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CONVERGENCE OF A SPLITTING METHOD OF HIGH ORDER
FOR REACTION-DIFFUSION SYSTEMS

STÉPHANE DESCOMBES

Abstract. In this article, we prove the convergence of a splitting scheme of
high order for a reaction-diffusion system of the form ut −M∆u + F (u) =
0 where M is an m × m matrix whose spectrum is included in {Rz > 0}.
This scheme is obtained by applying a Richardson extrapolation to a Strang
formula.

1. Introduction

Let N , m be two integers. We consider the reaction-diffusion system:
∂u

∂t
−M∆u+ F (u) = 0, x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN .
(1.1)

We suppose that u belongs to Rm, that F is a C5 function from Rm to itself
satisfying

F (0) = 0(1.2)

and that M is an m×m matrix whose spectrum is included in {Rz > 0}. Let L be
the space L2(RN )m∩L∞(RN )m. We assume that the initial condition u0 belongs to
L and that (1.1) has a unique solution belonging to C([0, τ ],L) for all τ > 0. We will
denote u(t, .) by T tu0, that is to say T t is the flow associated to (1.1). For example,
systems of type (1.1) cover the case of reaction-diffusion systems with symmetric
positive definite matrix and the case of complex Ginzburg-Landau equations. We
are going to prove the stability and convergence of a splitting method for (1.1).
This method is based on the classical decoupling of the diffusion and ODE parts
of (1.1), leading to a Strang’s formula, which we extrapolate. More precisely, given
v0 and w0 in L, we introduce the following equations:

∂v

∂t
−M∆v = 0, x ∈ RN , t > 0,

v(0, x) = v0(x), x ∈ RN
(1.3)

Received by the editor November 10, 1998 and, in revised form, November 29, 1999.
2000 Mathematics Subject Classification. Primary 65M12, 65B05, 65J15.
Key words and phrases. Splitting, reaction-diffusion systems.

c©2000 American Mathematical Society

1481

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1482 STÉPHANE DESCOMBES

and 
∂w

∂t
+ F (w) = 0, x ∈ RN , t > 0,

w(0, x) = w0(x), x ∈ RN .
(1.4)

Let Xtv0 and Y tw0 be the respective solutions of (1.3) and (1.4). The motivation
for the splitting method that we consider is essentially numerical; the numerical ap-
proximation of the solution of a heat type equation and the numerical approxima-
tion of a scalar ordinary differential equation are easy, but a numerical integration
involving the two operators together is bothersome for the following reasons: if we
opt for an explicit scheme, the time step ∆t is limited by O(∆x2); if we choose an
implicit scheme, we have to solve a large system of nonlinear equations which re-
quires the updating of the linearized operator at each time step, a computationally
expensive operation.

The Strang approximation formula ([14], [15]) is defined by

Ztu = Xt/2Y tXt/2u(1.5)

and is of order two, at least formally. For example, numerical results in the case
of complex Ginzburg-Landau equations with periodic boundary conditions are pre-
sented in Goldman and Sirovich [7]. Unfortunately, Q. Sheng has proved in [12] that
it is generally impossible to generate automatically stable schemes of order higher
than two. More precisely, a linear combination with positive coefficients of products
of exponentials of the form exp(γAt), exp(δBt) when γ and δ are positive, and A
and B are dissipative is at most an approximation of order two to exp(t(A + B)).
As in Goldman and Kaper [8], we propose a scheme of order greater than 2. This
scheme is obtained by applying a Richardson’s extrapolation to Zt and is given by

W tu =
4
3
Zt/2Zt/2u− 1

3
Ztu.(1.6)

It is formally of order 4 [5] and the implementation of this scheme in the case
of complex Ginzburg-Landau equations with periodic boundary conditions is pre-
sented in Descombes and Schatzman [1]. The comparison between error and CPU
time favors this scheme over Strang’s classical scheme (1.5). Thus the purpose of
this paper is to obtain the stability and convergence of this scheme. But the sta-
bility of higher order methods requires a much more refined analysis than for (1.5),
which we undertake here.

Denote H the Hilbert space L2(RN )m. We need a contraction property of the
operatorXt in H , which is not true if we use the canonical Euclidean scalar product.
Therefore, we equip the space Rm with a noncanonical scalar product. Since M is
a matrix whose spectrum is included in {Rz > 0}, we define the following matrix:

S =
∫ +∞

0

e−sM
∗
e−sMds.(1.7)

Denoting by 1 the identity of any algebra of operators, it can be easily checked that
S is a symmetric positive definite matrix satisfying

SM +M∗S = −
∫ +∞

0

d

ds

(
e−sM

∗
e−sM

)
= 1.(1.8)
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We denote (.|.) the Euclidean scalar product in Rm; for any vector ω ∈ Rm, ω 6= 0,
(1.8) implies

(SMω|ω) = (ω|M∗Sω) = (ω|ω)− (SMω|ω),

and therefore

(SMω|ω) =
1
2

(ω|ω) > 0.

Hence there exists a constant β > 0 such that for any vector ω ∈ Rm,

(SMω|ω) ≥ β(Sω|ω).(1.9)

From now on, the scalar product of two vectors ω, η in Rm will be ω ·η = (Sω|η)
and the corresponding vector norm is denoted

∣∣ ∣∣. The space H is equipped with
the scalar product defined for all v and w in H by

(v|w)H =
∫
RN

v · w dx,

the associated norm is denoted |.|H and the operator norm |.|L(H). For all v in H
and t > 0 the operator Xt satisfies

|Xtv|H ≤ |v|H .(1.10)

Let us introduce some other functional spaces: the space L∞(RN )m is equipped
with the norm |.|∞; H1(RN )m andH2(RN )m are the usual Sobolev spaces, equipped
with the norms |.|H1 and |.|H2 . Finally, the space L1 denotes the subspace of L made
out of functions which belong to C4(RN )m whose first four derivatives are bounded.
In this article, we use the classical multi-index notation: if α = (α1, . . . , αn) ∈ Nn,
|α| = α1 + . . .+ αn and ∂α = ∂α1

1 . . . ∂αnn . The main result is Theorem 4.11 which
can be stated as follows: for all u0 in L1 and for all τ > 0, there exists C and h0

such that for all h ∈ (0, h0], for all n such that nh ≤ τ∣∣∣(Wh
)n
u0 − T nhu0

∣∣∣
H
≤ Ch| lnh||u0|H .

