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Abstract The convergence of a time discretisation with variable time steps is shown

for a class of doubly nonlinear evolution equations of second order. This also proves

existence of a weak solution. The operator acting on the zero-order term is assumed to

be the sum of a linear, bounded, symmetric, strongly positive operator and a nonlinear

operator that fulfills a certain growth and a Hölder-type continuity condition. The

operator acting on the first-order time derivative is a nonlinear hemicontinuous operator

that fulfills a certain growth condition and is (up to some shift) monotone and coercive.
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1 Introduction

The mathematical description of many applications from mechanics, elasticity theory,

molecular dynamics, and quantum mechanics leads to nonlinear evolution equations of

second order in time. Examples are

– the equation that appears in the description of vibrating membranes (see [1], [8, p.

165], [13, pp. 38ff., 62ff., 222ff.], [14]) for some p ≥ 2

utt + |ut|p−2ut −∆u = f ; (1)
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– the equation (see [16, p. 298], [18, pp. 928ff.])

utt −∇ · (ψ(x, t, |∇ut|)|∇ut|)−∆u = f , (2)

where ψ : R+
0 → R is a sufficiently smooth, strictly monotonically increasing func-

tion with m ≤ ψ ≤M for some m,M > 0;

– the equation (see [9,14] as well as [3, pp. 298ff.], [8, p. 238], [13, p. 4] for the

non-viscous case) for some p ≥ 2

utt −∇ ·
(
|∇ut|p−2∇ut

)
−∆u+ c(u,∇u) = f (3)

with an appropriate function c, including viscous regularisations of the Klein–

Gordon equation with c(u,∇u) = |u|γu (γ ≥ 0) or of the Sine-Gordon equation

with c(u,∇u) = sinu, both appearing in relativistic quantum mechanics and quan-

tum field theory.

Similar equations arise in elasticity theory and material sciences (see [16, pp. 298ff.]).

Further examples can be found, e.g., in [4,11,12].

The functional analytic formulation of all these problems leads to the initial value

problem

u′′ +Au′ +Bu = f in (0, T ) , u(0) = u0 , u
′(0) = v0 . (4)

The operator A is supposed to be the Nemytskii operator corresponding to a family

of nonlinear hemicontinuous operators A(t) : W →W ∗ (t ∈ [0, T ]) that fulfill a certain

growth condition. Moreover, A(t) + κI : W →W ∗ (I denotes the identity) is assumed

to be coercive and monotone for some κ ≥ 0, uniformly in t ∈ [0, T ]. Here, W is a

real, reflexive, separable Banach space that is dense and continuously embedded in a

Hilbert space H. If κ 6= 0 then W is assumed to be compactly embedded in H.

It would also be possible to incorporate a strongly continuous perturbation of A

similarly as is done in [5–7] for first-order equations. In order to keep the presentation

brief, we do not consider this more general case here.

The operator B is the Nemytskii operator corresponding to a family of operators

B(t) = B0 + C(t), where B0 : V → V ∗, acting on a Gelfand triple V ⊆ H ⊆ V ∗

with the same Hilbert space H as above, is assumed to be independent of time as well

as linear, bounded, symmetric, and strongly positive. The operators C(t) : V → W ∗

are supposed to fulfill a certain growth condition and to be Hölder-type continuous on

bounded subsets. If C(t) 6≡ 0 then W is assumed to be compactly embedded in H.

Note that the assumptions on B0 force V to be a Hilbert space.

The foregoing structural assumptions are general enough to cover many interesting

applications.

For linear evolution equations of second order, a full theory of existence and unique-

ness is given in [8]. Results on the existence, uniqueness, and regularity of solutions to

(4) as well as on the convergence of the Galerkin method can be found in [10, Kap. 7]

and [18, Ch. 33] for the case V = W . Results allowing more involved nonlinearities of

the first- and zero-order term relying upon V 6= W (with V ∩W being dense in V as

well as in W ) can be found in [3, Ch. V], [14], and [16, pp. 296ff., 342ff.], see also [9]

for a special class of problems of the form (4) and [1,13] for particular examples.

The evolution problem (4) shall be approximated in time by means of the scheme

2

τn+1 + τn

(
un+1 − un

τn+1
− un − un−1

τn

)
+A(tn)

un+1 − un

τn+1
+B(tn)un = fn ,

n = 1, 2, . . . , N − 1 ,

(5)
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on a sequence of variable time grids

I : 0 = t0 < t1 < · · · < tN = T , τn = tn − tn−1 (n = 1, 2, . . . , N ∈ N) . (6)

For given approximations u0 ≈ u0, v
0 ≈ v0, {fn} ≈ f , this yields approximations

un ≈ u(tn). Note that, in the case A ≡ 0, the scheme (5) is known as the leap-

frog scheme that falls into the class of Newmark schemes and can be interpreted as a

partitioned Runge–Kutta method (here as the Störmer–Verlet method).

Although also of interest, an analysis of other numerical methods (in particular,

methods of higher order) applied to the above class of doubly nonlinear evolution

equations of second order is not yet available. A main difficulty will be, as always, to

derive appropriate a priori estimates based upon the stability of the numerical method.

Nevertheless, without additional regularity of the exact solution, there is no need for

higher order methods.

