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A spectral semi-discretization of the Camassa-Holm equation is defined. The Fourier-Galerkin and a de-
aliased Fourier-collocation method are proved to be spectrally convergent. The proof is supplemented
with numerical explorations that illustrate the convergence rates and the use of the dealiasing method.
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I. INTRODUCTION

In this article, consideration is given to the error analysis of a spectral projection of the periodic
Camassa–Holm equation

ut − uxxt + ωux + 3uux − γ (2uxuxx + uuxxx) = 0 (1.1)

on the interval [0, 2π ]. Spectral discretizations of this equation have been in use ever since the
work of Camassa and Holm [1] and Camassa, Holm, and Hyman [2]. However, to the knowledge
of the authors, no proof that such a discretization actually converges has appeared heretofore.
Therefore, this issue is taken up here. Our method of proof is related to the work of Maday and
Quarteroni on the convergence of a Fourier-Galerkin and collocation method for the Korteweg-de
Vries equation [3]. Although they were able to treat the unfiltered collocation approximation, we
resort to proving the convergence of a de-aliased collocation projection, which turns out to be
equivalent to a Galerkin scheme. Before we get to the heart of the matter, a few words about the
range of applicability of the equation are in order. The validity of the Camassa-Holm equation as a
model for water waves in a channel of uniform width and depth has been a somewhat controversial
subject. The discussion seems to have finally been settled in the recent articles of Johnson [4] and
Kunze and Schneider [5]. One merit of the equation is the fact that it allows wave breaking typical

Correspondence to: Henrik Kalisch, Department of Mathematics, NTNU, 7491 Trondheim, Norway (email: kalisch@
math.ntnu.no)
∗Present address: University of Bergen (e-mail: henrik.kalisch@mi.uib.no)
Contract grant sponsor: Research Council of Norway BeMatA program

© 2006 Wiley Periodicals, Inc.



1198 KALISCH AND RAYNAUD

of hyperbolic systems. Such wave breaking is observed in fluid flows, and under this aspect, the
Camassa-Holm equation could be seen as a more suitable model than the well-known Korteweg-de
Vries equation, for instance. On the other hand, in the derivation of the Camassa-Holm equation,
it is assumed that the solutions are more regular than breaking waves [5]. In this respect, smooth
solutions are more closely related to the fluid flow problem than are irregular solutions. From this
point of view, a spectral approximation seems a natural choice for a spatial discretization.

Another application of the Camassa-Holm equation arises when ω = 0. In this case, the
equation can be derived as a model equation for mechanical vibrations in a compressible elastic
rod. As explained by Dai and Huo [6], the range of the parameter γ is roughly from −29.5 to 3.4.
The equation has even found its place in the context of differential geometry, where it can be seen
as a re-expression for geodesic flow on an infinite-dimensional Lie group [7–9].

Notwithstanding its importance as a model equation, one reason for the interest in the Camassa-
Holm equation is its vast supply of novel mathematical issues, such as its integrable bi-Hamiltonian
structure. This property alone has led to many interesting developments, a sample of which can
be found in [1, 2, 10–13] and the references contained therein. One aspect of the integrability of
the equation in case γ = 1 is that the solitary-wave solutions are solitons [1, 10], similar to the
solitary-wave solutions of the Korteweg-de Vries equation. However, the Camassa-Holm equation
also admits solitary waves, which are not smooth, but rather have a peak or even a cusp. These
peaked solitary waves are well known, and owing to their soliton-like properties, they have been
termed peakons. In the case that ω = 0 and γ = 1, they are of the form

u(x, t) = de−|x−dt |,

where d ∈ R is the wavespeed. For general ω and γ , a similar formula was found by one of the
authors in [14]. Even more general shapes have been described in [15], where a classification
of traveling-wave solutions is given. For the numerical approximation of these peaked or cusped
waves, spectral methods may not be the best choice. Other methods based on finite-difference
approximations have been used for instance in [16–18].

For the purpose of numerical study, it is important to have a satisfactory theory of existence of
solutions, as well as uniqueness and continuous dependence with respect to the initial data. For
the periodic case, an example of such well-posedness results has been provided by Constantin
and Escher in [19]. However, for our purposes, the available results are not quite strong enough.
In particular, it appears that it is possible for solutions emanating from smooth initial data to form
singularities in finite time. These singularities manifest themselves in the form of steepening up
to the point where the first derivative becomes close to −∞. In the context of one-dimensional
water-wave theory, this may be understood as wave breaking which we have alluded to earlier.
The idea of the proof of this phenomenon is to make use of a differential inequality, which goes
back at least to the work of Seliger [20] (see also Whitham [21] and Li and Olver [22]). It is
clear that such singularity formation will prevent the spectral, or super-polynomial convergence
usually exhibited by spectral discretizations. To circumvent this problem, we assume that the
solution has at least four derivatives in the space of square-summable functions. This requirement
turns out to be sufficient to obtain convergence of the spectral projection, with a convergence rate
dependent on the regularity of the solution to be approximated. Of course, this requirement also
restricts the pool of possible solutions and thus limits the applicability of our method. A spectral
discretization may still be used for solutions that have lower regularity, but the convergence is
then not known.