We observe that this result is slightly different from the one obtained in [2]: here
we work with a rather general system of reaction-diffusion but with stronger as-
sumptions on the initial data; in [2], only a scalar reaction-diffusion equation was
considered, but L∞ estimates were obtained. More precisely, for a scalar reaction-
diffusion equation of the form

∂u

∂t
− ∂2u

∂x2
+ f(u) = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,
with f a Lipschitz continuous function belonging to C3(R) with bounded derivatives
and u0 a continuous function bounded over R, we have shown that the difference
between

(
Wh

)n
u0 and T nhu0 in L∞-norm is in O(

√
h).

This article is organized as follows. In Section 2, we prove some results on the
operators −M∆ and Xt = etM∆. In Section 3, we consider the linear case of
(1.1), where F (u) = V u and V is bounded; in this case the explicit solution of
(1.1) is given by et(M∆−V )u0. We deduce from properties of sectorial operators
an estimate on the difference between et(M∆−V ) and Zt = etM∆/2e−tV etM∆/2 in
operator norms L(H) and L(H2, H). In Section 4, we prove Theorem 4.11 with
the help of a comparison with the linear case.
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1484 STÉPHANE DESCOMBES

Remark 1.1. Theorem 4.11 remains true if F depends also on the space variable.
We suppose that F = F (u) for simplicity.

2. Some properties of the operator—M∆

In this section, we begin by recalling the definition of sectorial operators, as given
by Henry [10]. For θ in (0, π/2) and real a, we denote Sa,θ the subset of C defined
by

Sa,θ = {ζ ∈ C : θ ≤ | arg(ζ − a)| ≤ π and ζ 6= a} .

Definition 2.1. A linear operator C in H is called sectorial if it is closed, densely
defined, and if there exist θ, a and M0 ≥ 1 such that Sa,θ is included in ρ(C), the
resolvent set of C, and such that for all ζ in Sa,θ∣∣(ζ − C)−1

∣∣
L(H)

≤M0/|ζ − a|.(2.1)

For any φ in (θ, π/2), we denote by Γ a contour in Sa,θ, which verifies Γ(−s) =
Γ(s). Let us define Dφ by

Dφ : s→ seiφ,

and we also request Γ to be asymptotic to Dφ as s→ +∞ (see Figure 1).
From Henry [10], we know that if C is a sectorial operator in H , then −C is the

infinitesimal generator of an analytic semigroup {e−tC}t≥0, where

e−tC =
1

2πi

∫
Γ

e−tζ(ζ − C)−1 dζ.(2.2)

Im

Re

Sa,θ

θ

Γ

Figure 1. The path Γ in the complex plane.
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Given an m×m matrix M whose spectrum is included in {Rz > 0}, we define
the operator A by

D(A) = H2(RN )m, A = −M∆,

and we have the following result.

Theorem 2.2. The operator A is sectorial in H.

The proof depends on the following lemma.

Lemma 2.3. There exist θ0 ∈ (0, π/2) and a constant C > 0 such that, for all
ζ ∈ S0,θ0:

sup
t≥0

∣∣(ζ − tM)−1
∣∣
B(Cm)

≤ C/|ζ|(2.3)

and

sup
t≥0

∣∣t(ζ − tM)−1
∣∣
B(Cm)

≤ C.(2.4)

Proof. Let us denote by µ1 an eigenvalue of M such that | argµ1| ≥ | argµ| for
all µ ∈ σ(M). We introduce ε > 0 such that | argµ1| + ε < π/2, and we choose
θ0 = | argµ1|+ ε.

We now suppose that ζ belongs to S0,θ0 and we consider ω and ψ in Rm such
that

(ζ − tM)ω = ψ.(2.5)

Our purpose is to show that there exists a constant C > 0 such that |ω| ≤ C|ψ|/|ζ|.
We assume that ω 6= 0, we take the scalar product in the complexified space Cm
with ω, and we take the imaginary and the real part of this scalar product to obtain

|=ζ||ω| ≤ |ψ|(2.6)

and

Rζ ω · ω − t(SMω|ω) = R (ψ · ω) .(2.7)

We infer from (1.9) and (2.7) that

(Rζ − tβ)|ω| ≥ −|ψ|.(2.8)

If Rζ < 0, we deduce from (2.8) that

|Rζ||ω| ≤ |ψ|.(2.9)

We add the square of (2.6) and (2.9) and we find

|ω| ≤
√

2|ψ|
|ζ| .

If Rζ > 0, then |=ζ| ≥ |ζ| sin θ0, and we infer from (2.6) that

|ω| ≤ |ψ|
|ζ| sin θ0

.

Therefore (2.3) is established with C = max(
√

2, 1/ sin θ0). Finally, we deduce (2.4)
from (2.3) and the triangle inequality.
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1486 STÉPHANE DESCOMBES

Proof of Theorem 2.2. Let u belong to H and let

F(u)(ξ) =
∫
RN

u(x)e−2πi〈x.ξ〉dx

be its Fourier transform; here 〈x.ξ〉 is the duality product of x and ξ. It is a well
known fact that

F(∆u)(ξ) = −4π2|ξ|2F(u)(ξ).

For θ0 defined in Lemma 2.3, we deduce that the resolvent set of A is included in
S0,θ0 . Moreover, for all ζ ∈ S0,θ0 , we have

F(((ζ +M∆)−1)u)(ξ) = (ζ − 4π2|ξ|2M)−1F(u)(ξ),

and it follows from (2.3) that∣∣(ζ +M∆)−1
∣∣
L(H)

≤ C/|ζ|.
This concludes the proof of Theorem 2.2.

We will need also estimates on ∂i(ζ +M∆)−1 and ∂ij(ζ +M∆)−1.

Lemma 2.4. There exists a constant C > 0 such that for all i and j in {1, . . . , n},
for all ζ ∈ S0,θ0 , and for all u ∈ H, we have∣∣∂i(ζ +M∆)−1u

∣∣
H
≤ C√

|ζ|
|u|H and

∣∣∂ij(ζ +M∆)−1u
∣∣
H
≤ C|u|H .(2.10)

Proof. Since∣∣F(∂ij(ζ +M∆)−1u)
∣∣
H
≤ sup

ξ∈RN

(
|ξ|2

∣∣(ζ − |ξ|2M)−1
∣∣
B(Cm)

)
|u|H ,(2.11)

the second inequality of (2.10) is a consequence of inequality (2.4). For u in H , we
have

|∇(ζ +M∆)−1u|2H ≤ |∆(ζ +M∆)−1u|H |(ζ +M∆)−1u|H

≤ C

|ζ| |u|
2
H

and this proves the first inequality of (2.10).

