
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Our development of this approach parallels that of Cartis, Gould, and Toint [4],
but is briefly restated here because it now includes the case where μk > 0 which was
not considered in this reference. Applying Golub–Kahan bidiagonalization algorithm
at iteration k, we get matrices Wj ∈ R

m×j , Qj ∈ R
n×j , and Cj ∈ R

(j+1)×j such that

JkQj =Wj+1Cj ,(4.42)

where QT
j Qj = I, WT

j Wj = I, and Cj is bidiagonal (note that this technique uses

Jk only, not JT
k Jk). Then a sequence of minimizers of mk(Qj y) in the expanding

subspaces p = Qj y, j = 1, 2, . . ., is sought. In fact, the solution to (2.10) reduces to

min
y∈IRj

mk(Qj y) =
√
‖Cjy − β1e1‖2 + μk‖y‖2 + σk‖y‖2,(4.43)

with β1 = ‖Fk‖. The minimizer yj to (4.43) is the vector yj = yj(λj) satisfying

(CT
j Cj + λI)y = β1C

T
j e1,(4.44)

λ = μk + 2σk

√
‖Cjy − β1e1‖2 + μk‖y‖2.(4.45)

Algorithm 4.1 may be used to solve (4.45) accurately. Nested subspaces are con-
structed for increasing j until pj = Qj yj satisfies

‖∇mk(p(λj))‖ ≤ ωk(4.46)

for an iteration-dependent tolerance ωk > 0, at which point the step pk is then taken
as the last computed pj . We now study properties of the sequence {xk} generated
using this approach.

Lemma 4.12. Let x∗ be such that F (x∗) = 0 and J(x∗) is of full rank. Suppose
moreover that J(x) is Lipschitz continuous (with constant κ∗) in a neighborhood of
x∗ if m > n. Then there exist constants χ, ε, and θ such that, if xk ∈ S(x∗, ε) and
ωk ≤ 1/(2θ), we have that

‖Fk + Jkpk‖ ≤ θ

1− θωk
(ωk

√
μk + λk)‖pk‖ if m ≤ n;(4.47)

‖Fk + Jkpk‖ ≤ θ

1− θωk

[
(ωk

√
μk + λk)‖pk‖+ κ∗‖xk − x∗‖2] if m > n;(4.48)

‖pk‖ ≤ ‖(Bk + λkI)
+‖ ‖gk‖ ≤ θ2 ‖gk‖ ≤ θ4‖xk − x∗‖.(4.49)

Moreover, if Assumptions 3.1 and 4.2 hold, then

λk ≤ χ‖Fk‖,(4.50)

with χ
def
= γ3 + 2σmax, and iteration k is very successful.

Proof. As above, let θ and ε be positive scalars such that for any xk ∈ S(x∗, ε),
Jk is of full rank, ‖Jk‖ ≤ θ, and ‖Jk+‖ ≤ θ. By (4.3) and (4.46), we have

‖(Bk + λkI)pk + gk‖ ≤ ωkφ(pk)

whenever ‖Fk + Jkpk‖ > 0, since this last inequality implies that φ(pk) > 0. Let
Jk = UkΣkV

T
k = (Uk,1, Uk,2)ΣkV

T
k , where Uk,1 ∈ R

m×ν , Uk,2 ∈ R
m×(m−ν), Σk =

diag(ς1, . . . , ςν), and ν = min(m,n) . We may then derive that

‖UT
k,1(Fk + Jkpk)‖ ≤ ‖(JT

k )+(Bkpk + gk)‖
≤ θ

(‖(Bk + λkI)pk + gk‖+ λk‖pk‖
)

≤ θ
(
ωkφ(pk) + λk‖pk‖

)
,
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and this inequality also obviously holds if ‖Fk+Jkpk‖ = 0. Then, using the inequality√
a+ b ≤ √

a+
√
b for a, b ≥ 0, we deduce that

‖UT
k,1(Fk + Jkpk)‖ ≤ θ

(
ωk‖Fk + Jkpk‖+ ωk

√
μk‖pk‖+ λk‖pk‖

)
.

If m ≤ n, since Uk,1 belongs to R
m×m, ‖UT

k,1(Fk + Jkpk)‖ = ‖Fk + Jkpk‖. Moreover,
we note that (4.31) remains valid whenever m > n. Thus, if ωk < 1/(2θ), we then
obtain (4.47) and (4.48). Regarding (4.49), note that, by (4.44),

‖pk‖ = ‖pj‖ = ‖yj‖ ≤ ‖(CT
j Cj + λI)−1‖ ‖β1CT

j e1‖(4.51)

and also that (4.42) gives the relations

CT
j Cj + λI = QT

j (Jk
T Jk + λI)Qj and β1C

T
j e1 = −QT

j gk.(4.52)