For the sake of simplicity, we will only give proofs in the case where ω = 0 and γ = 1 but
all the proofs extend to the general case with only small changes in the constants. To prepare the
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equation for the discretization, it is convenient to write (1.1) in the form

ut + 1
2 (u

2)x + K
(
u2 + 1

2 (ux)
2
) = 0, (1.2)

where K is a Fourier multiplier operator with the symbol

K̂f (k) = ik

1 + k2
f̂ (k),

which formally corresponds to

K = ∂x

1 − ∂2
x

.

This formulation reveals that it is natural to use a spectral Fourier discretization, because the
symbol of the Green’s function K is already known. In section 3, we define a Fourier-Galerkin
approximation of the Camassa-Holm equation and prove that this approximation converges if
appropriate assumptions are made on the initial data and the solution. Indeed, it will transpire that
for smooth solutions, the convergence is indeed spectral, i.e., super-polynomial. In section 4, a
similar result will be proved for a de-aliased Fourier-collocation scheme. Finally, the last section
contains some numerical computations that illustrate the results obtained in sections 3 and 4
and that show that the de-aliased collocation scheme is preferable to an unfiltered collocation
approximation, especially when approximating solutions that are not smooth.

II. NOTATION

In order to facilitate our study, we start by introducing some mathematical notation. Denote the
inner product in L2(0, 2π) by

(f , g) =
∫ 2π

0
f (x) g(x) dx.

The Fourier coefficients f̂ (k) of a function f ∈ L2(0, 2π) are defined by

f̂ (k) = 1

2π

∫ 2π

0
e−ikxf (x) dx.

Recall the inversion formula

f (x) =
∑
k∈Z

eikx f̂ (k),

and the convolution formula

(f̂ ∗ ĝ)(k) = f̂g(k),

where the convolution of two functions f̂ and ĝ on Z is formally defined by

(f̂ ∗ ĝ)(k) =
∑

m+n=k

f̂ (m) ĝ(n).
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Denote by ‖ · ‖Hm the Sobolev norm, given by

‖f ‖2
Hm =

∑
k∈Z

(1 + |k|2)m|f̂ (k)|2.

The space of periodic Sobolev functions on the interval [0, 2π ] is defined as the closure of the space
of smooth periodic functions with respect to the Hm-norm and will be simply denoted by Hm.
In particular, for m = 0, we recover the space L2(0, 2π) whose norm will be denoted by ‖ · ‖L2 .
The subspace of L2(0, 2π) spanned by the set{

eikx

∣∣∣ k ∈ Z, −N

2
≤ k ≤ N

2
− 1

}
for N even is denoted by SN . In the following, it will always be assumed that N is even. The
operator PN denotes the orthogonal, self-adjoint, projection from L2 onto SN , defined by

PNf (x) =
∑

−N/2≤k≤N/2−1

eikx f̂ (k).

For f ∈ Hm, the estimates

‖f − PNf ‖L2 ≤ CP N−m
∥∥∂m

x f
∥∥

L2 , (2.1)

‖f − PNf ‖Hn ≤ CP Nn−m
∥∥∂m

x f
∥∥

L2 (2.2)

hold for an appropriate constant CP and a positive integer n. For the proof of these inequalities,
the reader is referred to [23].

The space of continuous functions from the interval [0, T ] into the space Hn is denoted by
C([0, T ], Hn). Similarly, we also consider the space C([0, T ], SN), where the topology on the
finite-dimensional space SN can be given by any norm. Finally note the inverse inequality∥∥∂m

x φ
∥∥

L2 ≤ Nm ‖φ‖L2 , (2.3)

which holds for integers m > 0 and φ ∈ SN . A proof of this estimate can also be found in [23].
We will make use of the Sobolev lemma, which guarantees the existence of a constant c, such that

sup
x

|f (x)| ≤ c ‖f ‖H1 .