We now prove the regularizing effect of the operator Xt = etM∆.

Lemma 2.5. There exists a constant C > 0, such that, for all u ∈ H, all j ∈
{1, . . . , n} and all t > 0, the following inequality holds:∣∣∂j (etM∆u

)∣∣
H
≤ C√

t
|u|H .(2.12)

Proof. Since, for all j ∈ {1, . . . , n}

F
(
∂j
(
etM∆u

))
(ξ) = −2πiξje−4π2Mt|ξ|2F(u)(ξ),

it is sufficient to show that there exists a constant C > 0, such that

sup
ξ∈Rm

∣∣∣|ξ|e−tM|ξ|2∣∣∣
B(Rm)

≤ C√
t
.

If we let
√
tξ = η, it is also sufficient to see that

sup
η∈Rm

∣∣∣|η|e−M|η|2 ∣∣∣
B(Rm)

≤ C.
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For ψ in Rm and s ≥ 0, denote γ(s) = e−sMψ. It follows from (1.9) that γ(s)
verifies

1
2
d

ds
|γ(s)|2 + β|γ(s)|2 ≤ 0,

thus

|γ(s)|2 ≤ e−2βs|ψ|2,

and we infer that

sup
η∈Rm

∣∣∣|η|e−M|η|2 ∣∣∣
B(Rm)

≤ sup
η∈Rm

(
|η|e−β|η|

2
)
≤ C.

This concludes the proof of Lemma 2.5.

Finally, we give the following result, which can be deduced from Theorem 1.4.3,
page 26 of Henry [10]:

Lemma 2.6. Let u belong to H2(RN )m. There exists a constant C > 0 such that
for all t > 0 ∣∣etM∆u− u

∣∣
H
≤ Ct|u|H2 .(2.13)

3. Estimates on the linear case

In this section, we consider the linear case of (1.1); more precisely, we consider
the equation 

∂u

∂t
−M∆u+ V u = 0, x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,
(3.1)

where V is a bounded function. We deduce from a representation formula of
Z2t = etM∆e−2tV etM∆ an estimate on the difference between e2t(M∆−V ) and
etM∆e−2tV etM∆. We now introduce some classes of functions V .

Definition 3.1. We denote V4(c) the set of functions V of class C4 such that there
exists c > 0 such that for all x ∈ RN and all α ∈ Nn with 0 ≤ |α| ≤ 4,

|∂αV (x)| ≤ c,

and we denote V∞(c) the set of functions V of class C∞ belonging to V4(c) and
such that ∂αV is of slow growth for |α| ≥ 5.

Let Vij , 1 ≤ i, j ≤ m, be m2 elements of V∞(c) and let us denote V by the
matrix

V = (Vij)1≤i,j≤m.

With a slight abuse of notation, we will say that V belongs also to V∞(c). We
identify V and the matrix multiplication by V and introduce the operator B defined
by

D(B) = H, B = V.

It follows from Definition 3.1 that B is bounded in H and thus sectorial in H .
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1488 STÉPHANE DESCOMBES

3.1. A representation formula for Z2t. We assume that V belongs to V∞(c).
We have shown that the operator A = −M∆ and B = V are sectorial. Without
loss of generality, we suppose that the number a of Definition 2.1 vanishes also for
the second operator

a = 0.(3.2)

This assumption will be dropped at the end of this part.
Let H0 be the Schwartz space S(RN )m, which is a dense subspace of H . We

notice that AH0 and BH0 are included in H0. Moreover, for all z in ρ(A) (resp.
in ρ(B)), (z − A)−1H0 (resp. (z − B)−1H0) are included in H0. For ζ ∈ C3,
ζ = (ζ1, ζ2, ζ3), we let lζ = ζ1 + 2ζ2 + ζ3. It follows from (2.2) that, for all u ∈ H0,
we have the representation

Z2tu =
1

(2πi)3

∫
Γ1×Γ2×Γ3

e−tlζ(ζ1 + M∆)−1(ζ2 − V )−1(ζ3 +M∆)−1u dζ,

where Γ1, Γ2, Γ3 are paths like in Figure 1. We also have the following result.

Lemma 3.2 (Dia and Schatzman [3]). For all u ∈ H0, we have

d

dt
Z2tu+ 2(V −M∆)Z2tu = R(t)u,(3.3)

where

R(t)u =
1

(2πi)3

∫
Γ1×Γ2×Γ3

e−tlζF0(ζ)udζ(3.4)

and F0(ζ) is defined by

F0(ζ)u =− 2 (ζ1 +M∆)−1
γ3 (ζ1 +M∆)−2 (ζ2 − V )−1 (ζ3 +M∆)−1

u

− (ζ1 +M∆)−1 (ζ2 − V )−1 γ2 (ζ2 − V )−2 (ζ3 +M∆)−1 u

+ (ζ1 +M∆)−1
γ3 (ζ1 +M∆)−1 (ζ2 − V )−2 (ζ3 +M∆)−1

u,

(3.5)

with

γ2 = [V, [V,M∆]], γ3 = [M∆, [M∆, V ]].(3.6)

3.2. Applications of the representation formula. We infer from (3.3) and
Duhamel’s formula that for all u in H0

Z2tu = e2t(M∆−V )u+
∫ t

0

e2(t−s)(M∆−V )R(s)u ds.(3.7)

The following theorem enables us to estimate the function R(t)u. We recall that
V(c) has been defined at Definition 3.1.

