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Convergence of a Shock-Capturing Streamline
Diffusion Finite Element Method for a

Scalar Conservation Law in Two Space Dimensions

By Anders Szepessy

Abstract. We prove a convergence result for a shock-capturing streamline diffusion
finite element method applied to a time-dependent scalar nonlinear hyperbolic conser-
vation law in two space dimensions. The proof is based on a uniqueness result for
measure-valued solutions by DiPerna. We also prove an almost optimal error estimate
for a linearized conservation law having a smooth exact solution.

1. Introduction. In this note we continue the analysis of shock-capturing
streamline diffusion finite element methods (SC-metods for short below) for hy-
perbolic conservation laws initiated by Johnson and Szepessy [6], [7], where con-
vergence for Burgers' equation in one dimension was proved using the theory of
compensated compactness. We prove here strong convergence in Ll°c for a SC-
method with piecewise linear elements applied to the following scalar conservation
law in two dimensions:

2       Q
(1.1a) ut + Yd^Jl^=0   ™R2xR+=R3+,

i = l

(1.1b) u(z,0) = u0(z)    îor x E R2,

where the ft: R —> R are given smooth functions and we assume that the initial
data «o E L00(R2) have compact support. The convergence result is obtained using
a uniqueness result by DiPerna [1] for measure-valued solutions by proving that the
finite element solutions are uniformly bounded in L«,, weakly consistent with all
entropy inequalities and strongly consistent with the initial condition. We also show
that the accuracy of the method when applied to a linearized conservation law is
at least cf(hzl2), where h is the mesh parameter.

The streamline diffusion method is a general finite element method for hyperbolic
problems which may be viewed as a certain combination of the standard Galerkin
method and a least squares method. In the shock-capturing streamline diffusion
method an artificial viscosity is added, with viscosity depending on the residual
of the finite element solution and a certain mesh-dependent parameter (here the
residual means the result of the hyperbolic operator applied to the finite element so-
lution). The shock-capturing streamline diffusion method combines (f(h3/2) accu-
racy (in the case of piecewise linear elements) with good stability obtained through
the least squares control of the residual and the shock-capturing artificial viscosity.
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528 ANDERS SZEPESSY

For more information on streamline diffusion finite element methods we refer to
Hughes and Mallet [2], Johnson et al. [4] and the references therein. An extension
of the convergence result of this paper to include also boundary conditions is given
in [9].

The shock-capturing artificial viscosity coefficients in this paper differ from those
in Hughes and Mallet [2] and Johnson et al. [7], where the artificial viscosity was
normalized by dividing by the gradient of the approximate solution. We compensate
by using here a smaller mesh-dependent parameter in the coefficient of the artificial
viscosity. This makes no essential difference in the convergence proof for nonsmooth
solutions, but makes it possible to easily prove that the error for a linearized version
of (1.1) is of the desired order tf(hk+1/2) in regions where the exact solution is
smooth, when using elements of order k.

An outline of the paper is as follows. In Section 2 we give some background
on Young measures and state the uniqueness result for measure-valued solutions
satisfying entropy conditions. In Section 3 we introduce the SC-method and in the
main Theorem 3.1 we prove that the finite element solutions Uh converge strongly
in Li00, 1 < p < oo, to the unique L^-solution u of (1.1) as the mesh parameter
h tends to zero. The proof is divided into Lemmas 3.1-3.3, which are proved in
Sections 4-6. In Lemma 3.1 we prove that Ht/^Hz.^ is uniformly bounded in h
by proving Lp-estimates and letting p tend to infinity as in [7] in the case of one
space dimension. In Lemma 3.2 we prove that the Young measure associated with
Uh is a weak solution and satisfies all entropy inequalities corresponding to convex
entropies. Finally, in Lemma 3.3 we prove convergence towards initial data as h
tends to zero by combining weak convergence and ./^-stability. In Section 7 we
prove error estimates for the SC-method applied to a linearized version of (1.1)
with smooth solution, thus demonstrating that the shock-capturing modification
in the SC-method does not degrade the accuracy for smooth solutions. We shall
denote by C a positive constant not necessarily the same at each occurrence and
always independent of h.

2. Measure-Valued Solutions. In this section we give the necessary back-
ground material on Young measures and measure-valued solutions of conservation
laws following [10], [11], [1]. Our convergence result is based on Theorem 2.2 below.

THEOREM 2.1. Let Uj be a uniformly bounded sequence in Loo(R^), i.e., for
some constant K,

(2.1) \\u3\\Loo(R%) < K,        i = 1,2,3,....

Then there exists a subsequence (again denoted) Uj and a family of measurable
probability measures vy E Prob(i'), y E R\, such that suppig is contained in
{x E R: \x\ < K) and the L^ weak-star limit,

(2.2a) g(uj(-)) - g(-),

exists for all continuous functions g, where

(2.2b) g(y)= ( g(X)dyy = (vy,g(X))
Jr
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CONVERGENCE OF A FINITE ELEMENT METHOD 529

for almost all points y E R\.    Here, vy  being measurable means that (vy,g) is
measurable with respect to y for each continuous function g.

COROLLARY 2.1. The sequence u3 in Theorem 2.1 converges strongly to u if
and only if the associated Young measure vy reduces at almost all points y to a
Dirac measure concentrated at u(y), i.e.,

(2.3) Vy = 6u{y).

Since Uj is uniformly bounded in Loo(R^_), strong convergence in Ll°c for some p,
1 < p < oo, is equivalent to strong convergence in Ll°c for all q, 1 < q < oo.