Another standard result is that the assignment (f , g) �→ fg is a continuous bilinear map from
H 1 × H−1 to H−1, as shown by the estimate

‖fg‖H−1 ≤ c ‖f ‖H1 ‖g‖H−1 , (2.4)

where the same constant c has been used for simplicity.
In order to obtain a unique solution, Equation (1.1) has to be supplemented with appropriate

boundary and initial conditions. For the purpose of numerical approximation, the problem will be
studied on a finite interval with periodic boundary conditions. The periodic initial value problem
associated to Equation (1.1) in the case when ω = 0 and γ = 1 is

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, x ∈ [0, 2π ], t ≥ 0,

u(0, t) = u(2π , t), t ≥ 0,

u(x, 0) = u0(x). (2.5)
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In the following, it will always be assumed that a solution of this problem exists on some time
interval [0, T ], and with a certain amount of spatial regularity. In particular, we suppose that a
solution exists in the space C([0, T ], H 4) for some T > 0. With these preliminaries in place, we
are set to attack the problem of defining a suitable spectral projection of (2.5) and proving the
convergence of such a projection. First, the Fourier-Galerkin method is presented and a proof of
convergence given. Then in section 4, a de-aliased collocation scheme will be treated.

III. THE FOURIER-GALERKIN METHOD

A space-discretization of (2.5) is defined by utilizing the equivalent formulation (1.2). Thus the
problem is to find a function uN from [0, T ] to SN , which satisfies{(

∂tuN + 1
2∂x(uN)2 + K

(
u2

N + 1
2 (∂xuN)2

)
, φ

) = 0, t ∈ [0, T ],
uN(0) = PNu0, (3.1)

for all φ ∈ SN . Since for each t , uN(·, t) ∈ SN , uN has the form

uN(x, t) =
(N/2)−1∑

k=−(N/2)

ûN (k, t)eikx ,

where ûN (k, t) are the Fourier coefficients of uN(·, t).
Taking φ = eikx for −N/2 ≤ k ≤ N/2 − 1 in (3.1) yields the following system of equations

for the Fourier coefficients of uN .
d

dt
ûN(k, t) = − 1

2 ik(ûN ∗ ûN )(k, t) − ik

1 + k2

[
(ûN ∗ ûN )(k, t) + 1

2 ((ikûN) ∗ (ikûN))(k, t)
]
,

ûN (k, 0) = û0(k),

for −N/2 ≤ k < N/2 − 1.
The short-time existence of a maximal solution of (3.2) is proved using the contraction mapping

principle, and the solution is unique on its maximal interval of definition, [0, tm
N ), where tm

N is
possibly equal to T . Since the argument is standard, the proof is omitted here. The main result of
this article is the fact that the Galerkin approximation uN converges to the exact solution u when
u is smooth enough. This is stated in the next theorem.

Theorem 3.1. Suppose that a solution u of the Camassa-Holm equation (2.5) exists in the space
C([0, T ], Hm) for m ≥ 4, and for some time T > 0. Then for N large enough, there exists a
unique solution uN of the finite-dimensional problem (3.1). Moreover, there exists a constant λ

such that

sup
t∈[0,T ]

‖u(·, t) − uN(·, t)‖L2 ≤ λN 1−m.

Before the proof is given, note that the assumptions of the theorem encompass the existence
of a constant κ , such that

sup
t∈[0,T ]

‖u(·, t)‖Hm ≤ κ .
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1202 KALISCH AND RAYNAUD

In particular, it follows then that there is another constant �, such that

sup
t∈[0,T ]

‖u(·, t)‖H2 ≤ �.

The main ingredient in the proof of the theorem is a local error estimate, which will be established
by the following lemma.

Lemma 3.2. Suppose that a solution uN of (3.1) exists on the time interval [0, t∗
N ] and that

supt∈[0,t∗
N

] ‖uN(·, t)‖H2 ≤ 2�. Then the error estimate

sup
t∈[0,t∗

N
]
‖u(·, t) − uN(·, t)‖L2 ≤ λN 1−m (3.2)

holds for some constant λ, which only depends on T , �, and κ .

Proof. Let h = PNu − uN . We apply PN to (1.2) and since PN commutes with derivation,
we obtain

∂tPNu + 1
2PN∂x(u

2) + KPN

(
u2 + 1

2u
2
x

) = 0.

We multiply this equation by h, integrate over [0, 2π ] and subtract the result from (3.1), where
we have used h, which belongs to SN , as a test function. We get

(ht , h) = −1

2

(
PN∂xu

2 − ∂xu
2
N , h

) −
(

KPN

[
u2 + 1

2
(∂xu)2

]
, h

)
+

(
K

[
u2

N + 1

2

(
∂xu

2
N

)2
]

, h

)
.

Using the fact that PN is self-adjoint on L2, and h ∈ SN , this may be rewritten as

1

2

d

dt
‖h‖2

L2 = −1

2

(
∂xu

2 − ∂xu
2
N , h

) − (
K

[
u2 − u2

N

]
, h

) − 1

2

(
K

[
(∂xu)2 − (∂xuN)2

]
, h

)
. (3.3)

Let’s estimate the three terms on the right-hand side of (3.3) in the time interval [0, t∗
N ], where

the H 2-norm of uN is bounded by 2�. We have(
∂xu

2 − ∂xu
2
N , h

) = (∂x{(u + uN)(u − uN)}, h)

= (∂x(u + uN) (u − uN), h) + ((u + uN) ∂x(u − uN), h)

= (∂x(u + uN) (u − uN), h) + ((u + uN)∂x(u − PNu), h)

+ ((u + uN)∂x(PNu − uN), h).