Theorem 3.3. There exists a constant C(c) such that for all V ∈ V∞(c) satisfying
(3.2) and all u ∈ H0, the following estimate holds:

∀t ∈]0, 1], |R(t)u|H ≤ C(c)|u|H .(3.8)

Remark 3.4. The principle of the proof is identical to the principle of the proof
given in [4], but the result is different since the commutators are of higher order.
The difficulty is seen in the analysis of (3.28) and (3.33) below. Thus, instead of
an estimate |R(t)|L(H) = O(t), we find an estimate |R(t)|L(H) = O(1).
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We will prove Theorem 3.3 in several steps. We perform the change of variable
(z1, z2, z3) = t(ζ1, ζ2, ζ3) and obtain

R(t)u =
1

(2πi)3

∫
tΓ1×tΓ2×tΓ3

e−lz F0(z/t)u
dz

t3
.(3.9)

Thanks to Cauchy’s Theorem, we can rewrite (3.9) under the form

R(t)u =
1

(2πi)3

∫
Γ1×Γ2×Γ3

e−lz F0(z/t)u
dz

t3
.(3.10)

Using the decomposition of F0 given in (3.5), we write

F0

(z
t

)
= P1

(z
t

)
u+ P2

(z
t

)
u+ P3

(z
t

)
u,

where

P1

(z
t

)
= −2

(z1

t
+M∆

)−1

γ3

(z1

t
+M∆

)−2 (z2

t
− V

)−1 (z3

t
+M∆

)−1

,

(3.11)

P2

(z
t

)
= −

(z1

t
+M∆

)−1 (z2

t
− V

)−1

γ2

(z2

t
− V

)−2 (z3

t
+M∆

)−1

,

(3.12)

P3

(z
t

)
=
(z1

t
+M∆

)−1

γ3

(z1

t
+M∆

)−1 (z2

t
− V

)−2 (z3

t
+M∆

)−1

.

(3.13)

Without loss of generality, we assume that, for all z ∈ Γ1 × Γ2 × Γ3,

|zi| ≥ 1, i = 1, 2, 3.(3.14)

This relation leads to a simplification of the proofs in [4]. The proof of Theorem
3.3 depends now on two lemmas:

Lemma 3.5. There exists a constant C2(c) such that, for all t ∈]0, 1], z ∈ Γ1 ×
Γ2 × Γ3 and u ∈ H0

|P2 (z/t)u|H ≤ C2(c) t4 |u|H .

Proof. We calculate the commutator γ2 appearing in (3.12). For all α ∈ Nn such
that |α| ≤ 4, let us define the matrices ∂αV by ∂αV = (∂αVij)1≤i,j≤m. It is clear
that

[∆, V ] = ∆V + 2
n∑
i=1

(∂iV )∂i,(3.15)

[[∆, V ], V ] = [∆V, V ] + 2
n∑
i=1

[∂iV, V ]∂i + 2
n∑
i=1

(∂iV )2
.(3.16)

Since

γ2 = [V, [V,M∆]] = [[M∆, V ], V ] = M [[∆, V ], V ] + 2[M,V ][∆, V ] + [[M,V ], V ]∆,
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1490 STÉPHANE DESCOMBES

we deduce from (3.15) and (3.16) that

γ2 =M [∆V, V ] + 2
n∑
i=1

M (∂iV )2 + 2[M,V ]∆V

+ 2
n∑
i=1

(
M [∂iV, V ] + 2[M,V ]∂iV

)
∂i + [[M,V ], V ]∆.

The important piece of this decomposition of γ2 is the last one: it would vanish in
the scalar case, the fact that we have a system makes the problem more difficult.
We infer from this decomposition that there exist bounded functions N and Ni,
i ∈ {1, . . . , n}, depending only on M and the first two derivatives of V such that

γ2 = N +
n∑
i=1

Ni∂i + [[M,V ], V ]∆.(3.17)

We use this decomposition to estimate P2. We infer from (2.1) and (3.14) that∣∣∣∣N (z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t3|u|H .(3.18)

We now have to estimate ∂i(z2/t−V )−2(z3/t+M∆)−1u. We recall that for general
operators C, D and ζ in C, we have

C (ζ −D)−1 = (ζ −D)−1
C + (ζ −D)−1 [C,D] (ζ −D)−1

.(3.19)

Since [∂i, V ] = ∂iV , we deduce the following relations:

∂i

(z2

t
− V

)−1

=
(z2

t
− V

)−1

∂i +
(z2

t
− V

)−1

∂iV
(z2

t
− V

)−1

,(3.20)

∂i

(z2

t
− V

)−2

=
(z2

t
− V

)−2

∂i +
(z2

t
− V

)−2

∂iV
(z2

t
− V

)−1

(3.21)

+
(z2

t
− V

)−1

∂iV
(z2

t
− V

)−2

.

We infer from Lemma 2.4 that for all i, i in {1, . . . , n},∣∣∣∣∂i (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)
√
t|u|H ;

thus we deduce from (3.21) that∣∣∣∣Ni∂i (z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)(t4 + t5/2)|u|H ,

and so ∣∣∣∣Ni∂i (z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t5/2|u|H .(3.22)

Finally, we have to estimate ∆(z2/t−V )−2(z3/t+M∆)−1u, we deduce from (3.19)
that

∆
(z2

t
− V

)−2

=
(z2

t
− V

)−2

∆ +
(z2

t
− V

)−2

[∆, V ]
(z2

t
− V

)−1

(3.23)

+
(z2

t
− V

)−1

[∆, V ]
(z2

t
− V

)−2

.
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We infer from (2.1) and Lemma 2.4 that∣∣∣∣(z2

t
− V

)−2

∆
(z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t2|u|H .(3.24)

Let us denote

Q1

(z
t

)
=
(z2

t
− V

)−2

[∆, V ]
(z2

t
− V

)−1

+
(z2

t
− V

)−1

[∆, V ]
(z2

t
− V

)−2

.

We deduce from relation (3.15), decompositions (3.20) and (3.22) that∣∣∣∣Q1

(z
t

)(z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t3
√
t|u|H .(3.25)

It follows from (3.17) and estimates (3.18), (3.22), (3.24), (3.25) that there exists
C(c) such that for all t ∈]0, 1], z ∈ Γ1 × Γ2 × Γ3 and u ∈ H0. We have∣∣∣∣γ2

(z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t2|u|H .

We now deduce from (2.1) and the definition of P2 that there exists C2(c) such that∣∣∣P2

(z
t

)
u
∣∣∣
H
≤ C2(c)t4|u|H .

This concludes the proof of Lemma 3.5.

Lemma 3.6. For j ∈ {1, 3}, there exists a constant Cj(c) such that, for all t ∈
]0, 1], z ∈ Γ1 × Γ2 × Γ3 and u ∈ H0,

|Pj (z/t)u|H ≤ Cj(c)t3|u|H .(3.26)

Proof. We first develop the commutator

γ3 = M2[∆, [∆, V ]] +M [M, [∆, V ]]∆ +M [∆, [M,V ]]∆ + [M, [M,V ]]∆2.

We notice that this operator involves generally a bilaplacian, as soon as the problem
under consideration is not scalar. We begin with the case j = 1, let us define

Q1

(z
t

)
u =

(z1

t
+M∆

)−1

[M, [M,V ]]∆2
(z1

t
+M∆

)−2 (z2

t
− V

)−1

(3.27)

×
(z3

t
+M∆

)−1

u.