We can now define the measure-valued (mv) solution of (1.1) introduced by
DiPerna [1].

Definition. A measurable map v: y —> vy E Prob(ñ) from the domain R+ is a
mv solution of (1.1a) if

2

(2-4) ¿K,A) + ¿¿K,/í(A))=0   m3f'(R^dV *'  '    ^dx%
7=1

+ )

i.e., in the sense of distributions on R^_,

/    UtWy^)+,¿{^yJiW)4>xi) dxdt = 0

for all 4> S 8J/(-/?+). Further, a mv solution v of (1.1a) is admissible if

2

(2.5) jtwv,vW)+Í2ir-{,/vMX))-0 in^Ä+)'
7=1    -    "'

for all convex entropy pairs (»7,17) = (»7,91,92).
We recall that (r), q) is a convex entropy pair if the entropy r¡ : R —» R is continu-

ous and convex, the corresponding entropy flux q = (qi,q2) '■ R —► R2 is continuous
and all ^-solutions u(x, t) of (1.1a) satisfy the additional conservation law

d    ,  .     ^   d
(2.6) ,,(u) + £       g.(u)=0    m&'{R%).

i=\        '
For smooth r\, (2.6) holds if and only if

V'fi = <li,        ¿=1,2,
which means that every convex smooth function r¡(u) forms an entropy pair (n,q)
provided that the corresponding entropy flux q = (qi,q2) is defined by

qt(u)= [Ui1,(s)f'l(s)ds,
Jo

We recall that the classical admissibility condition for a solution u to (1.1a) reads
2

(2.7) E¡r,{u) + Y~ql(u)<0   m&{R%),
7=1

for all convex entropy pairs.   The basic existence and uniqueness result for the
Kruzkov ¿oo-solution u to the scalar conservation law (1.1), see [8], reads as follows:

¿ = 1,2.
'0
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530 ANDERS SZEPESSY

If i«o € L\(R2) H Loc(R2), then there exists a unique function u E L00(R^_) which
satisfies (2.7) for all entropies nk of the form r)k(X) = \X — k\,kE R, together with
the initial condition

\\m \\u(-,t) - uo\\Ll(R2) =0.

The following result [1, Theorem 4.2 and Remark 3] gives an extension of the
Kruzkov uniqueness result to measure-valued solutions.

THEOREM 2.2. Suppose thatuo E Li(R2)C\L0O(R2) and thatv is an admissible
mv solution of (1.1a) generated by a uniformly bounded sequence Uj in L00(R^_),
such that for some constant C

(2.8) /   (vy,\X\)dx<C,
Jr2

(2.9) lim-/    /   (vy,\X-uo(x)\)dxdt = 0.
*^o+ t Jo Jr2

Then v is the Dirac solution vy = ôu(y), where u is the unique Loo-solution of (1.1).

According to Corollary 2.1 we then have u3 —» u strongly in Ll°c, 1 < p < oo.

3. Formulation of the Method and the Main Theorem. In this section we
formulate the SC-method and give a basic L2-stability result and some interpolation
estimates, which will be used below.

The SC-method is based on a space-time finite element discretization of R\
defined as follows. Let 0 = t0 < <i < t2 < ■ ■ ■ < t^ = T be a sequence of time
levels with tn+i —tn ~ h, set /„ = (tn, tn+i) and introduce the "slabs" Sn = R2xln
and the sets R2l — R2x {tn}. Let T¡¡ be a quasi-uniform triangulation of R2 into
triangles K with one right angle (cf. Remark 3.1), smallest angle uniformly bounded
away from zero and diameter hx ~ h. For each K ETß, let the prism K x /„ be
divided into three tetrahedrons

T(K, 1) = feab,    T(K, 2) = decb,    T(K, 3) = abce,

according to Figure 3.1, and form the corresponding "triangulation" Tß — {T(K, i),
i = 1,2,3, VA" 6 Î£} of Sn into tetrahedrons.

Figure 3.1
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CONVERGENCE OF A FINITE ELEMENT METHOD 531

Remark 3.1. The requirement that the triangles K E Tfi have one right angle
is technically convenient when proving Lemma 4.2 and Proposition 5.3. We expect
these results to hold also for a more general triangulation of R2 x i?+. In [9] we
prove the corresponding results for a general triangulation of Rx R+.    D

Define
Vhn = {vE H\Sn) :v\KE Pi(K) Viv E T¡¡, v\ R%\nk+2iM = o} ,

nS)S- = {(x, t) E R+ : \x\ < s + is'},        s, s' > 0,

Th=\j n,
7l>0

where Pi(K) denotes the set of linear functions on K, R = max{|a;|;x E supptto}
and M is a positive constant to be defined below. In other words, Vhn consists of
continuous piecewise linear functions on the slab Sn which are zero for large |x|.