Error estimates for a full discretisation combining a finite element method with

the Newmark scheme can be found for the linear case in [15, Ch. 8]. To our best

knowledge, the only reference for studying the convergence of time discretisations of

(4) in the nonlinear case is [4]. The authors also deal with the scheme (5) but on

an equidistant time grid and under more restrictive assumptions on the data of the

problem. The convergence result in [4] applies to the special case V = W with A being

a time-independent maximal monotone operator and B being time-independent, linear,

bounded, symmetric, and (up to some shift) strongly positive. The weak convergence

results in [4] are somewhat better than the results obtained here, which is due to

the stronger assumptions on the initial data and right-hand side (leading to a more

regular exact solution). Besides, there is an existence result proven in [2] via a time

discretisation for a special class of semilinear equations of the type (4).

In this paper, we show weak convergence of piecewise polynomial prolongations

of the time discrete solutions to (5) towards the weak solution to (4) whenever the

maximum time steps of the sequence of variable time grids tend to zero. Moreover, the

deviation of the time grids from an equidistant time grid cannot be too large in the

sense that

max
n

(
1

τn
max

(
0,
τn−1

τn
− τn−2

τn−1

))
is bounded and ∑

n

(τn − τn−1)
2

τn + τn−1

tends to zero when considering a sequence of time grids (6). This is, e.g., fulfilled if

τn+1 = τn(1+ cτ1+ε
n ) for some c, ε > 0. This, however, seems to be in accordance with

the observations in [17] made for the test equation y′′ + ω2y = 0 (ω > 0).

Our analysis requires the continuous embedding of W in V which implies that the

operator A dominates the operator B0 in the sense that there are constants c1 > 0,

c2 ≥ 0 such that for all v ∈W , t ∈ [0, T ],

〈A(t)v, v〉 ≥ c1〈B0v, v〉 − c2 ,

where 〈·, ·〉 denotes the dual pairing.

The demonstration of the convergence of the time discretisation is, indeed, an

alternative proof for the existence of a weak solution. Our aim is, however, to rigorously

justify a widely used numerical approximation of the problem under consideration. We
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are not going to prove any error estimates or convergence rates as those require higher-

order regularity of the exact solution (which is unknown in the generic case and cannot

be derived from, e.g., the regularity results given in [10]). We should emphasise that,

under the rather weak assumptions on the problem data and the governing operators,

one cannot expect “more” than a weak solution and, therefore, our weak convergence

results are optimal.

In the general situation we consider here, existence cannot be implied from the

results known from the respective literature [9,10,14,16,18] and seems to be new, too.

If W is not continuously embedded in V , a lack of stability of the time discretisation

method appears in the sense that the necessary a priori estimates are not at hand. This

might be circumvented, however, by employing an inverse inequality based on a suitable

spatial discretisation and coupling then the time step size and the spatial discretisation

parameter. A corresponding analysis will be the topic of further research.

The paper is organised as follows: In Section 2, we introduce some necessary no-

tations and precisely state the main assumptions on the operators appearing in the

evolution equation. The numerical scheme for the time discretisation is analysed in

Section 3. In particular, we provide a priori estimates of the time discrete solution.

The main convergence result is formulated and proven in Section 4.

2 Time continuous problem and notation

Let (W, ||| · |||) be a real, reflexive, separable Banach space that is dense and continuously

embedded in the Hilbert space (V, ‖ · ‖) and let (V, ‖ · ‖) be dense and continuously

embedded in the Hilbert space (H, (·, ·), | · |). By identifying the dual H∗ with H, we

come to the scale of spaces with dense and continuous embeddings

W ⊆ V ⊆ H ⊆ V ∗ ⊆W ∗ .

We always denote the standard dual norm by the subscript ∗, the dual pairing is

denoted by 〈·, ·〉. Note that V ⊆ H ⊆ V ∗ as well as W ⊆ H ⊆ W ∗ form a Gelfand

triple.

The space of Bochner integrable (for r = ∞ Bochner measurable and essentially

bounded) abstract functions mapping [0, T ] into a Banach space X is denoted by

Lr(0, T ;X) (r ∈ [1,∞]) and equipped with the standard norm ‖·‖Lr(0,T ;X). Moreover,

we denote by C r([0, T ];X) (r ∈ N, C 0 ≡ C ) the space of uniformly continuous functions

mapping [0, T ] into X with uniformly continuous time derivatives up to order r.

In what follows, we always assume p ∈ [2,∞) and set p∗ = p/(p − 1). The dual

pairing between Lp(0, T ;V ) and (Lp(0, T ;V ))∗ ∼= Lp∗(0, T ;V ∗) is given by

〈f, v〉 =

∫ T

0
〈f(t), v(t)〉V ∗×V dt .

The same applies to the case when V is replaced byW . Moreover, we have
(
L1(0, T ;H)

)∗ ∼=
L∞(0, T ;H) with the dual pairing

〈f, v〉 =

∫ T

0
(f(t), v(t))dt .



5

We also use the Banach space

W = {v ∈ Lp(0, T ;W ) : v′ ∈ (Lp(0, T ;W ))∗} , ‖v‖W = ‖v‖Lp(0,T ;W )+‖v
′‖(Lp(0,T ;W ))∗ ,

with v′ denoting the distributional time derivative. The space W is continuously em-

bedded in C ([0, T ];H). If W
c
↪→ H then, by virtue of the Lions–Aubin compact-

ness theorem, W is compactly embedded in Lr(0, T ;H) for any r ∈ [1,∞). The

scales Lp(0, T ;W ) ⊆ L2(0, T ;H) ⊆ (Lp(0, T ;W ))∗ and L2(0, T ;V ) ⊆ L2(0, T ;H) ⊆
(L2(0, T ;V ))∗ also form Gelfand triples.