We infer from Lemma 2.4 and (2.1) that

|Q1 (z/t)u|H ≤ C(c)t3|u|H .(3.28)

Consider now the operator L defined by

L = M2[∆, [∆, V ]] +M [M, [∆, V ]]∆ +M [∆, [M,V ]]∆.

Using (3.15), we deduce that there exist bounded functions N , N0
i , N1

i , i in
{1, . . . , n} and Nij , i and j in {1, . . . , n}, depending only on M and the first four
derivatives of V such that

L = N +
∑

1≤i≤n
N0
i ∂i +

∑
1≤i,j≤n

Nij∂ij +
∑

1≤i≤n
N1
i ∂i∆.(3.29)

We infer from (2.1) and Lemma 2.4 that

∣∣∣∣(z1

t
+M∆

)−1

L
(z1

t
+M∆

)−2 (z2

t
− V

)−1 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤C(c)t3
√
t|u|H .

(3.30)
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1492 STÉPHANE DESCOMBES

Relation (3.26) concerning P1 is now a consequence of (3.28) and (3.30).
There remains to consider the case of P3. The proof is very similar: we first

study the function

Q2

(z
t

)
u =

(z1

t
+M∆

)−1

[M, [M,V ]]∆2
(z1

t
+M∆

)−1 (z2

t
− V

)−2

×
(z3

t
+M∆

)−1

u,

that we rewrite under the form

Q2

(z
t

)
u =

(z1

t
+M∆

)−1

[M, [M,V ]]∆
(z1

t
+M∆

)−1

∆
(z2

t
− V

)−2

×
(z3

t
+M∆

)−1

u.

It follows from (3.23) that Q2 admits the decomposition Q2(z/t) = Q3(z/t) +
Q4(z/t), with

Q3

(z
t

)
u =

(z1

t
+M∆

)−1

[M, [M,V ]]∆
(z1

t
+M∆

)−1 (z2

t
− V

)−2

(3.31)

×∆
(z3

t
+M∆

)−1

u,

and Q4(z/t) is a function which can be estimated thanks to (3.25) by

|Q4 (z/t)u|H ≤ C(c)t4
√
t|u|H .(3.32)

We also notice that

|Q3 (z/t)u|H ≤ Ct3|u|H .(3.33)

We return to the decomposition of L given in (3.29) and let

L = L1 + L2,

with

L1 = N +
∑

1≤i≤n
N0
i ∂i +

∑
1≤i,j≤n

Nij∂ij and L2 =
∑

1≤i≤n
N1
i ∂i∆.

We infer from (2.1) and Lemma 2.4 that

∣∣∣∣(z1

t
+M∆

)−1

L1

(z1

t
+M∆

)−1 (z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤ C(c)t4|u|H ,

(3.34)

and deduce from (3.22) that

∣∣∣∣(z1

t
+M∆

)−1

L2

(z1

t
+M∆

)−1 (z2

t
− V

)−2 (z3

t
+M∆

)−1

u

∣∣∣∣
H

≤C(c)t7/2|u|H .

(3.35)

Relation (3.26) for P3 is now a consequence of (3.32), (3.33), (3.34) and (3.35).

Proof of Theorem 3.3. It follows from Lemma 3.5 and Lemma 3.6 that there exists
a constant such that, for all t ∈]0, 1], z ∈ Γ1 × Γ2 × Γ3 and u ∈ H0,

|F (z/t)u|H ≤ C(c)t3|u|H ,
and with the help of relation (3.10) this proves (3.8).

Now we can prove the following theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A SPLITTING METHOD FOR REACTION-DIFFUSION SYSTEMS 1493

Theorem 3.7. There exists a constant C(c) > 0 such that for all elements V of
V∞(c) satisfying (3.2),

∀t ∈ [0, 1],
∣∣∣etM∆e−2tV etM∆ − e2t(M∆−V )

∣∣∣
L(H)

≤ C(c)t.

Proof. We can deduce from (3.7) that for all u ∈ H0∣∣∣Z2tu− e2t(M∆−V )u
∣∣∣
H
≤
∫ t

0

∣∣∣e2(t−s)(M∆−V )R(s)u
∣∣∣
H
ds.

Since the operator V is bounded in H , the operator −M∆ + V is a bounded
perturbation of a sectorial operator, and so is sectorial. This proves the existence
of a constant C(c) > 0 such that for all t ∈ [0, 1],∣∣∣e2t(M∆−V )

∣∣∣
L(H)

≤ C(c).

Then we deduce that∫ t

0

|e2(t−s)(M∆−V )R(s)u|Hds ≤ C(c)
∫ t

0

|R(s)u|Hds,

and thanks to Theorem 3.3, we obtain that for all u ∈ H0 and for all t ∈ [0, 1]∣∣∣(Z2t − e2t(M∆−V ))u
∣∣∣
H
≤ C(c)t|u|H .(3.36)

Since H0 is dense in H , (3.36) holds for all u ∈ H , thus we have∣∣∣Z2t − e2t(M∆−V )
∣∣∣
L(H)

≤ C(c)t.

The condition V ∈ V∞(c) satisfying (3.2) can be weakened:

Theorem 3.8. There exists a constant C(c) > 0 such that for all elements V of
V4(c),

∀t ∈ [0, 1],
∣∣∣etM∆e−2tV etM∆ − e2t(M∆−V )

∣∣∣
L(H)

≤ C(c)t.(3.37)

Proof. If we suppose a 6= 0 and nonnegative for example, we let U = V − a and we
can see that

etM∆e−2tUetM∆ = e2at etM∆e−tV etM∆ and e2t(M∆−U) = e2at e2t(∆−V ),

so the result remains true. Finally, for V in V4(c), as in [4], we can construct a
sequence Vm belonging to V∞(c) which tends to V , and we can pass to the limit in
our estimates.

The estimate of Theorem 3.8 is optimal, as is shown in the following result.

Theorem 3.9. There exists a choice of M and V such that there exists a constant
C > 0 such that, for small t,∣∣∣etM∆e−2tV etM∆ − e2t(M∆−V )

∣∣∣
L(H)

≥ Ct.(3.38)
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Proof. We suppose that m = 2 and choose

M =
(

1 0
0 2

)
, V =

(
0 1
0 0

)
.