Consequently, there appears the estimate∣∣(∂xu
2 − ∂xu

2
N , h

)∣∣ ≤ sup
x

|∂x(u + uN)| ‖u − uN‖L2 ‖h‖L2

+ sup
x

|u + uN | ‖∂x(u − PNu)‖L2 ‖h‖L2 +
∣∣∣∣∫ 2π

0
(u + uN)hxh dx

∣∣∣∣
Numerical Methods for Partial Differential Equations DOI 10.1002/num
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≤ c ‖u + uN‖H2 (‖u − PNu‖L2 + ‖PNu − uN‖L2) ‖h‖L2

+ c ‖u + uN‖H1 ‖u − PNu‖H1 ‖h‖L2 + 1

2

∫ 2π

0
h2|∂x(u + uN)| dx

≤ 3c�
(
CP N−m ‖u‖Hm + ‖h‖L2

) ‖h‖L2 + 3c�CP N 1−m ‖u‖Hm ‖h‖L2

+ 1

2
sup

x

|∂x(u + uN)|
∫ 2π

0
h2 dx.

Noting that the last integral is bounded by 1
2 3c� ‖h‖2

L2 , there appears the estimate

∣∣(∂xu
2 − ∂xu

2
N , h

)∣∣ ≤ 3c� ‖h‖L2

(
3

2
‖h‖L2 + CP ‖u‖Hm (N−m + N 1−m)

)
. (3.4)

We turn to the second term in (3.3). The operator K is continuous from H−1 to L2. Therefore,
after using the Cauchy-Schwartz inequality and (2.4), there appears(

K
(
u2 − u2

N

)
, h

) ≤ ∥∥u2 − u2
N

∥∥
H−1 ‖h‖L2

≤ ‖(u + uN)(u − uN)‖H−1 ‖h‖L2

≤ c ‖u + uN‖H1 ‖u − uN‖H−1 ‖h‖L2 . (3.5)

Then, since

‖u − uN‖H−1 ≤ ‖u − uN‖L2

≤ ‖u − PNu‖L2 + ‖h‖L2

≤ CP N−m ‖u‖Hm + ‖h‖L2 ,

and ‖u + uN‖H1 is bounded (recall that the estimates are established on [0, t∗
N ] where the H 2-norm

of uN is bounded by 2�), we get from (3.5)(
K

(
u2 − u2

N

)
, h

) ≤ 3c� ‖h‖L2 (CP N−m ‖u‖Hm + ‖h‖L2). (3.6)

Similarly for the remaining term in (3.3) we have

(K((∂xu)2 − (∂xuN)2), h) ≤ ∥∥(∂xu)2 − (∂xuN)2
∥∥

H−1 ‖h‖L2

≤ c ‖∂x(u + uN)‖H1 ‖∂x(u − uN)‖H−1 ‖h‖L2

≤ 3c� ‖h‖L2 (CP ‖u‖Hm N−m + ‖h‖L2). (3.7)

Gathering the estimates (3.4), (3.6), and (3.7), it transpires that

d

dt
‖h‖L2 ≤ 27

4
c� ‖h‖L2 + 15

2
c�CP κN 1−m.

Consequently, Gronwall’s inequality gives

sup
t∈[0,t∗

N
]
‖h(·, t)‖L2 ≤ λN 1−m (3.8)
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for an appropriate constant λ, which depends on T , �, and κ . After decomposing u − uN as the
sum u − PNu + h and using (2.1) and the triangle inequality, (3.8) yields

sup
t∈[0,t∗

N
]
‖u(·, t) − uN(·, t)‖L2 ≤ λN 1−m

for another constant λ, which again only depends on T , �, and κ .

Lemma 3.3. Suppose that a solution uN of (3.1) exists on the time interval [0, t∗
N ] and that

supt∈[0,t∗
N

] ‖uN(·, t)‖H2 ≤ 2�. Then the error estimate

sup
t∈[0,t∗

N
]
‖u(·, t) − uN(·, t)‖H2 ≤ λN 3−m (3.9)

holds for some constant λ, which only depends on T , �, and κ .

The proof of this lemma follows from (3.8) after application of the triangle inequality and the
inverse inequality (2.3).