The structural properties we always assume for A and B read as follows:

Assumption A. {A(t)}t∈[0,T ] is a family of hemicontinuous operators A(t) : W →
W ∗ such that for all v ∈ W the mapping t 7→ A(t)v : [0, T ] → W ∗ is continuous for

almost all t ∈ [0, T ]. There is a constant κ ≥ 0 such that A(t) + κI : W → W ∗ is

monotone for all t ∈ [0, T ]. For a suitable p ∈ [2,∞), there are constants µA, βA >

0, λ ≥ 0 such that for all t ∈ [0, T ] and v ∈W

〈(A(t) + κI)v, v〉 ≥ µA|||v|||p − λ , |||A(t)v|||∗ ≤ βA

(
1 + |||v|||p−1

)
.

With {A(t)}t∈[0,T ], we associate the Nemytskii operator A that is defined by

(Av)(t) := A(t)v(t) (t ∈ [0, T ]) for a function v : [0, T ] → W . Under Assumption A,

the Nemytskii operator A maps Lp(0, T ;W ) into its dual and is hemicontinuous and

bounded. Moreover, A+ κI : Lp(0, T ;W ) → (Lp(0, T ;W ))∗ is monotone and coercive.

Assumption B. {B(t)}t∈[0,T ] is a family of operators B(t) = B0 + C(t), where

B0 : V → V ∗ is linear, bounded, symmetric, and strongly positive: There are constants

µB , βB > 0 such that for all v ∈ V

〈B0v, v〉 ≥ µB‖v‖2 , ‖B0v‖∗ ≤ βB‖v‖ .

Moreover, C(t) (t ∈ [0, T ]) maps V into W ∗, and for all v ∈ V , the mapping t 7→
C(t)v : [0, T ] →W ∗ is continuous for almost all t ∈ [0, T ]. There is a constant βC > 0

and a monotonically increasing function α : R+
0 → R+

0 such that for all t ∈ [0, T ] and

v, w ∈ V

|||C(t)v|||∗ ≤ βC

(
1 + ‖v‖2(p−1)/p

)
,

|||C(t)v − C(t)w|||∗ ≤ α (max(‖v‖, ‖w‖)) |v − w|(p−1)/p .

As for {A(t)}t∈[0,T ], we associate with {B(t)}t∈[0,T ] the Nemytskii operator B. Un-

der Assumption B, the Nemytskii operator corresponding to B0 maps L2(0, T ;V ) into

its dual and is linear, bounded, symmetric, and strongly positive, whereas the Nemyt-

skii operator C corresponding to {C(t)}t∈[0,T ] maps L2(0, T ;V ) into (Lp(0, T ;W ))∗

and is bounded and continuous.

Remember that we require W
c
↪→ H if κ 6= 0 or if C(t) 6≡ 0. It is, however, not

necessary to have V
c
↪→ H.

Under Assumption A and Assumption B and with C(t) ≡ 0, Problem (4) possesses

for any u0 ∈ V , v0 ∈ H, f ∈ (Lp(0, T ;W ))∗ a unique solution u ∈ C 1([0, T ];H) ∩
C ([0, T ];V ) with u′ ∈ W such that the evolution equation holds in (Lp(0, T ;W ))∗.
This is a consequence of [14, Thm. 2.1]. In the case W = V with C(t) 6≡ 0, existence

of a solution follows from [16, Thm. 11.20 (ii) on p. 346], see also [9] for C being a

potential operator. Uniqueness can be achieved under additional assumptions on the

operators A(t) and C(t) (t ∈ [0, T ]).
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3 Time discrete problem and a priori estimates

In this section, we consider an arbitrary but fixed time grid (6). We set τn+1/2 := (τn+

τn+1)/2, tn+1/2 = tn + τn+1/2, and denote by rn+1 := τn+1/τn (n = 1, 2, . . . , N − 1)

the ratio of adjacent step sizes. Moreover, we set

τmax := max
n=1,2,...,N

τn , rmax := max
n=2,3,...,N

rn , rmin := min
n=2,3,...,N

rn ,

γn = max

(
0,

1

rn
− 1

rn−1

)
, cγ := max

n=3,4,...,N

γn

τn
.

Writing (4) as a first-order system{
−u′(t) + v(t) = 0 ,

v′(t) +A(t)v(t) +B(t)u(t) = f(t) ,

and applying the explicit and implicit Euler scheme to the first (backward in time) and

second (forward in time) equation, respectively, gives
− 1

τn+1
(un+1 − un) + vn = 0 , n = 0, 1, . . . , N − 1 ,

1

τn+1/2
(vn − vn−1) +A(tn)vn +B(tn)un = fn , n = 1, 2, . . . , N − 1 ,

with given initial approximations u0 ≈ u0 and v0 = (u1 − u0)/τ1 ≈ v0. Inserting the

first into the second equation leads to the scheme (5), which is formally of first order.

Representing now un by {vn},

un = u0 +

n−1∑
j=0

(uj+1 − uj) = u0 +

n−1∑
j=0

τj+1v
j =: Lvn , n = 0, 1, . . . , N , (7)

we find

1

τn+1/2
(vn − vn−1) +A(tn)vn +B0Lv

n +C(tn)un = fn , n = 1, 2, . . . , N − 1 , (8)

which will be the starting point for our analysis. Here, L is a nonlocal operator acting

on grid functions. Sometimes, our analysis is also based on another representation using

B(tn)un = B0Lv
n + C(tn)un = B(tn)Lvn.