Let u belong to H and denote P (t)u = etM∆e−2tV etM∆u − e2t(M∆−V )u. The
Fourier transform of P (t)u is given by

F(P (t)u)(ξ) =
(
e−4π2tM|ξ|2e−2tV e−4π2tM|ξ|2 − e−8π2tM|ξ|2−2tV

)
F(u)(ξ).

Thus the operator norm of P (t) for t > 0 verifies

|P (t)|L(H) = sup
ξ∈RN

|e−4π2tM|ξ|2e−2tV e−4π2tM|ξ|2 − e−8π2tM|ξ|2−2tV |B(Rm).

We choose ξ such that 2π|ξ| = 1/
√
t and we deduce that

|P (t)|L(H) ≥ |e−Me−2tV e−M − e−2M−2tV |B(Rm).

An elementary calculation shows that

e−Me−2tV e−M − e−2M−2tV = t

(
0 −2e−3 + e−2 − e−4

0 0

)
,

and so our assertion is proved.

In [9], [4] and [11], which give scalar results, estimate (3.37) is replaced by an
estimate O(t1+ε) with ε > 0. However, in the vector case Theorem 3.9 implies
that estimate (3.37) is optimal and does not suffice to prove convergence. However,
it is possible to go around this difficulty by considering Z2t − e2t(M∆−V ) as an
operator from H2(RN )m to L2(RN )m. In the sequel, this loss of regularity will be
compensated for by the regularizing property of etM∆.

Theorem 3.10. There exists a constant C(c) > 0 such that for all elements V of
V4,

∀t ∈ [0, 1],
∣∣∣etM∆e−2tV etM∆ − e2t(M∆−V )

∣∣∣
L(H4,L2)

≤ C(c)t2.(3.39)

Proof. In a first part, we assume that V belongs to V∞ and satisfies (3.2). Let u
belong to H2(RN )m. Using the proof of Theorem 3.3 and that |u|H ≤ |u|H2 , it is
sufficient to estimate (3.27), (3.30), (3.31) and (3.35). For all, we must obtain an
estimate with a power of t greater than 4 instead of 3 or 7/2.

We study (3.27) and (3.31); the analysis of the other expressions is quite similar
and is left to the reader. Assume that z3 belongs to Γ3. Since u ∈ H2(RN )m, we
infer from (2.1) that∣∣∣∣∆(z3

t
+M∆

)−1

u

∣∣∣∣
H

≤
∣∣∣∣(z3

t
+M∆

)−1

∆u
∣∣∣∣
H

≤ Ct|u|H2 .

Thus for (3.31), we obtain

|Q3 (z/t)u|H ≤ C(c)t4|u|H2 .

For (3.27), we recall that

Q1

(z
t

)
u =

(z1

t
+M∆

)−1

[M, [M,V ]]∆2
(z1

t
+M∆

)−2 (z2

t
− V

)−1

×
(z3

t
+M∆

)−1

u.
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Denote

Q1,1

(z
t

)
u = ∆2

(z1

t
+M∆

)−2 (z2

t
− V

)−1 (z3

t
+ M∆

)−1

u.

We infer from (3.19) that

∆
(z2

t
− V

)−1 (z3

t
+M∆

)−1

u =
(z2

t
− V

)−1

∆
(z3

t
+M∆

)−1

u

+
(z2

t
− V

)−1

[∆, V ]
(z2

t
− V

)−1

×
(z3

t
+M∆

)−1

u.

Thus ∣∣∣Q1,1

(z
t

)
u
∣∣∣
H
≤ C(c)t3|u|H2 ,

and we deduce that ∣∣∣Q1

(z
t

)
u
∣∣∣
H
≤ C(c)t4|u|H2 .

Finally, following the method of [4], Section 3, if V belongs to V4, the result remains
true.

4. Proof of convergence

In this section, we prove the convergence of our scheme. In a first part, for
u0 in H , we compare Ztu0 and T tu0 in H-norm and deduce an estimate on
W tu0 and T tu0 in H-norm. In a second part, we use this estimate to study
|
(
Wh

)n
u0 − T nhu0|H . Since for all τ > 0 the solution of (1.1) belongs to

C([0, τ ],L), we can reduce the proof to the case where F is a C5 function with
compact support and satisfying (1.2). We denote γ a constant greater than the
maximum of the first three derivatives of F and such that, for all u and v in H ,

|F (u)− F (v)|H ≤ γ|u− v|H .(4.1)

Since, in this case, F is a Lipschitz continuous function, we begin by recalling some
properties of the flows Y t and T t, defined in the introduction.

4.1. Some properties of Y t and T t in the Lipschitz continuous case. We
infer from Gronwall’s Lemma the following result.

Lemma 4.1. There exists γ such that for all u0 and v0 in L and all t > 0,∣∣Y tu0 − Y tv0

∣∣
H
≤ eγt |u0 − v0|H .(4.2)

We have the same result for the flow T t; a proof can be found in Smoller [13]
Theorem 11.15 p. 117.

Lemma 4.2. There exists γ such that for all u0 and v0 in L and all t > 0,∣∣T tu0 − T tv0

∣∣
H
≤ eγt |u0 − v0|H .(4.3)

Remark 4.3. The same result holds in L∞-norm with Ceγt instead of eγt.

Finally we recall the regularizing effect of the flow T t:
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Lemma 4.4. There exists a constant C > 0 such that for all u0 ∈ L, all t > 0∣∣T tu0

∣∣
H1 ≤

CeCt√
t
|u0|H and

∣∣T tu0

∣∣
H2 ≤

CeCt

t
|u0|H .(4.4)

Proof. Using the regularizing effect of the operator etM∆ given in Lemma 2.5, the
proof is identical to the proof of Proposition 2.1 of [6], to which the reader is
referred.

4.2. Comparison of W t and T t when F has a compact support. For all u0

in L1, we denote C(u0) a constant depending on max0≤|α|≤4 |∂αu0|∞. We begin
with the first result.