Proof of Theorem 3.1. We want to extend the estimate (3.2) to the time interval [0, T ]. Note
that the time t∗

N appearing in Lemma 3.2 has so far been unspecified. We now define t∗
N by

t∗
N = sup

{
t ∈ [0, T ] | for all t ′ ≤ t , ‖uN(·, t ′)‖H2 ≤ 2�

}
. (3.10)

Thus the time t∗
N corresponds to the largest time in [0, T ] for which the H 2-norm of uN is uniformly

bounded by 2�. Since ‖uN(·, 0)‖H2 = ‖PNu(·, 0)‖H2 , we have

‖uN(·, 0)‖H2 ≤ ‖u(·, 0)‖H2 ≤ �.

Hence, t∗
N > 0 for all N . Note that t∗

N is necessarily smaller than the maximum time of existence tm
N .

On the other hand, we are going to prove that there exists N∗ such that

t∗
N = T for all N ≥ N∗, (3.11)

and therefore the supremum in (3.2) holds on [0, T ]. By definition (3.10), we either have t∗
N = T

or t∗
N < T and in this case, since ‖uN(t)‖H2 is a continuous function in time, ‖uN(t∗

N)‖H2 = 2�.
Suppose that t∗

N < T . Then the triangle inequality yields

2� = ∥∥uN(·, t∗
N)

∥∥
H2

≤ ∥∥(uN(·, t∗
N) − u(·, t∗

N)
∥∥

H2 + ∥∥u(·, t∗
N)

∥∥
H2

≤ ∥∥(uN(·, t∗
N) − u(·, t∗

N)
∥∥

H2 + �,

by the definition of �. Hence,

� ≤ ∥∥(uN(·, t∗
N) − u(·, t∗

N)
∥∥

H2 .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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By Lemma 3.3, it follows that

� ≤ λN 3−m

or

N ≤
(

λ

�

)1/(m−3)

.

In conclusion, for N∗ > (λ/�)
1

m−3 , we cannot have t∗
N < T and the claim (3.11) holds. It follows

that for N ≥ N∗ the solution uN of (3.2) is defined on [0, T ] because, as we noticed earlier,
t∗
N < tm

N and, from (3.2), we get

sup
t∈[0,T ]

‖u(·, t) − uN(·, t)‖L2 ≤ λN 1−m.

The following corollary is immediate from the estimate (3.8) and the inequalities (2.2) and (2.3).

Corollary 1. Suppose that a solution u of the Camassa-Holm equation (2.5) exists in the space
C([0, T ], Hm) for m ≥ 4, and for some time T > 0. Then for N large enough, there exists a
unique solution uN of the finite-dimensional problem (3.1). Moreover, there exists a constant λ

such that

sup
t∈[0,T ]

‖u(·, t) − uN(·, t)‖H2 ≤ λN 3−m.

IV. THE FOURIER-COLLOCATION METHOD

The Galerkin method is not very attractive from a computational point of view, because the
computation of the convolution sums in (3.2) is very expensive. If the convolution is computed by
means of the Fast Fourier transform (FFT), the computational time is minimized, but an additional
error known as aliasing is introduced. This means that high wavenumbers are projected back into
low wavenumber modes, causing spurious oscillations. We refer to [23,24] for more details about
the aliasing phenomenon. Methods that use the FFT are often called collocation methods since
they are sometimes algebraically equivalent to a collocation scheme in the case of a Fourier
basis. The problem of aliasing can be somewhat alleviated if enough modes are used to resolve all
frequencies. However, this remedy is mostly applicable to the study of one-dimensional problems,
and it supposes that the amplitudes decay in a reasonable fashion. In the case of the Camassa-Holm
equation, one may want to use the spectral discretization to study the peakon solutions mentioned
in the introduction. In the case that ω = 0 and γ = 1, the representation

u(x, t) = de−|x−dt |,

reveals that u has an elementary Fourier transform, given for instance at time t = 0 by

û(k, 0) = d

√
2

π

1

1 + k2
. (4.1)

As this expression shows, the Fourier amplitudes decay only quadratically, and therefore, it will
be nearly impossible to avoid aliasing, even when using a large number of modes. In light of this

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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problem, we have chosen to treat the case of a de-aliased scheme. In fact, it will be shown that
the dealiasing we choose yields a scheme that is equivalent to the Galerkin scheme treated in the
previous section.

The collocation operator IN is defined as follows. Let the collocation points be xj = (2πj)/N

for j = 0, 1, . . . , N − 1. Then, given a continuous and periodic function f , INf is the unique
element in SN , such that

INf (xj ) = f (xj ),

for j = 0, 1, . . . , N −1. INf is also called the N th trigonometric interpolant of f . When restricted
to SN , the collocation operator reduces to the identity operator, as highlighted by the identity

INφ = φ for all φ ∈ SN .

It has been proved in [25,26] that when f ∈ Hm with m ≥ 1, there exists a constant CI , such that

‖f − INf ‖L2 ≤ CIN
−m

∥∥∂m
x f

∥∥
L2 ,

and more generally

‖f − INf ‖Hn ≤ CIN
n−m

∥∥∂m
x f

∥∥
L2 .