Theorem 1 Let Assumption A and Assumption B be fulfilled and let u0, v0 ∈ V and

{fn}N−1
n=1 ⊆ V ∗. If τmax < 1/κ then there is a unique solution {un}N

n=1 ⊆ V to (5)

with {vn}N−1
n=1 ⊆W (vn = (un+1 − un)/τn+1).

Moreover, let τmax < 1/max
(
2κ, βBc

2
W↪→V /µA

)
(cW↪→V denotes the constant

from the continuous embedding W ↪→ V ). Then the following a priori estimates hold

true for n = 1, 2, . . . , N − 1:

‖un+1‖2 + |vn|2 +

n∑
j=1

|vj − vj−1|2 +

n∑
j=1

τj+1/2|||v
j |||p

≤ c

‖u0‖2 + |v0|2 + τ2
1 ‖v0‖2 +

n∑
j=1

τj+1/2|||f
j |||p

∗

∗ + T

 =: M ,
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where c > 0 is a function in 1/rmin, rmax, cγ , and 1/(1−max
(
2κ, βBc

2
W↪→V /µA

)
τmax)

that is bounded on bounded subsets, and

n∑
j=1

τj+1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

τj+1/2
(vj − vj−1)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p∗

∗
≤M ′ ,

where M ′ > 0 is a function in M that is bounded on bounded subsets.

Proof In view of (8), the scheme (5) can be written as

1

τn+1/2
vn +A(tn)vn =

1

τn+1/2
vn−1 + fn −B(tn)Lvn , n = 1, 2, . . . , N − 1 .

This equation can be solved step by step: The right-hand side is inW ∗. In particular, for

given u0 ∈ V and {vj}n−1
j=0 ⊆ V , we have with (7) that Lvn ∈ V and thus B(tn)Lvn ∈

W ∗. The theorem of Browder–Minty now provides the existence of vn ∈ W ⊆ V .

The uniqueness follows since the operator appearing in each step is strictly monotone,

which follows from τn+1/2 < 1/κ. Once {vn}N−1
n=0 is known, the solution {un}N

n=1 can

be calculated from (7).

We now come to the first a priori estimate. We test (8) with vn. Since

(a− b)a =
1

2
(a2 − b2 + (a− b)2) , a, b ∈ R , (9)

we have〈
1

τn+1/2
(vn − vn−1), vn

〉
=

1

2τn+1/2

(
|vn|2 − |vn−1|2 + |vn − vn−1|2

)
.

Because of the coercivity condition on A(tn) + κI, we find

〈A(tn)vn, vn〉 ≥ µA|||vn|||p − λ− κ|vn|2 .

The third term on the left-hand side in (8) is more involved. In virtue of Assump-

tion B, the mapping (v, w) 7→ 〈B0v, w〉, V × V → R, defines an inner product in V

and the norm ‖ · ‖B = 〈B0·, ·〉1/2 induced by this inner product is equivalent to the

original norm ‖ · ‖ such that

µ
1/2
B ‖v‖ ≤ ‖v‖B ≤ β

1/2
B ‖v‖ , v ∈ V .

We, therefore, find with (7) and

(a− b)b =
1

2
(a2 − b2 − (a− b)2) , a, b ∈ R ,

that

〈B0Lv
n, vn〉 =

1

τn+1
〈B0Lv

n, Lvn+1 − Lvn〉

=
1

2τn+1

(
‖Lvn+1‖2B − ‖Lvn‖2B − ‖Lvn+1 − Lvn‖2B

)
=

1

2τn+1

(
‖Lvn+1‖2B − ‖Lvn‖2B − τ2

n+1‖vn‖2B
)
.
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For the remaining term with C, we obtain from Young’s inequality together with

the corresponding growth condition∣∣〈C(tn)un, vn〉
∣∣ ≤ |||C(tn)un|||∗|||vn||| ≤ c|||C(tn)un|||p

∗

∗ +
µA

4
|||vn|||p

≤ c(1 + ‖un‖2) +
µA

4
|||vn|||p

with some generic positive constant c (that is independent of the time grid).

For the right-hand side in (8), we employ Young’s inequality and find

〈fn, vn〉 ≤ |||fn|||∗|||vn||| ≤ c|||fn|||p
∗

∗ +
µA

4
|||vn|||p .

Putting together the foregoing estimates, multiplying by 2τn+1/2, summing up,

and taking into account (7) gives

|vn|2 +

n∑
j=1

|vj − vj−1|2 + µA

n∑
j=1

τj+1/2|||v
j |||p

+
1

2

(
1 +

1

rn+1

)
‖un+1‖2B +

1

2

n∑
j=2

(
1

rj
− 1

rj+1

)
‖uj‖2B

≤ |v0|2 +
1

2

(
1 +

1

r2

)
‖u1‖2B + c

n∑
j=1

τj+1/2|||f
j |||p

∗

∗ + cT

+ 2κ
n∑

j=1

τj+1/2|v
j |2 +

n∑
j=1

τj+1/2τj+1‖vj‖2B + c

n∑
j=1

τj+1/2‖u
j‖2 .