Theorem 4.5. For all u0 in L1 and t ∈ [0, 1], the following estimates holds:

|Ztu0 − T tu0|H ≤ C(u0)t|u0|H(4.5)

and if u0 belongs to H2(RN )m

|Ztu0 − T tu0|H ≤ C(u0)t2|u0|H2 .(4.6)

We will prove Theorem 4.5 in several steps by introducing auxiliary functions.
We prove estimate (4.6) using the result of Theorem 3.10. With the same method
and Theorem 3.8 we can prove estimate (4.5), which is left to the reader. Thus we
prove only (4.6) which is the harder of the two. We introduce the function T tapp(u0)
defined by the solution of the system

∂v

∂t
−M∆v +DF (u0)v = DF (u0)u0 − F (u0), x ∈ RN , t > 0,

v(0, x) = u0(x), x ∈ RN .
(4.7)

We also introduce Y tapp(u0, X
t/2u0) defined by the solution of

∂w

∂t
+DF (u0)w = DF (u0)u0 − F (u0), x ∈ RN , t > 0,

w(0, x) = etM∆/2u0(x), x ∈ RN .
(4.8)

Finally, we define Ztappu0 by

Ztappu0 = Xt/2Y tapp(u0, X
t/2u0),(4.9)

and we write

Ztu0 − T tu0 = Ztu0 − Ztappu0 + Ztappu0 − T tappu0

+ T tappu0 − T tu0.(4.10)

In the following sequence of lemmas, we compare the three differences appearing in
the right hand side of (4.10). For simplicity we denote

G(u0) = DF (u0)u0 − F (u0).

Lemma 4.6. For all u0 in L1 and t ∈ [0, 1], the following estimate holds:

|Ztappu0 − T tappu0|H ≤ C(u0)t2|u0|H2 .(4.11)

Proof. Using Duhamel’s formula, the solution v of (4.7) is given explicitly by

v = et(M∆−DF (u0))u0 +
∫ t

0

e(t−s)(M∆−DF (u0))G(u0)ds,
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and the solution z of (4.9) is given by

z = etM∆/2

(
e−tDF (u0)etM∆/2u0 +

∫ t

0

e−(t−s)DF (u0)G(u0)ds
)
.

Thus, we have

v − z = et(M∆−DF (u0))u0 − etM∆/2e−tDF (u0)etM∆/2u0

+
∫ t

0

e(t−s)(M∆−DF (u0))G(u0)ds− etM∆/2

(∫ t

0

e−(t−s)DF (u0)G(u0)ds
)

that we rewrite as

v − z = et(M∆−DF (u0))u0 − etM∆/2e−tDF (u0)etM∆/2u0(4.12)

+ (1 − etM∆/2)
(∫ t

0

e−(t−s)DF (u0)G(u0)ds
)

+
∫ t

0

e(t−s)(M∆−DF (u0))G(u0)ds−
∫ t

0

e−(t−s)DF (u0)G(u0)ds.

Using (3.39), we deduce that∣∣∣et(M∆−DF (u0))u0 − etM∆/2e−tDF (u0)etM∆/2u0

∣∣∣
H
≤ C(u0)t2|u0|H2 .(4.13)

Since F has a compact support and vanishes at 0, we have

|G(u0)|H2 ≤ C(u0)|u0|H2 ,(4.14)

and we deduce from Lemma 2.6 that∣∣∣∣(1− etM∆/2)
(∫ t

0

e−(t−s)DF (u0)G(u0)ds
)∣∣∣∣

H

≤ C(u0)t2|u0|H2 .(4.15)

There remains to estimate the last term of the right hand side of (4.12). Since

et(M∆−DF (u0)) − e−tDF (u0) = et(M∆−DF (u0)) − 1 + 1− e−tDF (u0),(4.16)

and since the operator M∆ − DF (u0) is sectorial, we infer from Lemma 2.6 and
(4.14) that

∣∣∣∣∫ t

0

e(t−s)(M∆−DF (u0))G(u0)ds−
∫ t

0

e−(t−s)DF (u0)G(u0)ds
∣∣∣∣
H

≤ C(u0)t2|u0|H2 .

(4.17)

We can now deduce estimate (4.11) from (4.13), (4.15), (4.17). This concludes the
proof of Lemma 4.6.

Lemma 4.7. For all u0 in L1 and t ∈ [0, 1], the following estimate holds:

|T tappu0 − T tu0|H ≤ C(u0)t2|u0|H2 .(4.18)

Proof. For u = T tu0 and v the solution of (4.7), let us define y = v − u. The
function y verifies the system


∂y

∂t
−M∆y +DF (u0)y = F (u)− F (u0)−DF (u0)(u − u0), x ∈ RN , t > 0,

y(0, x) = 0, x ∈ RN .

(4.19)
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Denote G0(u, u0) = F (u)−F (u0)−DF (u0)(u−u0). It follows from Taylor’s formula
that

|G0(u, u0)|H ≤
∣∣∣∣∫ 1

0

(1− t)D2F (u0 + t(u− u0)) (u− u0)⊗ (u − u0)dt
∣∣∣∣
H

,(4.20)

and since D2F is bounded, it follows from Remark 4.3 that

|G0(u, u0)|H ≤ C(u0)|u− u0|H .
Since u− u0 is solution of

u− u0 =
(
etM∆ − 1

)
u0 +

∫ t

0

e(t−s)M∆F (u)ds,

we deduce from the boundedness of F and from Lemma 2.6 that for t ∈ [0, 1]

|u− u0|H ≤ Ct|u0|H2 ,

and therefore

|G0(u, u0)|H ≤ C(u0)t|u0|H2 .

Since the function y = v − u is solution of (4.19), we obtain that

|y| ≤ C(u0)t2|u0|H2 .

This concludes the proof of Lemma 4.7.

Lemma 4.8. For all u0 in L1 and t ∈ [0, 1], the following estimate holds:

|Ztappu0 − Ztu0|H ≤ C(u0)t2|u0|H2 .(4.21)

Proof. The proof is identical to the proof of Lemma 4.7 and is left to the reader.

Proof of Theorem 4.5. We deduce from the decomposition (4.10) that relation (4.6)
is a consequence of (4.11), (4.18) and (4.21).

A consequence of the previous result is the following:

Theorem 4.9. For all u0 in L1 and t ∈ [0, 1], the following estimates holds:

|W tu0 − T tu0|H ≤ C(u0)t
(
|u0|H + |T t/2u0|H

)
,(4.22)

and if u0 belongs to H2(RN )m

|W tu0 − T tu0|H ≤ C(u0)t2
(
|u0|H2 + |T t/2u0|H2

)
.(4.23)

Proof. We only prove (4.23). We notice that

|W tu0 − T tu0|H ≤
4
3

∣∣∣Zt/2Zt/2u0 − Zt/2T t/2u0

∣∣∣
H

(4.24)

+
4
3

∣∣∣Zt/2T t/2u0 − T tu0

∣∣∣
H

(4.25)

+
1
3

∣∣T tu0 − Ztu0

∣∣
H
.(4.26)

We can estimate (4.26) thanks to (4.6). We also observe that we infer from (1.10)
and (4.2) that∣∣∣Zt/2Zt/2u0 − Zt/2T t/2u0

∣∣∣
H
≤ eγt

∣∣∣Zt/2u0 − T t/2u0

∣∣∣
H
≤ C(u0)t2|u0|H2 .
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We now have to work with the last term (4.25). We already notice that T tu0 =
T t/2T t/2u0, thus we infer from (4.6) that∣∣∣Zt/2T t/2u0 − T tu0

∣∣∣
H
≤ C(u0)t2|T t/2u0|H2 ,

so our claim is proved.