The collocation approximation to (2.5) is given by a function uN from [0, T ] to SN , such that{
∂tuN + 1

2∂xIN

[
u2

N

] + KIN

[
u2

N + 1
2 (∂xuN)2

] = 0, t ∈ [0, T ],
uN(0) = INu0. (4.2)

Note that (4.2) reduces to (3.1) if the interpolation operator IN is replaced by the projection
operator PN . In order to apply the FFT, we take the discrete Fourier transform, denoted here
by FN . We again refer to [23, 24] for more details on this algorithm and its properties. The
discrete Fourier transform FN of a continuous function u is the vector in CN defined as

FN(u)(k) = ÎN (u)(k), for −N/2 ≤ k < N/2 − 1. (4.3)

Applying the discrete Fourier transform to each term in (4.2) and using the definition (4.3) of FN ,
there appears the equation(

∂tFNuN + ik

2
FN

(
u2

N

) + ik

1 + k2
FN

[
u2

N + 1
2 (∂xuN)2

])
(k) = 0. (4.4)

Let ũN ∈ CN denote FN(uN). The solutions of (4.2), or equivalently of (4.4), are obtained by
solving the following system of ordinary differential equations:

d

dt
ũN(k) + ik

2
FN

((F−1
N ũN

)2)
(k) + ik

1 + k2
FN

[(F−1
N ũN

)2 + 1
2

(F−1
N (ikũN)

)2
]
(k) = 0,

ũN (k, 0) = FNu(k, 0),

for −N/2 ≤ k < N/2 − 1. This method is appealing because of the efficiency of the FFT, which
allows us to rapidly compute the discrete Fourier transform and its inverse. It has to be compared
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to (3.2) where the computation of the convolution is extremely expensive. Nevertheless the FFT
introduces errors due to aliasing. In order to avoid aliasing, we apply the well-known 2/3-rule.
Thus we consider instead the following initial value problem: Find uN ∈ C([0, T ], SN) such
that{

∂tuN + 1
2∂xIN [(P2N/3uN)2] + KIN

[
(P2N/3uN)2 + 1

2 (∂x(P2N/3uN))2
]=0, t ∈ [0, T ],

uN(0)=INu0.

The corresponding system of ordinary differential equation satisfied by ũN = FNuN is

d

dt
ũN(k) + ik

2
FN((P2N/3F−1

N ũN)2)(k)

+ ik

1 + k2
FN

[(
P2N/3F−1

N ũN

)2 + 1
2

(
P2N/3F−1

N (ikũN)
)2

]
(k) = 0,

ũN (k, 0) = FNu(k, 0), (4.5)

which again can be solved efficiently by the use of the FFT. When implementing (4.5) numeri-
cally, it is important to note that P2N/3F−1

N ũN (and similarly P2N/3F−1
N (ikũN)) can be rewritten

according to

P2N/3F−1
N ũN = F−1

N ũc
N ,

where ũc
N is obtained by cutting off the frequencies higher than M , i.e.,

ũc
N (k) =

ũN (k) if
2N

3
− 1 ≤ k ≤ 2N

3
,

0 otherwise,

thus making these quantities easy to compute. The use of the projection P2N/3 is justified by the
following identity, which is derived in [23],

PMIN

(
PMf · PMg

) = PM

(
PMf · PMg

)
, (4.6)

and which holds for any continuous functions f , g and any M ≤ (2N/3). The identity (4.6)
essentially means that the interpolation operator IN , which generally introduces aliasing, becomes
harmless when we apply an M-filter, that is when we cut off the frequencies higher than M .

In order to prove convergence of the scheme, we introduce vN = P2N/3uN and h = vN −P2N/3u.
Note that vN , ∂xvN , h ∈ S2N/3. After applying P2N/3 in (4.8) and taking the scalar product with h,
we get (

∂tvN , h
) + 1

2

(
P2N/3∂xIN(v2

N), h
) + (

P2N/3KIN

[
(vN)2 + 1

2 (∂xvN)2
]

, h
) = 0. (4.7)

The projection operator P2N/3 commutes with ∂x and K . Using (4.6) with M = (2N/3), we get
P2N/3IN(v2

N) = P2N/3(v
2
N) and P2N/3IN(∂xv

2
N) = P2N/3(∂xv

2
N) since vN , ∂xvN ∈ S2N/3. Hence,

from (4.7), we get(
∂tvN , h

) + 1
2

(
P2N/3∂x

(
v2

N

)
, h

) + (
P2N/3K

[
(vN)2 + 1

2 (∂xvN)2
]

, h
) = 0.
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Then using the fact that P2N/3 is self-adjoint and P2N/3h = h, there obtains(
∂tvN , h