Some elementary calculations together with the continuous embedding W ↪→ V , the

inequality

‖vj‖2B ≤ βB‖vj‖2 ≤ βBc
2
W↪→V |||v

j |||2 ≤ βBc
2
W↪→V (1 + |||vj |||p) ,

the condition βBc
2
W↪→V τmax < µA, and a discrete Gronwall argument, which requires

2κτmax < 1, yields

|vn|2 +

n∑
j=1

|vj − vj−1|2 +

n∑
j=1

τj+1/2|||v
j |||p + ‖un+1‖2

≤ c

|v0|2 + τ2
1 ‖v0‖2 + ‖u0‖2 +

n∑
j=1

τj+1/2|||f
j |||p

∗

∗ + T

 ,

where c > 0 is a function in 1/rmin, rmax, cγ , and 1/(1−max
(
2κ, βBc

2
W↪→V /µA

)
τmax)

that is bounded on bounded subsets. This proves the first estimate asserted.

From (8), the growth condition for A and C, the boundedness of B0, and the

inequality (remember p∗ ≤ 2 since p ≥ 2 as well as V ∗ ↪→W ∗)

|||B(tj)u
j |||p

∗

∗ ≤ c
(
|||B0u

j |||p
∗

∗ + |||C(tj)u
j |||p

∗

∗
)

with

|||B0u
j |||p

∗

∗ ≤ c‖B0u
j‖p∗

∗ ≤ cβp∗

B ‖uj‖p∗ ≤ c(1 + ‖uj‖2) ,

|||C(tj)u
j |||p

∗

∗ ≤ βp∗

C

(
1 + ‖uj‖2(p−1)/p

)p∗

≤ c
(
1 + ‖uj‖2

)
,
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we immediately arrive at

n∑
j=1

τj+1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

τj+1/2
(vj − vj−1)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p∗

∗

≤ c

n∑
j=1

τj+1/2|||A(tj)v
j |||p

∗

∗ + c

n∑
j=1

τj+1/2|||B(tj)u
j |||p

∗

∗ + c

n∑
j=1

τj+1/2|||f
j |||p

∗

∗

≤ c

n∑
j=1

τj+1/2(1 + |||vj |||p) + c

n∑
j=1

τj+1/2(1 + ‖uj‖2) + c

n∑
j=1

τj+1/2|||f
j |||p

∗

∗ .

This proves, together with the first estimate, the second estimate. ut

4 Convergence of the sequence of time discrete solutions

Here and in the sequel, we often emphasise the dependence of a quantity g on the time

grid I by writing g(I).
We start by introducing piecewise constant and linear prolongations of the numer-

ical solution: For the solution {un}N
n=0, {vn}N−1

n=0 to (5) corresponding to a time grid

I, let

uI(t) :=


0 for t ∈ [0, t1/2] ,

un for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

0 for t ∈ (tN−1/2, tN ] ;

vI(t) :=


0 for t ∈ [0, t1/2] ,

vn for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

0 for t ∈ (tN−1/2, tN ] ;

v̂I(t) :=


v0 for t ∈ [0, t1/2] ,

vn +
t− tn+1/2

τn+1/2
(vn − vn−1) for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

vN−1 for t ∈ (tN−1/2, tN ] .

Note that v̂I is piecewise linear and continuous, and thus differentiable in the weak

sense.

For simplicity only, we henceforth restrict ourselves to the case A(t)0 ≡ 0, C(t)0 ≡ 0

(t ∈ [0, T ]). This is possible without loss of generality since otherwise, we can replace

f(t) by f(t)−A(t)0− C(t)0 (t ∈ [0, T ]). Note that then λ = 0 in Assumption A.

For the right-hand side, we employ the natural restriction

fn :=
1

τn+1/2

∫ tn+1/2

tn−1/2

f(t)dt ,

which is well-defined for f ∈ Lp∗(0, T ;W ∗) ∼= (Lp(0, T ;W ))∗. We also define

fI(t) :=


0 for t ∈ [0, t1/2] ,

fn for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

0 for t ∈ (tN−1/2, tN ] ;
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AI(t) :=


A(t1) for t ∈ [0, t1/2] ,

A(tn) for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

A(tN−1) for t ∈ (tN−1/2, tN ] ;

CI(t) :=


C(t1) for t ∈ [0, t1/2] ,

C(tn) for t ∈ (tn−1/2, tn+1/2] (n = 1, 2, . . . , N − 1) ,

C(tN−1) for t ∈ (tN−1/2, tN ] .

For w ∈ L2(0, T ;V ), we introduce the operator K via

(Kw)(t) :=

∫ t

0
w(s)ds .

Obviously, K maps L2(0, T ;V ) into itself and is linear and bounded.

Moreover, we set

σ(I) :=

N∑
n=2

τn−1/2

(
rn − 1

rn + 1

)2

=
1

2

N∑
n=2

(τn − τn−1)
2

τn + τn−1
.

In the sequel, we consider a sequence {I`}`∈N of time grids (6). The crucial as-

sumptions will be

Assumption I. {I`}`∈N is a sequence of time grids (6) with

τmax(I`) → 0 as `→∞ , sup
`∈N

τmax(I`) <
(
max

(
2κ, βBc

2
W↪→V µ

−1
A

))−1
,

inf
`∈N

rmin(I`) > 0 , sup
`∈N

rmax(I`) <∞ sup
`∈N

cγ(I`) <∞ , σ(I`) → 0 as `→∞ .

Assumption IC. The initial values for (5) satisfy

{u0(I`)} ⊆ V , u0(I`) → u0 in V as `→∞ ,

{v0(I`)} ⊆W , v0(I`) → v0 in H as `→∞ , sup
`∈N

τmax(I`)|||v0(I`)|||p <∞ .

Theorem 2 Let Assumption A, B, I, and IC be fulfilled, and let u0 ∈ V , v0 ∈ H, and

f ∈ (Lp(0, T ;W ))∗. If κ 6= 0 or C(t) 6≡ 0 assume that W is compactly embedded in H.