We shall seek an approximate solution Uh in the space Vj, = nn=o^T' Le-'
for n = 0,1,2,...,N we will have Uh\Sn E Vhn. Note that the functions in Vh
are continuous in x and possibly discontinuous in t at the discrete time levels tn-
The SC-method for (1.1) can now be formulated: Find Uh E Vh such that for
11 = 0,1,2,...

f   L(Uh) lv + 6 lvt + Yfi(Uh)vx,) j dxdt+ I   {U%-Ul)v+dx

i3'1) + f   £i(Uh)VUh -Vvdxdt
JSn

+ [   e2(Uh)VxUh -Vxvdxdt = 0   Vv EVh,
Jsn

where
2

L(Uh) = Uth + Y(Wh))x„
7=1

ei(Uh) = S\L(Uh)\(l + \f[(Uh)\ + \Wh)\),
e2(Uh) = 6\Ü\,
v±(-,t) =   lim v(-,t + s),

{ {U*-U!t){x)\KnR2    if/        dxXjîorKET«,
U(x,t)\K=< JknRl

\ 0 otherwise,
U-(;0)=UO(-),

2

Vxw -Vxv = YVxiWxn
7=1

Vw • Vv = wtvt + Vjiy ■ Vxv,

and the positive parameters 6,6,6 satisfy
h/6 -* 0 and 6/hl~£ ^0   as h -+ 0, Ve > 0,

(3.2) _6 = Cha\        6 = Cha2,

where | < ai < 2, ^ < a2 < 1.
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532 ANDERS SZEPESSY

Existence of a solution to (3.1) follows from a variant of Brouwer's fixed point
theorem as in [5]. From now on, U = Uh will denote a solution of (3.1). Our main
result is the following

THEOREM 3.1. The solutions Uh of (3.1) converge strongly in Li°c(R^) for
1 < p < oo to the unique Loo-solution of (1.1) as h tends to zero.

The proof is divided into three steps: Lemmas 3.1-3.3.

LEMMA 3.1.   There is a constant C such that the solutions Uh o/(3.1) satisfy

\\Uh\\Loo(R%)<C,       0<h<l.

LEMMA 3.2. There is a subsequence of the solutions Uh of (3.1) that generates
an admissible mv solution v of (1.1).

LEMMA 3.3. There is a constant C such that the mv solution v in Lemma 3.2
satisfies

(vy,\X\)dx<CL>R2

and the initial condition

1   /■'lim - /   (vy, \X - uo(x)\)dxdt = 0.t-»o+ t Jo
Theorem 3.1 now directly follows by combining Lemmas 3.1-3.3, Theorem 2.2

and Corollary 2.1.
Next, we give the following basic L^-stability result obtained by taking v — Uh

in (3.1):
N

f       (U!t)2dx+Y f   (UÏ-Ufl)2dx + 26 f   (L(Uh))2dxdt
Jn%+1 n^oJR2n Js»

(3-3) +2 f   ei(Uh)\VUh\2dxdt + 2 [   e2(Uh)\VxUh\2dxdt
JsN JsN

< /   (uq)2 dx,
Jr

'S"

'R2

where SN = \Jn=0 Sn and integrals over SN are interpreted as a sum of integrals
over the Sn-

We shall need the following standard interpolation error estimate (3.4),
"superapproximation" result (3.5) and inverse estimate (3.6), where nw E Vn is
the usual piecewise linear interpolant of a function w E n„>o^(5„). A proof of
the superapproximation result is given in [7].

LEMMA 3.4. There are constants C such that for w E Ws'p(u)nW(Sn), v E Vn,
11 = 0,1,2,...,

(3.4a)     Ww-irwWwk.oc^ <Chs~k\\w\\Xys,oo{u}),        s = 1,2, k = 0,1, p = oo,

(3.4b) ||w - icw\\Hk{u) < Ch2-k\\w\\k2{u),        k = 0,1, p = 2,

\\VW - ir(vw)\\Wk,oo{ul)
(3.5a)

< C'/i1"fc||?j||Loo(Lj)||w||v^1,00(uj), k = 0,1, p = oo,
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CONVERGENCE OF A FINITE ELEMENT METHOD 533

¡VW — ir(vw)\\Hk M
< c/i^IHU^aMIffMw) + HM\h2íu))>     fc = 0,1, p = 2,

\\VW - ^(VW^L^W)
(3.5c 1/0

< Chll2\\v\\Loo(Sn)(\\w\\m{Sn) + h\\w\\ùHSn)),        p = 2,

(3.6a) W^vU^KCh^WvU^),        l<p<oo,
(3.6b) ll«llL«(s.)<CÄ-3/a||t;|U,(S.),        p = 2,
where u = R2, Sn, Ki~)R2 or KnSn for K E Tn, and Ws'p(u) is the usual Sobolev
space (here dot denotes seminorm and IVs'2 = H2).

4. Proof of Lemma 3.1 (The Loo-Estimate). In order to prove the Loo-
estimate of Lemma 3.1, we shall need the following two preliminary lemmas.

LEMMA 4.1.   There are positive constants c and C independent of p such that
for p — 2m, m = 1,2,3,..., and n = 0,1,2,...

$ £   in\U+-U^\VxU+nU+\\Z\Kn^dx
n

< í   \Ü\VXU -VxWlF-^dxdt,
Jsn

ch i   \U+-U-\VxU+-Vxv+dx< i   \Ü\\UXU -Vxv\dxdt
JrI Jsn

<Ch[   \U+-U-\\VxU+-Vxv+\dx   Vv E Vh.
Jr2

The proof of Lemma 4.1 is a simple combination of the proofs of Lemmas 4.1-4.2
in [7].

LEMMA 4.2.   There is a constant c > 0 independent of p such that for p = 2m,
m — 1,2,3,..., and n = 0,1,2,...

/   ei(U)VU-VTx(Up-l)dxdt>^  Y   i eÁU)\VU\2\\U\\p-2(K)dxdt.
JSn r       Kç_Tn

Proof. Consider a tetrahedron K eT£. Since

Vt/.VTritf*-1)!*    and    |V/7|2||í7fL-2(K)

are constant on K, it is sufficient to prove that

vu-v*(up-l)>^\vu\2\\u\\ii2{K).