) + 1
2

(
∂x

(
v2

N

)
, h

) + (
K

[
(vN)2 + 1

2 (∂xvN)2
]
, h

) = 0. (4.8)

After applying P2N/3 to (1.2) and taking the scalar product with h, we get(
P2N/3∂tu, h) + 1

2

(
∂x(u

2), h
) + (

K
[
u2 + 1

2 (∂xu)2
]

, h
) = 0, (4.9)

where we have used again the fact that P2N/3 is self-adjoint and P2N/3h = h. Subtracting (4.9)
from (4.8), we obtain(

∂th, h
) + 1

2

(
∂x

(
v2

N

) − ∂xu
2, h

) + (
K

[
(vN)2 − u2

]
, h

) + 1
2

(
K

[
(∂xvN)2 − (∂xu)2

]
, h

) = 0.

We now proceed exactly in the same way as for the Galerkin method in the previous section. After
introducing

t∗
N = sup

{
t ∈ [0, T ] | for all t ′ ≤ t , ‖vN(t ′, ·)‖H2 ≤ 2�

}
is appears that the estimate

sup
t∈[0,t∗

N
]
‖vN − v‖L2 ≤ λ

(
2N

3

)1−m

(4.10)

holds for some λ depending only on T , �, and κ . The factor 2N/3 in (4.10) comes from the fact
that we used the projection on S2N/3 instead of the projection on SN that was used to derive (3.2).
As in the previous section, we can prove that for N large enough the inequality (4.10) holds when
taking the supremum over all t in [0, T ]. Thus we are led to the following theorem.

Theorem 4.1. Suppose that a solution u of the Camassa-Holm equation (1.1) exists in the space
C([0, T ], Hm) for m ≥ 4 and for some time T > 0. Then for N large enough, there exists a
unique solution uN to the finite-dimensional problem (4.5). Moreover, there exists a constant λ

such that,

sup
t∈[0,T ]

‖u(·, t) − vN(·, t)‖L2 ≤ λ

(
2N

3

)1−m

,

where vN = P2N/3uN .

As in the previous section, an error estimate can also be given for the H 2 norm. The formulation
is similar to Corollary 1.

V. NUMERICAL EXPERIMENTS

It appears that spectral discretizations have been widely used to study mathematical properties
of the Camassa-Holm equation. In particular, the interaction of two or more peakon solution has
been a topic of intense interest. Here, we restrict ourselves to the computation of single traveling
waves in order to validate the results of the previous sections. Traveling waves have the form

u(x, t) = φ(x − dt),
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FIG. 1. A smooth periodic traveling wave. The solid curve shows the initial data, while the dashed-dotted
curve shows the computed solution at T = 2.255.

were φ is either known exactly, or can be approximated, and where d is the wave speed. On the
real line R, the so-called peakons are well known. In the case that ω = 0 and γ = 1, they are
given by

φ(x) = de−|x|.

Since we consider periodic boundary conditions, it is convenient to know that there are also
periodic peaked traveling waves. These are given by

φ(x) = d
cosh( 1

2 − x)

cosh( 1
2 )

on the interval [0, 1] and are periodic with period 1.

TABLE I. Temporal discretization error for a smooth periodic traveling wave over the time domain
[0, 2.255].

	t L2-Error Ratio

0.036 1.50e−07
0.018 9.30e−09 16.08
0.009 5.58e−10 16.66
0.0045 1.82e−11 30.74
0.00225 2.52e−11 7.20

The number of grid points is N = 256.
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TABLE II. Spatial discretization error for a smooth periodic traveling wave over the time domain [0, 3.28].
N L2-Error Ratio

4 8.67e−02
8 8.12e−03 10.67

16 1.11e−04 73.14
32 7.98e−08 1391.0
64 1.49e−11 5354.1

128 1.49e−11 0.9945
The time step is 	t = 0.0002.

The Camassa-Holm equation (1.1) also admits smooth periodic traveling-wave solutions. These
are not known in closed form, but they can be approximated. In this case, φ is given implicitly by

|x − x0| =
∫ φ

φ0

√
d − y√

(M − y)(y − m)(y − z)
dy,

where φ(x0) = φ0, and z = d − M − m. If z < m < M < d, then φ is a smooth function with
m = minx∈R ϕ(x) and M = maxx∈R ϕ(x). Once this integral is evaluated for a sufficient number
of values, the function is inverted, and an approximation is found via a spline interpolation. This
procedure for finding smooth traveling waves is explained in more detail in [15, 27].