Then there is a subsequence, denoted by `′, such that the piecewise constant prolonga-

tions uI`′
converge weakly* in L∞(0, T ;V ) towards an exact solution u ∈ C ([0, T ];V ) to

(4). Moreover, the piecewise constant prolongations vI`′
as well as the piecewise linear

prolongations v̂I`′
converge weakly in Lp(0, T ;W ) and weakly* in L∞(0, T ;H) towards

u′ ∈ W , and v̂′I`′
converges weakly in (Lp(0, T ;W ))∗ towards u′′ ∈ (Lp(0, T ;W ))∗.

If W is compactly embedded in H then uI`′
, vI`′

and v̂I`′
also converge strongly in

Lr(0, T ;H) for any r ∈ [1,∞) towards u and u′, respectively.

If a solution to (4) is unique then convergence takes place for the whole sequence.

The proof of the main theorem will be prepared by the following lemma.
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Lemma 1 Under the assumptions of Theorem 2 there is a subsequence, denoted by `′,
and there are elements

u ∈ C ([0, T ];V ) , v ∈ W with u = u0 +Kv

such that

uI`′
∗
⇀ u in L∞(0, T ;V ) , vI`′

⇀ v in Lp(0, T ;W ) , vI`′
∗
⇀ v in L∞(0, T ;H) ,

v̂I`′
⇀ v in Lp(0, T ;W ) , v̂I`′

∗
⇀ v in L∞(0, T ;H) , v̂′I`′

⇀ v′ in (Lp(0, T ;W ))∗

KvI`′
∗
⇀ Kv in L∞(0, T ;W ) as `′ →∞ .

Moreover, for any r ∈ [1,∞)

u0 +KvI`
− uI`

→ 0 in Lr(0, T ;V ) as `→∞ . (10)

If W is compactly embedded in H then for any r ∈ [1,∞)

u0 +KvI`′
→ u in C ([0, T ];H) , uI`′

→ u in Lr(0, T ;H) ,

vI`′
→ v in Lr(0, T ;H) , v̂I`′

→ v in Lr(0, T ;H) as `′ →∞ .

Proof A direct consequence of the a priori estimates in Theorem 1 is the boundedness

of {uI`
} in L∞(0, T ;V ), and of {vI`

} and {v̂I`
} in Lp(0, T ;W ) as well as in L∞(0, T ;H),

as a straightforward calculation of the corresponding norms shows. Moreover, {v̂′I`
} is

bounded in (Lp(0, T ;W ))∗.
By standard arguments, we thus have a subsequence, denoted by `′, and elements

u ∈ L∞(0, T ;V ), v ∈ Lp(0, T ;W ) ∩ L∞(0, T ;H), v̂ ∈ W such that

uI`′
∗
⇀ u in L∞(0, T ;V ) , vI`′

⇀ v in Lp(0, T ;W ) , vI`′
∗
⇀ v in L∞(0, T ;H) ,

v̂I`′
⇀ v̂ in Lp(0, T ;W ) , v̂I`′

∗
⇀ v̂ in L∞(0, T ;H) , v̂′I`′

⇀ v̂′ in (Lp(0, T ;W ))∗ .

We now prove v = v̂. From the definition of the piecewise prolongations, we imme-

diately find

‖v̂I`
−vI`

‖2L2(0,T ;H) ≤ τmax(I`)
(
|v0(I`)|2+

N(I`)−1∑
n=1

|vn(I`)−vn−1(I`)|2+ |vN−1(I`)|2
)
,

(11)

but in view of the a priori estimates from Theorem 1, the right-hand side tends to zero

as `→∞. This shows, by density, the coincidence of the weak limits v and v̂.

For proving KvI`′
∗
⇀ Kv in L∞(0, T ;W ) ∼= (L1(0, T ;W ∗))∗, let g ∈ L1(0, T ;W ∗)

be arbitrary. Then

〈g,KvI`′
−Kv〉 =

∫ T

0

〈
g(t),

∫ t

0
(vI`′

(s)− v(s))ds

〉
dt =

∫ T

0

∫ t

0
〈g(t), vI`′

(s)− v(s)〉dsdt .

A change of the integration variables yields

〈g,KvI`′
−Kv〉 =

∫ T

0

∫ T

s
〈g(t), vI`′

(s)− v(s)〉dtds

=

∫ T

0

〈∫ T

s
g(t)dt, vI`′

(s)− v(s)

〉
= 〈G, vI`′

− v〉 .
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Since G(s) :=
∫ T
s g(t)dt ∈ L∞(0, T ;W ∗) and since vI`′

⇀ v in Lp(0, T ;W ), the right-

hand side in the foregoing identity tends to zero.

With (7) and Hölder’s inequality, we find (without writing out the dependence on

I` for a moment)

‖u0 +KvI − uI‖2L2(0,T ;V )

=

∫ t1/2

0
‖u0‖2dt+

N−1∑
n=1

∫ tn+1/2

tn−1/2

∥∥∥∥u0 +

n−1∑
j=1

τj+1/2v
j + (t− tn−1/2)v

n − un
∥∥∥∥2

dt

+

∫ T

tN−1/2

∥∥∥∥u0 +

N−1∑
j=1

τj+1/2v
j
∥∥∥∥2

dt

≤ cτmax‖u0‖2 + c‖u0 − u0‖2 + c

( N−1∑
j=1

|τj+1/2 − τj+1| ‖vj‖
)2

+ cτ2
max

N−1∑
n=1

τn+1/2‖v
n‖2 + cτ2

max‖v0‖2 + cτmax

N−1∑
j=1

τj+1/2‖v
j‖2 ,

where ( N−1∑
j=1

|τj+1/2 − τj+1| ‖vj‖
)2

≤ σ(I)
N−1∑
j=1

τj+1/2‖v
j‖2 .