Define the function fp: S3\{±±(1,1,1,1)} -> R by

/p(î/l.î/2.J/3.2/4)
_ (vi -V2){ypl~1 -yP~l) + (yi - V3)(yp~1 -y^'1) + (v3 -V4){yP~l -yP~l)

{{yi ~2/2)2 + [yi - V3)2 + {y3 -!/4)2)max(j/f-2,7/P_2,j/P"2,3/P"2)

(y - yrf Z::2o yp2~2"y\ + (y. - k>)2 Y*:l yp~2~'y\ + (w - y*)2 EL"02 vV^vi
((yi - y2)2 + (»i - y3)2 + (w - y*)2)max(yf-2,v^-2,yi-2,y^-2)
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534 ANDERS SZEPESSY

We note that fv is continuous on 53, and after an appropriate choice of coordinate
directions we get by the definition of fv

VU -V-k(U^)>  MJp(y)\VU\2\\U\\ll\Ky
We have

/( . ^ i (2/1 - y2?{yp-2 + yp2~2) + (y. - ys)2^'2 + yP~2) + (y3 - y*?{ypf2 + yP'2)

"        4 ((yi - y2)2 + (yi - y3)2 + (ys - va)2)™*^2,^^-2^2)

Let us first assume that \yi\p~2 = maxi<i<4(yf_2). If (yi-y2)2 + (y\-yz)2 > 1/p2,
then we clearly have

(4.1) fP(y) > c/p2.
In the case (j/i - y2)2 + (yi - y3)2 < 1/p2, we have

(u) («rvi-^r^f-^w, .=2,3,,2/1/ V        yi   / V    p|yi
so that

l/2/2\p-2 (2/1-2/2)2
/p(!/) >

4\2/i/        (2/1 - 2/2)2 + (2/1 - 2/3)2 + (2/3 - 2/4)2

+1 (yAp-2        (2/i-2/3)2 + (2/3-2/4)2        > c
4 V2/1/        (2/1 - 2/2)2 + (2/1 - 2/s)2 + (2/3 - Vi)2

which proves (4.1).
Next, we consider the case |t/2|p~2 = maxi<¿<4(|2/¿|p_2). If \yi -y2\ > 1/p, then

(4.1) follows directly, while if \yi - y2\ < 1/p, then we have as in (4.2)

f( , > 1 (2/i/2/2)p~2((yi - 2/2)2 + (2/1 - 2/3)2) + (2/3/2/2)p-2(2/3 - 2/4)2
/Pl3/j - 4 (2/1 - 2/2)2 + (2/1 - 2/3)2 + (2/3 - 2/4)2

^ 1 c((yi - 2/2)2 + (2/1 - 2/3)2) + (2/3/2/2)p~2(2/3 - 2/4)2
~4 (î/i-2/2)2 + (2/1 - 2/3)2 + (2/3-J/4)2

If now ¡2/i - 2/31 > 1/p, then (4.1) holds, and finally, if |yi - y3\ < 1/p, then we
have |j/3 - 2/2I < I2/1 — 2/2I + I2/1 - 2/31 < 2/p, and as in (4.2) we obtain (4.1). By
symmetry, this proves (4.1) for all y E S3.    G

Taking now v = 7r([/p_1) in (3.1), where p is an even integer greater than 2, we
get

0=   i   L(U)Up~ldxdt+ (   (U+-U-)(U+)p-ldx
Js„ Jr2

-[   L(U)(Up~l -K(Up-x))dxdt- f   (U+ - U-){Ul~l - ^(U^1)) dx
Jsn Jr2

+ 6¡ L(U)Uup-l)t + Yfm(Up-%\ dxdt

~6¡ L(U) ((Up-1)t-ir(Up-1)t + Yfi(U)((UP~1)*. -AUV-'UUdxdt

+ [   ei(U)VU -Vir^-^dxdt
Jsn
r 8

+ /    s2(U)VxU ■Vxir(Up-1)dxdt = YEn-
Js„ i=1
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CONVERGENCE OF A FINITE ELEMENT METHOD 535

Using the standard interpolation estimates (3.4) and the stability estimate (3.3),
we have

\E3n\ + \E«\<Cp2h(h + 6)  Y   I \W)\ (l + Y \K(U)\) \VU\2\\U\\ll\K)
K£TnJK \ i )

<Cp2^  Y   i ei(U)\VU\2\\U\\l-j{K)dxdt
6 ¿¿f.JKn{\u\>i}

+ cP2^ [ si(u)\vu\2dxdt = in + nn,
° Jsn

where by Lemma 4.2

|In| < ^=^- Í   £i(U)VU -Vtt^-1) dxdt,
s     Jsn

and by (3.3)
N

Y |II„| < Cp2h6/6.
77 = 0

Further, using (3.3) and Lemma 4.1, we have

\L00(KnR2)ax\En\<Cp2h2  Y   I        |C/+-c/_||Vx,7|2||f/||î
K(ET£ "* KnRn

< Cp2h2  Y   [ \U+- U-\\VxU\2\\U\\ll2{KnR2 dx
¡f^n JKn{\u\>i} °°K       n>

+ Cp2h2 f \U+-U-\\VxU\2dx
Jr2ii{\u\<i}

<Cp4h Í   \U\VXU ■Vxir(Up-1)dxdt + Cp2h [   \U\\VXU\2 dxdt.