For the purpose of numerical integration, the Fourier discretization is supplemented with the
well-known explicit four-stage Runge-Kutta scheme. Since the equation is only mildly stiff, an

FIG. 2. A peakon. The solid curve shows the initial data, while the dashed-dotted curve shows the computed
solution at T = 3.2. The size of the domain is L = 50.
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TABLE III. Discretization error for a peaked traveling wave on the real line over the time domain [0, 3.2].
N L2-Error Ratio

512 7.26e−02
1024 3.29e−02 2.20
2048 1.45e−02 2.27
4096 6.35e−03 2.28
8192 2.81e−03 2.26

16384 1.28e−03 2.18
32768 6.20e−04 2.06

The time step is 	t = 0.0002, and the size of the spatial domain is 50.

explicit method appears to be more advantageous than an implicit method. The scheme is explained
as follows. If the wave profile vN(·, ti) is known at a particular time ti , the four-stage Runge-Kutta
method consists of letting

V1 = vN(·, ti), �1 = F(V1),

V2 = V1 + 	t

2
�1, �2 = F(V2),

V3 = V2 + 	t

2
�2, �3 = F(V3),

V4 = V3 + 	t�3, �4 = F(V4),

where dvN

dt
= F(VN), and F is given by Equation (4.2). Finally, these functions are combined to

compute vN(·, ti+1) = vN(·, ti + 	t), according to

vN(·, ti + 	t) = vN(·, ti) + 	t

6
(�1 + 2�2 + 2�3 + �4).

This scheme is formally fourth-order convergent, meaning that if the time step 	t is halved, the
error should decrease by a factor of 16.

The traveling-wave solutions can be used to test the numerical algorithm, because their time
evolution is simply given by translation. If vN(·, T ) is the result of a numerical computation with
initial data φ(x), it can be compared with the translated function φ(x − dT ). In this way, the
error produced by the discretization can be calculated. In particular, the smooth traveling wave
shown in Fig. 1 can be used to exhibit the convergence rate of the numerical approximation.
In Table I, it can be seen that the 4th-order convergence of the temporal integration scheme
is approximately achieved. The spectral convergence of the spatial discretization is visible in
Table II. Note however, that the error is limited below because the smooth traveling waves are
not known in closed form.

TABLE IV. Discretization error for a peaked periodic traveling wave over the time domain [0, 3.2].
N L2-Error Ratio

32 8.89e−01
64 3.95e−01 2.25

128 1.86e−01 2.12
512 9.36e−02 1.98

1024 4.66e−02 2.01
2048 2.31e−02 2.02
4096 1.15e−02 2.01

The time step is 	t = 0.003.
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For the Camassa-Holm equation, the peakon solutions are of special importance. The evolution
of a peakon is shown in Fig. 2. Since the peakons are not smooth, we cannot expect spectral
convergence. However, as shown in Table III, the spectral discretization converges nevertheless,
albeit at a lower rate. The Fourier representation (4.1) reveals that the peakon is in the Sobolev
space Hs(R) for any s < 3

2 . As the observed convergence rate in Tables III and IV is higher than
expected given the regularity of the peakon, it appears that the convergence at rate of N 1−m in
Theorems 3.1 and 4.1 is probably not an optimal result. We hasten to mention however that this
result as it stands is not applicable to peakons, because the proof makes use of H 4-regularity.

In order to analyze the advantage of the dealiasing scheme, we compared our calculations with
computations performed using an unfiltered scheme. For both the smooth approximate traveling

FIG. 3. A peakon, computed with and without dealiasing. The number of grid points is N = 512. The
left column shows the aliased calculations. (a) T = 6.4, (c) T = 6.4, close-up. The right column shows
the de-aliased calculations. (b) T = 6.4, (d) T = 6.4, close-up. The dashed curve shows the exact peakon,
translated by an appropriate amount according to the time T = 6.4 and the speed d = 1. It appears that the
de-aliased computation shown on the right is more advantageous.
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FIG. 4. Comparison of aliased and de-aliased calculations of a periodic peakon with N = 256 and 	t =
0.003. The left column shows the aliased calculations. (a) T = 4, (c) T = 6, (e) T = 8. The right column
shows the de-aliased calculations. (b) T = 4, (d) T = 6, (f) T = 8. Solid curves are computed waves after
4, 6, and 8 periods. Dashed curves are the initial data, translated by an appropriate amount. In the de-aliased
computation, a 2/3 filter was used, so that the effective number of modes is only 170.
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waves, and the peaked waves, the differences in convergence were minute on small time scales. In
fact the observed rate of convergence was almost exactly the same. However, as shown in Fig. 3,
the dealiasing did reduce some spurious oscillations in the approximations. The advantage of the
dealiasing became apparent when integrating over intermediate time scales. The periodic peaked
traveling waves then suffered serious destabilization when computed with an aliased scheme. As
shown in Fig. 4, this problem was completely avoided by the use of an appropriate filter. This
shows in fact that it is preferable to perform de-aliased computations, especially for solutions with
low regularity.
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