In view of the embedding of W in V and since p ≥ 2, we also have ‖vj‖2 ≤ c(1+|||vj |||p).

The a priori estimates of Theorem 1 together with the assumptions on the sequence

of time grids (in particular on the deviation from an equidistant grid) and on the

initial values now yield the strong convergence of {u0 + KvI`
− uI`

} towards zero in

L2(0, T ;V ). Since {vI`
} is bounded in Lp(0, T ;W ) ↪→ Lp(0, T ;V ), {KvI`

} is bounded

in L∞(0, T ;V ). Since also {uI`
} is bounded in L∞(0, T ;V ), we thus obtain the strong

convergence in Lr(0, T ;V ) for any r ∈ [1,∞) as is claimed in (10).

We now show u = u0 +Kv. But this is, however, a direct consequence of what was

shown before:

u0 +Kv − u = u0 +Kv −KvI`′
+KvI`′

− uI`′
+ uI`′

− u ⇀ 0 in L2(0, T ;V ) .

Since u0 ∈ V and Kv ∈ C ([0, T ];V ), we also find u ∈ C ([0, T ];V ).

If W is compactly embedded in H, the Lions–Aubin theorem immediately allows

to conclude from the boundedness of {v̂I`
} in W with the strong convergence of a

subsequence of {v̂I`
} ⊆ L∞(0, T ;H) in Lp(0, T ;H) and thus in Lr(0, T ;H) for any

r ∈ [1,∞). By density, the limit can only be v. Because of (11) and the a priori estimates

from Theorem 1, we already know that {v̂I`
− vI`

} converges strongly towards zero in

L2(0, T ;H). Hence, {vI`′
} ⊆ L∞(0, T ;H) converges strongly towards v in L2(0, T ;H)

and thus in Lr(0, T ;H) for any r ∈ [1,∞).

It is then straightforward to show KvI`′
→ Kv = u − u0 in C ([0, T ];H). This

together with (10) implies the strong convergence uI`′
→ u in Lr(0, T ;H) for any

r ∈ [1,∞). ut

Proof (Proof of Theorem 2) For readability, we omit the subscripts ` and `′.
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The numerical scheme (8) can be written as

v̂′I +AIvI +B0KvI + CIuI = fI +B0(KvI − uI) . (12)

This equation holds in (Lp(0, T ;W ))∗.
The growth condition for A shows that Amaps subsets bounded in Lp(0, T ;W ) into

subsets bounded in (Lp(0, T ;W ))∗. Therefore, {AIvI} is bounded in (Lp(0, T ;W ))∗,
and by standard arguments we have a subsequence and an element a ∈ (Lp(0, T ;W ))∗

such that

AIvI ⇀ a in (Lp(0, T ;W ))∗ . (13)

With respect to B0, we observe that B0 is a linear and bounded mapping of

L2(0, T ;V ) into L2(0, T ;V ∗). Since {vI} is bounded in Lp(0, T ;W ) and thus in L2(0, T ;V )

and since K : L2(0, T ;V ) → L2(0, T ;V ) is bounded, also {B0KvI} is bounded in

(L2(0, T ;V ))∗. Hence, there is a subsequence and an element b ∈ (L2(0, T ;V ))∗ such

that

B0KvI ⇀ b in (L2(0, T ;V ))∗ . (14)

For the term CIuI, we observe the following. In view of the continuity of C = C(t)

with respect to t (see Assumption B), we have

|||CI(t)u(t)− C(t)u(t)|||∗ → 0

for almost all t ∈ (0, T ). Moreover, the growth condition for C(t) (t ∈ [0, T ]) leads to

|||CI(t)u(t)− C(t)u(t)|||p
∗

∗ ≤ c(1 + ‖u(t)‖2) ,

and the right-hand side is integrable. Lebesgue’s theorem on the dominated convergence

now yields the strong convergence

CIu→ Cu in (Lp(0, T ;W ))∗ .

From the Hölder-type continuity of C(t) (t ∈ [0, T ]) (see Assumption B), we find with

Hölder’s inequality

‖CIuI−CIu‖(Lp(0,T ;W ))∗ ≤ α
(
max

(
‖uI‖L∞(0,T ;V ), ‖u‖L∞(0,T ;V )

))
‖uI−u‖

1/p∗

L1(0,T ;H)
.

This, together with the first a priori estimate in Theorem 1 and the strong convergence

result in Lemma 1, shows that CIuI − CIu→ 0 in (Lp(0, T ;W ))∗. We thus have

CIuI → Cu in (Lp(0, T ;W ))∗ . (15)

For the right-hand side in (12), we observe the following. By standard arguments,

we obtain

fI → f in (Lp(0, T ;W ))∗ . (16)

Again, since B0 : L2(0, T ;V ) → L2(0, T ;V ∗) is linear and bounded, we conclude

from (10) that

B0(KvI − uI) → −B0u0 in L2(0, T ;V ∗) . (17)

After all, we derive from (12) in the limit

v′ + a+ b+ Cu = f −B0u0 in (Lp(0, T ;W ))∗ . (18)
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It remains to show that v ∈ W fulfills the initial condition and that a + b =

Av +B0Kv.