With the aid of these estimates we get by summation over n = 0,1,2,..., N for
p4 <Cmm(6/(h6), J/h)

N

Y f      (U-Y dx- f   (U+)p dx- [   (U- - i/+)p(/7+)p-1 dx
nToJK+1 J*-l JRl

+ 6p(p-l) í   (L(U))2Up-2dxdt<Cp3(=-rÍ).
Js» \6      s/

Using now the convexity of the function U —> Up, we have

\\U-\\PL{R2      +6p(p-l)[   (L(U))2Up~2dxdt

<ho\\l {R*)+Cp3(hß + h6ß).
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The next step is to obtain Lp-estimates for all t E (0, oo). As in [7], we have for
tn < t < tn+i

\\U(;t)\\p ) = iic/-iiM^+1)-p/t"+7ñ2 (^p_1+E/^p-1^) d*dt

<\\U-\\pLp{Ri+i)+p(f (L(U))2Up~2dxdt i"  ' (   Updxdt\

< \\U-||p AR3    ) +6p(p- 1) Í  (L(U))2Up~2dxdt

Thus, by Gronwall's inequality we obtain for £/v < í < ijv+i

(4.3) \M;t)\\lpm < eCh^\\uo\\pLp{R2)+Cp3(hß + h6ß).

This proves by (3.2) the existence of positive constants c and »Oi independent of p
and h, such that

(4.4) sup||í/(-,í)||Lp(ñ2)<C    if4<p<c/TQ°.
t>o

Further, there is a constant C, independent of q and h, such that all v EVn satisfy
the inverse estimate

(4.5) Mw**) < (Cç/r^lMkt^)'        1 < g < oo,
which is proved analogously to Lemma 4.1. Finally, using (4.4)-(4.5), we have

ll^llLcci^) = \\U\\Lao(R%) < C(ph-')2/pSUp\\U(;t)\\Lp{R,)

< C exp(c(l + a0)hao In 1/h) < C,

for h sufficiently small, which completes the proof of Lemma 3.1.

5. Proof of Lemma 3.2 (The Entropy Condition). To prove Lemma 3.2,
we first note that by Lemma 3.1 the solutions Uh of (3.1) are uniformly bounded
in the Loo-normi so that by Theorem 2.1 there exists a subsequence {Uh} which
converges in the weak-star topology in Loo(R+), and the limit can be represented
by a family of probability measures vy such that for all continuous state vari-
ables g

(5.1) g(Uh(y))-(vy,g(X)).

Our next step is to prove that the Young measure v is an admissible mv solution,
i.e., that v satisfies in the distribution sense

2

(5-2) ^K,A)+¿¿K,/<(A))=0,
7=1 '

and for all convex entropy pairs (n, q)
2

(5-3) j^»7(A)> + ¿¿K,<fc(A))<0.
7=1 l
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CONVERGENCE OF A FINITE ELEMENT METHOD 537

To prove (5.3), let (<7,<7i,<?2) be a smooth convex entropy pair.    Let $  E
8^°°(ß2 x R+), $ > 0, and partition $ as follows:

$ = (p + <p,

where </>,<p > 0, <f> E %°°(^R+2M) and <p E %°°(R2 x R+\ÜR+1M).   Taking
v = Tr(r)'(U)(p) in (3.1), we get

0=   (   L(U)n'(¡)dxdt+ j    (U+ - U-)r¡'+4> dx
Jsn JrI

-[   L(U)(ri'(f>-Tr(ri'(¡)))dxdt- í   (U+ -U-){r¡'4> - ir{r¡'</>))+dx
Jsn Jri

+ 6¡  LWUrj'ÏÏt + YflWÏÏx] dxdt

-6¡   L(U)((n'cP)t-n(n'4>)t+YfM<P-K(v'<P))x,) dxdt

+ í   ei(U)VU ■V-K(r,'<t>)dxdt+ Í   e2(U)VxU ■ Vxir(r¡'cf>)dxdt = ¿£¿.
J §n J Sn 1 = 1

Integrating by parts and summing over n, we have

- /    (r,(U)4>t + Y^U^) dxdt

Y I f      r,(U-)<t>dx - f   (n(U+) - (U+ - U-W{U+))4>dx)
tT=o vk+1 Jri )

(5.4)

+

TV

77 = 0 7 = 3 7 = 3

Using now the convexity of 17, we see that the sum of the integrals over R2, i?2+1
is nonnegative.

PROPOSITION 5.1.   There holds

liminfV.Ri >0.
h-+0   ¿-^        ~

7 = 3

PROPOSITION 5.2.   There are positive constants c, C such that

where R = {\x\: x E suppuo} and M is a positive constant to be defined below.
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We postpone the proofs of these results to the end of this section. From (5.4)
we get

-¡n L{U)*t + Y<n(U)*Xi) dxdt

^-¿fiî-/SN UWvt + Y^'PxA dxdt

= -J2Rl-¡N (v(P)<pt + J2*M*>*<)dxdt

+ ¡n ({m-ri{U))<Pt + Y^(QiiO)-*(U))<pXi) dxdt,

where the first integral on the right-hand side is zero and the second tends to zero
as h —» 0 by Proposition 5.2. Letting h —> 0 in (5.5), using (5.1) and Proposition
5.1, we now obtain (5.3).