4.3. Convergence result. We will use the following result.

Lemma 4.10. If F satisfies (4.1), there exists a constant C0 > 0 depending only
on γ, such that for all u0 and v0 in H and all t ∈ [0, 1],

|W tu0 −W tv0|H ≤ (1 + C0t)|u0 − v0|H .(4.27)

Proof. We rewrite W tu0 −W tv0 as

W tu0 −W tv0 = Zt/2Zt/2u0 − Zt/2Zt/2v0

+
1
3

(
Zt/2Zt/2u0 − Zt/2Zt/2v0 − Ztu0 + Ztv0

)
.

We deduce from (1.10), (4.2) that

|Zt/2Zt/2u0 − Zt/2Zt/2v0|H ≤ eγt|u0 − v0|H .

Since for t ∈ [0, 1], there exists C1 > 0 depending only on γ, such that eγt ≤ 1+C1t,
we can see that

|Zt/2Zt/2u0 − Zt/2Zt/2v0|H ≤ (1 + C1t)|u0 − v0|H .(4.28)

Denote w = Zt/2Zt/2u0 − Zt/2Zt/2v0 − Ztu0 + Ztv0. Our purpose is now to prove
that there exists a constant C > 0 such that |w|H ≤ Ct|u0 − v0|H . We let

w1 = Zt/2Zt/2u0 − Zt/2Zt/2v0 and w2 = Ztu0 − Ztv0.

We now use that Y tu0 verifies

Y tu0 = u0 −
∫ t

0

F (Y su0)ds.

Thus

w2 = Xtu0 −Xtv0 −Xt/2

∫ t

0

F
(
Y s
(
Xt/2u0

))
ds+Xt/2

∫ t

0

F
(
Y s
(
Xt/2v0

))
ds

and

w1 = Xtu0 −Xtv0

−X3t/4

∫ t/2

0

(
F
(
Y s
(
Xt/4Zt/2u0

))
− F

(
Y s
(
Xt/4Zt/2v0

)))
ds

−Xt/4

∫ t/2

0

(
F
(
Y s
(
Xt/4Zt/2u0

))
− F

(
Y s
(
Xt/4Zt/2v0

)))
ds.
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We deduce that

w = X3t/4

∫ t/2

0

(
F
(
Y s
(
Xt/4Zt/2u0

))
− F

(
Y s
(
Xt/4Zt/2v0

)))
ds

+Xt/4

∫ t/2

0

(
F
(
Y s
(
Xt/4Zt/2u0

))
− F

(
Y s
(
Xt/4Zt/2v0

)))
ds

−Xt/2

∫ t

0

(
F
(
Y s
(
Xt/2u0

))
− F

(
Y s
(
Xt/2v0

)))
ds,

and we infer from (1.10), (4.2) and the boudedness of F that |w|H ≤ Ct|u0− v0|H ,
where C depends only on γ. This concludes the proof of Lemma 4.10.

Theorem 4.11. For all u0 in L1 and for all τ > 0, there exists C and h0 such
that for all h ∈ (0, h0], for all n such that nh ≤ τ∣∣∣(Wh

)n
u0 − T nhu0

∣∣∣
H
≤ Ch| lnh||u0|H .

Proof. We fix τ > 0 and we reduce the proof to the case where F has a compact
support and satisfies (4.1). The triangle inequality gives∣∣∣(W h

)n
u0 − T nhu0

∣∣∣
H
≤

n−1∑
j=0

∣∣∣(Wh
)n−j−1

WhT jhu0 −
(
Wh

)n−j−1
T (j+1)hu0

∣∣∣
H
,

and we infer from Lemma 4.10 that∣∣∣(W h
)n
u0 − T nhu0

∣∣∣
H
≤

n−1∑
j=0

(1 + C0h)n−j−1
∣∣WhT jhu0 − T hT jhu0

∣∣
H
.(4.29)

For the case j = 0, it follows from (4.22) that

|W hu0 − T hu0|H ≤ C(u0)h(|u0|H + |T h/2u0|H).

For j ≥ 1, we notice that T jhu0 belongs to H2(RN )m and we use (4.23) to obtain

|W hT jhu0 − T hT jhu0|H ≤ C(T jhu0)h2
(
|T jhu0|H2 + |T (j+1)hu0|H2

)
.

But for all jh ≤ τ , C(T jhu0) is bounded, and we deduce from Lemma 4.4 that

|T jhu0|H2 + |T (j+1)hu0|H2 ≤ C

jh
eCjh|u0|H .

Thus we obtain with (4.29)∣∣∣(W h
)n
u0 − T nhu0

∣∣∣
H
≤ C(u0)

n−1∑
j=1

eC0(n−j−1)hh

j
+ h

 |u0|H .

For small h, we have

h

n−1∑
j=1

eC0(n−j−1)h

j
≤ eC0τh| lnh|,

and we obtain ∣∣∣(Wh
)n
u0 − T nhu0

∣∣∣
H
≤ Ch| lnh||u0|H .

This concludes the proof of Theorem 4.11.
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Remark 4.12. The previous estimate is better than the one given in [2], with a rate
of h| lnh| instead of

√
h but unfortunately far from the fourth order. One way to

increase the rate of convergence is to assume that u0 is smoother, for example if
u0 belongs to H2 we do not need to use the regularizing effect of T t and we obtain
an estimate with a rate of h. We can also see that a similar proof of Theorem 3.10
can show that

∀t ∈ [0, 1],
∣∣∣etM∆e−2tV etM∆ − e2t(M∆−V )

∣∣∣
L(H4,L2)

≤ C(c)t3

and in that case the rate is of h2. Unfortunately, for the scheme W t, we cannot do
better (i.e., an order greater than 2) because of estimates (4.24), (4.25), (4.26) and
working directly with W t seems to be very hard.
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