Now observe that the columns of Qj are by construction orthogonal to the nullspace

of Jk and hence the eigenvalues of QT
j (Jk

T Jk + λI)Qj are interlaced between the

nonzero eigenvalues of (Jk
T Jk + λI); they are therefore bounded above and below by

the largest and smallest nonzero eigenvalues of this last matrix. Using (4.51) with
(4.52), the definition of Bk = JT

k Jk, and this last observation, we then deduce that
(4.49) holds. Finally, suppose that Assumptions 3.1, 4.1, and 4.2 hold and consider
(4.50). By (4.45) and (4.52), we have that

λk = μk + 2σk

√
‖Cjyj − β1e1‖2 + μk‖yj‖2

= μk + 2σk

√
yTj C

T
j Cjyj + 2yTj Q

T
j gk + ‖Fk‖2 + μk‖yj‖2,

where yj satisfies (4.44). Using the singular-value decomposition of Cj , we deduce, as
in Lemma 4.3, that √

‖Cjyj(λ) − β1e1‖2 + μk‖yj(λ)‖2

is monotonically increasing as a function of λ and converges to ‖Fk‖ for λ going
to infinity, which then, together with the upper bound (4.21) on σk, yields (4.50).
The proof of the very successful nature of iteration k is identical to that given in
Lemma 4.8.

Following the lines of Theorem 4.10, we may now obtain the local convergence re-
sults corresponding to Theorems 4.10 and 4.11 for the case where the step is computed
in a subspace.

Theorem 4.13. Assume that m ≥ n and that x∗ is a limit point of the sequence
{xk} such that F (x∗) = 0 and J(x∗) is nonsingular. Assume also that Assumptions
3.1 and 4.2 hold. Suppose moreover that J(x) is Lipschitz continuous (with constant
κ∗) in a neighborhood of x∗ if m > n. Then, if the scalar ωk in (4.46) is such that
ωk ≤ κω

√‖Fk‖ for some κω > 0, the sequence {xk} converges to x∗ Q-quadratically.
Proof. The proof follows the same steps as those of Theorem 4.10, taking into

account that our assumptions on μk and ωk, the convergence of ‖Fk‖ to zero, and
(4.47) and (4.48) together yield that, for k large enough,

‖Fk + Jkpk‖ ≤ 2θ
[
(κω

√
γ3 ‖Fk‖+ λk)‖pk‖+ κ∗‖xk − x∗‖2]

≤ 2θ
[
(κω

√
γ3 θ‖xk − x∗‖+ χθ‖xk − x∗‖) θ2‖gk‖+ κ∗‖xk − x∗‖2]

≤ 2θ
[
θ5(κω

√
γ3 + χ) + κ∗

]‖xk − x∗‖2,

where we have used (4.22), (4.23), (4.49), and (4.50). Inserting this bound in (4.28)
then ensures the desired rate of convergence.
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Theorem 4.14. Let F : Rn �→ R
m be continuously differentiable. Suppose that

m ≤ n and that Assumptions 3.1 and 4.2 hold. If x∗ is a limit point of the sequence
{xk} and J(x∗) is of full rank (and thus F (x∗) = 0), then, if the scalar ωk in (4.46)
is such that ωk ≤ κω

√‖Fk‖ for some κω > 0, the sequence {xk} converges to x∗

Q-quadratically.
Proof. The proof parallels that of Theorem 4.11, where we first replace (4.36) by

the inequality

‖Fk + Jkpk‖ ≤ 2θ (κω
√
γ3 + χ) ‖Fk‖ ‖pk‖,

which follows, for k sufficiently large, from (4.47), our assumptions on μk and ωk, the
convergence of ‖Fk‖ to zero, and (4.50). After deriving (4.34) and (4.37), (4.38) now
results from (4.49) and the successful nature of iteration k. The rest of the proof then
follows that of Theorem 4.11 step by step, with (4.49) replacing (4.24) and (4.50)
replacing (4.25).

5. Numerical results. In this section we present some numerical results ob-
tained when solving nonlinear least-squares problems from the CUTEr collection with
Algorithm 2.1. All runs were performed using a Fortran 95 code on an Intel Xeon
3.4 GHz, 1 GB RAM. A key role in the performance of Algorithm RER is played
by the regularization parameter σk in Step 4. Here, σ0 = 1, and on very successful
iterations we set σk+1 = max(min(σk, ‖gk‖), εM ), where εM � 10−16 is the relative
machine precision. For other successful iterations, σk is left unchanged; while in case
of unsuccessful iterations, σk is doubled.