In order to treat all convex continuous entropies r¡, we observe that a standard
regularization rf = n * u£ maintains the convexity, and r¡£, q\ tend to r\, qi uni-
formly. Here, u satisfies the following conditions:

wëC((-U)),    w>0,    ¡ udy=l,    ue(y)=s-1u(^Y

By dominated convergence applied to (5.3) with rf —► r¡ we then obtain (5.3) in
the general case. Next, by taking n(X) = ±X in (5.3) we get (5.2), thus proving
that v is an admissible mv solution.

It remains to prove the propositions. We shall estimate the Rl using the estimates
(3.3)-(3.6) and the Loo-estimate in Lemma 3.1. We have

\R3\ + \R6\<Ch(h + 6)  Y   f imniWn'cpW^^dxdt
K£Th J K

<Ch(h + 6)  Y   I |L(^)l(|VÍ/|2 + |V{/| + l)||<A||VV2,oo(K)Iixdí
Kerh JK

<C^ [   e^lVUl2 + Ch(h + 6)\\L(U)\\L2{SN)

Using also Lemma 4.1, we have

N
tf4|<E   E  Ch2 I        |C/+ - C/_|(|Vxi7|2 -H IV^i/l + l)||0||w».«(/o rfa:

n = OK€T£ J KnRl

(N \1/2

< Chj JU\ \VXU\2 dxdt + Ch3'2 I Y Wu+ - U-Wl2(Rl) 1

< c [ = + h3'2
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Further,

R5 = 6Í   L(U)2r]"(U)<t>dxdt + 6 í   L(U) l<pt + Y^** ) ^'{U) dx dt

> -C6\\L(U)\\L2{sn > -Cy/ö.
To estimate R7 and R8, we shall use the following result.

PROPOSITION 5.3.   We have

UMv'{U)))t > 0,    VXU ■ Vx(ir(r¡'(U))) > 0.
Proof. We see that Ut(Tr(r¡' (U)))t is constant on each tetrahedron K E Tn-

According to the construction of the tetrahedrons K, there is for each K an or-
thogonal coordinate transformation in the xi,x2-rAnxie such that K always has
one edge in each coordinate direction. Hence, let (11,12,i), t[ < t < t'2, be
such an edge of K; then the sign of Ut^(r]'(U))t is equal to the sign of
(U(xi,x2,t'x) - U(xï,x2,t'2))(ri'(U(xi,x2,t'1)) - r¡'(U(xi,x2,t'2))), which is non-
negative since r/' is nondecreasing. An analogous argument in the i, directions will
then, after summation, complete the proof of Proposition 5.3, since Vxv ■ Vxw is
invariant under orthogonal coordinate transformations.    D

Let 3°<p\ k E Pq(K) VK e Th be defined by

(5.6) 3P<ç\k= I fdxdt     ( i  dxdt)    \/<p E L2(R3+),

i.e., ¿P<p is the ¿2-projection of <p onto the set of piecewise constants. Then using
(5.6), we have

R7 =    Y   [ ei{U)VU-V{v{rf<l>)-ir{ri'&><l>))dxdt

s"

Y    í £1 (U)VU ■ Vir(r)'&><!)) dxdt = l + II,
KETh  Jk
KCS"

\1\<C  Y    I ^(U)\\V(V'(<f> -^))||LooW|Vl/|dxdi
K€Th  J K
KCS"

<C   Y   I ei(U)(h\VU\2 + \VU\)\\V<P\\Loo{K)dx,

K€Th JK
KCS"

+
Kerh
KCS"

■dt
JK

KCS"
K€Th JK

<Ch [   ei{U)\VU\2dxdt + c( [   e^U^VU]2 dxdt\\ei(U)\\Loo{SN
JsN \JsN

<C(h + ̂ ßJh),
where we have used that

IKi-^)0ll^w<™llv<¿IUoo(K)
and the inverse estimate (3.6) to obtain

\\ei(U)\\Lco{Rl)<C6/h.

1/2
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Next, by Proposition 5.3, and since ¿^0 is piecewise constant, we have

11=   Y   Í £i{U)VU ■ V(7r(r1'))^>(pdxdt > 0,
ICCT     J KK€Tn

KCSN

so that
R7 >-C(h + \Í6/h).

Finally,

R8=    Y   f £2{U)VxU-Vx{n{ri'<f>)-w{ri'âB(l>))dxdt
Ken
KCS"

K€Tn
KCS"

As above, we get by Lemma 4.1
N

+   Y   [ £2(U)VXU-Vx7r(r)'âs(f>)dxdt = m + W.

|III| < Ch6 Y i   PWxU ■ Vx(ir(n'(4> ~ &><!>))) dx
n^0JK

N   r
<Ch6   Y   E/   \Ü\\VxU\\\Vx{rt'{<l>-&(l>))\\L^KnR>)dx

K€Tn n=0Jli
KCS"

<CÎ  Y   I \V\\VxV\Wx{r,'{<t>-&<l>))\\L<1B(K)dxdt
K€Tn ^K
KCS"

<C1  Y   I \Ù\(h\VxU\2 + \VxU\)\\Vx4>\\Loo{K)dxdt
ÍTCT      J KKer„

KcS"

<Ch í   e2(U)\VxU\2dxdt + C[ í   s2(U)\VxU\2 dxdt\\e2
JsN \JsN

(U)h

< C(h + y 6).
Finally, by Proposition 5.3,

IV =   Y   I £2(U)VxU-Vx(ir(r)'(U)))âs(!>dxdt > 0.
Ken   K
KCS"

Letting now h —► 0 in the above estimates, we obtain Proposition 5.1.    D
Proof of Proposition 5.2. Let us introduce the cutoff function

f 1    \i ß(R + 1 - \x\) + t <0,
il)(x,t) = <

l exp(-(ß(R + 1 - |x|) + t)/r)    otherwise,
where

^=8       sup      (|/i(«0|,|/»|)
P \v>\<\\UH\\Lœ

h>0
and

T = C(h + 6 + 6 + 6/h),
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where C is a sufficiently large constant. We now take M = 1/ß in the definition of
Vhn. Further, we note that V"ln3\n- — 1 and ^ is exponentially decreasing in
f2^+1 M. We then have for U = Uh and N = 1,2,3,... the following local stability
result:

'/.

(5.7)

Uli¡)dx+Y [   (U+-U-)2ipdx
+ i n=0%'Rl

6¡   (L(U))2ipdxdt+ f   ei(U)\VU\2ipdxdt
JsN JsN

[   £2(U)\VxU\2ipdxdt<C I'u2Qipdx.

A similar stability estimate is proven in Theorem 1.2 of [4].  Since i¿o E Loo(R2
and suppiio C {x: \x\ < R}, we obtain from (5.7)

/    U\if>dx<CTe-ßlT,
Jri

so that by the inverse estimate (3.6b),

Loo((R3+\nk+¡tl/s)n{t<T}) h
which is the desired result.    G

6. Proof of Lemma 3.3 (The Initial Condition). Here we prove that the
Li-stability (2.8) and the initial condition (2.9) are satisfied. First we note by
the definition of Vh that (v(Xtt), |A|), i.e., the Loo weak-star limit of \Uh(x, t)\, has
support in tïR+2 M (i.e., compact support in x for fixed t). Next, by the following
L2-stability,

(6.1) \Uh(;t)\\L2{Ri)<exp(Ch/6)\\uo\\L2{R2),

which is obtained from the stability estimate (3.3) by a Gronwall inequality as in
(4.3), we get

(6.2) ||ü-*(-,*)IUi(ä») < C?||t*o||i,(Ä»),        t<T.
Now using that g(Uh(x,t)) —* (v^x^,g(X)) in the Loo weak-star topology for every
continuous state variable g, we obtain from (6.1) and (6.2)

(6.3)

and

/    (v(xt),^2)dx < /    uldx    a.e. t E (0,T)
Jr2 Jr2

í   (v{x¡t),\X\)dx<C   a.e.te(0,r),
Jr2

which proves (2.8).
To prove (2.9), we shall use a technique (see [1]) which involves the following

weak convergence and the L2-stability (6.3):

Proposition 6.1.  For <p e W¿ ({x e R2 ■■ \x\ < R + 2}) we have

lim /    (vixt\,X)4>dx= I    uofydx.
í-*°Jr2       ' Jr2
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We postpone the proof of this result to the end of this section. Assuming first
that tto E W01(R2) and suppMo C {x E R2: \x\ < R], we have with the aid of
Proposition 6.1 and (6.3),

lim sup /    (v,x¡t), (X - u0)2) dx
t—o   Jr?

(6.4) = limsup /    (vixt),X2 — Uq — 2uq(X —uq)) dx
t-*o   Jr2

< — 2 lim sup /    (f(i,t), A — uo)uodx = 0.
t —0       /fi2

Further, by using that (i^t)! |A — uq\) has its support in QR, 2 M and Jensen's
inequality, we get

limsup /    (v{x,t), |A - u0(x)\) dx
t^o   Jr*

<Climsup(/   (v,Xtt),(X -uof)dx )      = 0,
í^o    \Jr2 )

(6-5) x 1/2

which proves the initial condition (2.9) for regular initial data. In the more general
case «o € Loo(-R2) with suppuo C {x E R2 : \x\ < R}, we let the functions /„ satisfy
/„ EW^R2), supp/n C{xE R2: \x\ < R} and lim^oo ||/„ -u0\\l2(r2) = 0, and
use (6.3) and Jensen's inequality to obtain

lim /    (i/(x,í), (A - u0)2) dx =  lim lim /    {i/x>u (A - fn)2)-
í->0,/ñ2 n^oot^0jR2

Now, as in (6.4) we have

lim lim /    (víxt),(X -fn)2)dx = 0,
77—»OO t—»0 JR2

so that

limsup/    (viXtt),\X-u0\)dx < lim C ( /    (viX]t),(X - u0)2) dx)      =0.
«—o   Jr? t-'0     \Jr2 )

We now turn to the proof of Proposition 6.1. Let 4> E W¿(R2), supp0 C {x E
R2: \x\ < R},ipE foHfO.T)), ip(0) = 1 and take v = ir(4>ip) in (3.1). Letting then
h tend to zero, we obtain as in (5.2)

/      /    (v{x4),X)4>dxiptdt
Jr+ Jr2

(6.6) ,     r r
+ /     /    Y^u^,t),fiW)<t>xi)dxipdt+ \    uO(f>dx = 0.