The approximate minimizer pk in Step 1 of Algorithm RER was computed mini-
mizingmk(p) over a sequence of nested Krylov subspaces. This computation is carried
out using the module L2RT (Cartis, Gould, and Toint [4]) from the GALAHAD library
(see Gould, Orban, and Toint [8]). The approximate minimizer pk satisfies the accu-
racy requirement (4.46) with

ωk = min(0.1, ‖∇mk(0)‖1/2)‖∇mk(0)‖.(5.1)

First we run Algorithm RER with μ0 = 0. Then the tests are repeated with μ0 = 10−4

and

μk+1 =

{
max[min(μk, 10

−3‖Fk+1‖), εM ] if ρk ≥ η1,
μk otherwise,

which corresponds to the choice γ3 = 10−3 in (2.16).
The RER method is compared with NNLSTR, a trust-region method which has

been implemented following the standard scheme (see Conn, Gould, and Toint [6], Al-
gorithm 6.1.1). In NNLSTR, the approximate solution pk of the trust-region problem
is computed using the module LSTR [4] from the GALAHAD library with the stopping
criterion (4.46) and the tolerance ωk defined by (5.1); note that the LSTR technique
is a first-order approach. When the solution of the trust-region subproblem lies on
the trust-region boundary, the Steihaug–Toint (ST) point is computed (Steihaug [18],
Toint [20]). We also assessed whether there is any gain in iterating beyond the ST
point in the solution of the trust-region subproblem. On very successful iterations,
the trust-region radius Δk+1 is set to max{Δk, 2‖pk‖}, whereas it is left unchanged
on successful iterations, and it is halved otherwise. The initial trust-region radius
is set to 1. The two variants of the NNLSTR code (with and without exploration
beyond the ST point) can therefore be considered as modern trust-region codes for
unconstrained optimization.
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Table 5.1

The columns contain the name of the problem, its dimensions, and the number of outer (Oiter)
and inner (Iiter) iterations performed.

Test NNLSTR with NNLSTR beyond RER with RER with
problem n m ST point ST point µ0 = 0 µ0 = 10−4

Oiter Iiter Oiter Iiter Oiter Iiter Oiter Iiter

ARGTRIG 200 200 9 931 9 931 9 875 9 866
ARWHDNE 500 998 321 322 232 318 230 368 197 293
BROYDNBD 1000 1000 18 76 18 80 13 91 13 91
INTEGREQ 102 100 4 8 4 8 4 7 4 7
YATP1SQ 2600 2600 40 46 28 40 20 30 21 32

Algorithm RER and the trust-region algorithm are stopped whenever the criterion

‖Fk‖ ≤ max(10−6, 10−12‖F0‖) or ‖gk‖ ≤ max(10−6, 10−12‖g0‖)
is met.

In Table 5.1 we give the results obtained on the following five CUTEr test exam-
ples: the three square nonlinear systems ARGTRIG, BROYDNBD, and YATP1SQ; the under-
determined problem INTEGREQ; and the overdetermined test ARWHDNE. The number of
outer iterations performed by Algorithm RER with positive μ0 is the same as in the
case μ0 = 0, except for problems YATP1SQ and ARWHDNE. These exceptions point out
the advantage that can be gained sometimes by employing a positive regularization
μ0.

The convergence history plot for problem YATP1SQ in Figure 5.1 illustrates the
fast asymptotic rate predicted by our theoretical results.
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Fig. 5.1. Convergence history for problem YATP1SQ.
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The numerical results we obtained are encouraging, as Algorithm RER requires
a low number of outer iterations except for problem ARWHDNE. This is important in
practice because each outer iteration involves one evaluation of F (x) (and possibly of
its Jacobian), the cost of which often dominates the whole solution process. Reducing
the number of outer iterations thus often results in significant computational savings.
The slow convergence on ARWHDNE may be ascribed to the fact that the methods
converge to a nonzero residual solution with a final value of ‖F‖ � 0.12× 102. This
illustrates that the first-order Gauss–Newton-like model employed by the algorithms
discussed here may be not appropriate to handle this situation. Furthermore, our
implementations of Newton-like cubic overestimation or trust-region schemes on this
problem terminate in six to seven outer iterations, implying that significant gain can
be made from using second-order information when solving such nonzero residual
problems.

6. Conclusions and perspectives. We have described a variant of the Gauss–
Newton algorithm for nonlinear least-squares, inspired by ideas of Nesterov [12]. The
new variant includes the provision for approximate solutions of the subproblem and
also features an additional regularization which might be advantageous in practice.
We have developed a complete global convergence theory for this new variant and have
also shown that convergence to zero residual solution is quadratic under reasonable
assumptions.

Several extensions of the present work are possible. It seems particularly desirable
to develop a variant of the full Newton method (as opposed to the Gauss–Newton
algorithm) which would be based on the regularized Euclidean residual and yet could
handle negative curvature and nonzero residuals. However, this extension does not
seem obvious at this stage. It is also of direct interest to investigate whether, as is
the case for the ACO method, the complexity results obtained by Nesterov could be
extended to the case where the subproblems are solved inexactly.

Finally, the true potential of the new variant has yet to be compared to competing
techniques in extensive numerical tests, which are currently under way and will be
reported on separately.
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