Jr+ Jr2 ~~ Jr2

Further, we define the functions A, B E Loo((0,T')) by

Mt)=       (v(x,t)A)4>(x)dx,        B(t)=        Y(l/(x,t)JiW)4>x,(x)dx.
Jr2 Jr2   ¿

Since vy is a measure-valued solution, we have At + B — 0 in the sense of distribu-
tions on R+. We note that B E Li((0,T)), which implies At E Li(0,T). Hence, A
has bounded variation and lim*^o A(t) exists. Taking now

[1-nt)2,        t<l/n,
(6.7) tf> = ^n=,

0, t > 1/n
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in (6.6), we get

/    i¿o<A<Lr = - lim   /    A(t)(ij)n)t dt = lim A(t),
JR2 n^ooJR2 t-»0

which proves the proposition.
Remark 6.1.   An alternative method to prove the initial condition (2.9) is to

establish the strong Li convergence

Yxm\\Uh(;t)-uo\\Ll(R2)=Q

by using standard error estimates with respect to a solution having smooth initial
data. This is possible, since for short times such a solution remains smooth. Using
this method, we get (2.9) choosing also 6 = Ch. Recall that to obtain (6.3) we
assumed h/6 —» 0 as h —> 0, cf. Remark 6.2.

Remark 6.2. The following argument, cf. [1], proves that Theorem 3.1 holds also
for the case 6 = h. Analogously to (6.6) and (5.3), we obtain

/     /   (v(x,t),>?)<¡>dxi¡)tdt
Jr+Jr2

(6.8) r      r r
/     /    Y((l'(x,t)^Áx))^x,)dxi¡)dt+       (uo)2<l>dx>Q,

JR+ Jr2   ¡ Jr2

where qt are the entropy fluxes corresponding to the entropy A2 and (p, i¡) are as in
(6.6). Using now that v satisfies (5.3) with n = X2 we note (cf. [1]) that the integral

A(t)= /   {v{x¡t),X2)(p(x)dx
Jr2

has bounded variation as a function of t and hence the limit lim^o A(t) exists.
Taking now ip as in (6.7) and 4>(x) = 1 for x E &R+2 M, we have by (6.8)

lim /    (v[Xtt),X2)dx < /    (u0)2(pdx,
«—oyfi2 Jr2

which combined with Proposition 6.1 proves (6.4) and (6.5) as above. We thus
conclude that Lemma 3.3 holds also for 6 = h.

7. Error Estimates for the SC-Method. In this section we prove that the
SC-method applied with piecewise polynomials of order k to the linear problem

d

L(u) = ut +YaiUx¡ = °    mRdxR+,
*•    '    ' 7=1

u(-,0) = u0 on Rd,

with smooth solution has essentially the same order of convergence as the corre-
sponding streamline diffusion finite element method (see [4]) obtained by choosing
Si = e2 = 0 in (3.1), i.e., (f(hh+l/2). Introducing the bilinear form

BM(v,w)=   /     L(v)(w + 6(L(w)))dxdt
JsM

"*" /     /    (v+— v-)w+dx + I    v+w+dx,
±ri Jr* Jr«
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the SC-method for (7.1) can be formulated, now with Vh consisting of piecewise
polynomials of degree k: Find U E V), such that for M — 0,1,2,...

BM(U,v) +        £i(U)VU ■ Vvdxdt+ /     e2(U)VxU-Vxvdxdt =       u0v+dx,
JsM JsM Jr*

with ei and e2 as in Section 3. For the quantity e = U — iru E Vh, we have

BM(e,e) +        ex(U)\Ve\2dxdt+        £2(U)\Vxe\2 dxdt
JSM JSM

= Bm(u .— nu,e) — I     Si(U)V(ttu)-Vedxdt(7.2) Jjm

f    £2(U)V2
JsM

xttu ■ Vxe dx dt
is"

= 1 + 11 + III.

Now

BM(e,e) = - í ||e_||22(ñdM+i) + ¿ ||e+ - e_|||a(ÄS) + ||e+|ll2(Rá) j

6 í   (L(e))2dxdt,
JSM

+ '
IS"

(7.3)

and with the notation rj = u — -ku, we have
. AÍ+1

I = BM(r,,e) < -B(e, e) + Y IMl£a(A¡[)
y'-^i 7i=i

+ ¿_1 ll»7lli2(S«) + è\\L{n)\\l2(S™)-
Further, by (3.6),

II<£/"   (L(U))2dxdt + ^- f    \V(Tru)\2\Ve\2dxdt
OJsM 6 JgM

(7.5) <£/    (L(e))2 dxdt+- Í(L(ttu))2 dxdt
4/sM 4 /

<5/i2 .,s.
+ C,TTvl|V7ru||2-     /     e2dxdt,CL7    II II Lim      IJS'\L

and finally, by Lemma 4.1,

(7.6)

HI<£/     \U\2dxdt + Ch62 [    \Vx7ru\2\Vxe\2 dxdt

M1 <52    /"< g E He+ -e- iiL(ä-) + ciiv^ullLx y M e2 dxdi-

Combining now (7.2)-(7.6) and the interpolation estimate (3.4), with Vf? now
consisting of piecewise polynomials of degree k > 1, we get for u E H2(SM) fl
W1'°°(SM)

BM(e,e)<Ch2k(6 + h2/6) + C f    e2 dxdt.
JSM

Thus by a Gronwall argument, as in (4.3), we have

BM(e,e)<Ch2k(6 + h2/6).
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Using now (3.4), this proves that for M = 1,2,3,...
M

n^-^-iiL^^ + Eii^-^iiL^)
(7.7) n = l

+ \\(U- «o)-f-llL(Ä«) + 6 I   iLiu)? dxdt < Ch2k(6 + h2/6),
1 °'       JsM

which for 6 = Ch gives the accuracy &(hk+1/2).
Remark 7.1. Following [4], we easily get local error estimates corresponding to

(7.7) away from regions where the exact solution is nonsmooth.
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