With v̂I(0) = v0 and Assumption IC, we have

v̂I(0) → v0 in H . (19)

With v̂I(T ) = vN−1 and the first a priori estimate in Theorem 1, we can choose the

subsequence such that

v̂I(T ) ⇀ ξ in H (20)

for some ξ ∈ H. Since v̂I ∈ W , we can employ integration by parts which yields for all

w ∈W and ϕ ∈ C 1([0, T ]) by inserting (18) and (12)

(v(T ), w)ϕ(T )− (v(0), w)ϕ(0) =

∫ T

0

(
〈v′(t), w〉ϕ(t) + 〈v(t), w〉ϕ′(t)

)
dt

=

∫ T

0

(
〈f(t)−B0u0 − a(t)− b(t)− C(t)u(t), w〉ϕ(t) + 〈v(t), w〉ϕ′(t)

)
dt

=

∫ T

0

(
〈f(t)− fI(t) + v̂′I(t) +AI(t)vI(t) +B0KvI(t) + CI(t)uI(t)−B0(KvI − uI)(t)

−B0u0 − a(t)− b(t)− C(t)u(t), w〉ϕ(t) + 〈v(t), w〉ϕ′(t)
)
dt

=

∫ T

0

(
〈f(t)− fI(t) +AI(t)vI(t)− a(t) +B0KvI(t)− b(t) + CI(t)uI(t)− C(t)u(t)

−B0(u0 +KvI − uI)(t), w〉ϕ(t) + 〈v(t)− v̂I(t), w〉ϕ′(t)
)
dt

+ (v̂I(T ), w)ϕ(T )− (v̂I(0), w)ϕ(0) .

Taking the limit on the right-hand side, we come up with

(v(T ), w)ϕ(T )− (v(0), w)ϕ(0) = (ξ, w)ϕ(T )− (v0, w)ϕ(0) .

Choosing ϕ(T ) = 0 and ϕ(0) = 0, respectively, we find

v(0) = v0 and v(T ) = ξ (21)

in H since W 3 w is dense in H.

In what follows, we wish to employ the monotonicity of A(t) + κI : W → W ∗

(t ∈ [0, T ]) and thus of AI + κI as a mapping of Lp(0, T ;W ) into (Lp(0, T ;W ))∗ as

well as the positivity of the linear operator B0K. Indeed, the linear operator B0K is

positive as a mapping of L2(0, T ;V ) into L2(0, T ;V ∗) and thus also as a mapping of

Lp(0, T ;W ) ⊆ L2(0, T ;V ) into (Lp(0, T ;W ))∗: Since the linear operator B0 : V → V ∗

defines an inner product on V and since (Kw)′ = w for all w ∈ L2(0, T ;V ), we find

with integration by parts

〈B0Kw,w〉 =

∫ T

0
〈B0(Kw)(t), w(t)〉dt =

∫ T

0
〈B0(Kw)(t), (Kw)′(t)〉dt

=
1

2
(〈B0(Kw)(T ), (Kw)(T )〉 − 〈B0(Kw)(0), (Kw)(0)〉) ≥ 0 .

In the last step, we have employed that B0 : V → V ∗ is positive and that (Kw)(0) = 0.
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For κ = 0, we can now proceed similarly as in the proof of [6, Thm. 4.2]. For

arbitrary w ∈ Lp(0, T ;W ), we find

〈(AI +B0K)vI, vI〉 ≥ 〈(AI +B0K)vI, vI〉 − 〈(AI +B0K)vI − (AI +B0K)w, vI − w〉
= 〈(AI +B0K)vI, w〉+ 〈(AI +B0K)w, vI − w〉 .

We thus obtain from (12)

0 = 〈v̂′I + (AI +B0K)vI + CIuI − fI −B0(KvI − uI), vI〉

≥ 〈v̂′I, vI〉+ 〈(AI +B0K)vI, w〉+ 〈(AI +B0K)w, vI − w〉
+ 〈CIuI, vI〉 − 〈fI, vI〉 − 〈B0(KvI − uI), vI〉 .

(22)

For the first term on the right-hand side of (22), we observe with (9)

〈v̂′I, vI〉 =

N−1∑
n=1

∫ tn+1/2

tn−1/2

(vn − vn−1

τn+1/2
, vn

)
dt =

N−1∑
n=1

(vn − vn−1, vn)

≥ 1

2
|vN−1|2 − 1

2
|v0|2 =

1

2
|v̂I(T )|2 − 1

2
|v̂I(0)|2 .

With (19), (20), (21), we thus find with integration by parts

lim inf〈v̂′I, vI〉 ≥
1

2
|v(T )|2 − 1

2
|v(0)|2 = 〈v′, v〉 . (23)

Because of Assumption A, we have for almost all t ∈ (0, T )

AI(t)w(t)−A(t)w(t) → 0 in W ∗ .

On the other hand, we find from the growth condition that for almost all t ∈ (0, T )

|||AI(t)w(t)−A(t)w(t)|||p
∗

∗ ≤ c(1 + |||w(t)|||p) ,

and the right-hand side is integrable. Hence, Lebesgue’s theorem shows that

AIw −Aw → 0 in (Lp(0, T ;W ))∗ .

With (13), (14), (15), (17), (16), (23), and the weak convergence of {vI} towards v, we

now obtain from (22) and (18)

0 ≥ 〈v′, v〉+ 〈a+ b, w〉+ 〈(A+B0K)w, v − w〉+ 〈Cu, v〉 − 〈f, v〉+ 〈B0u0, v〉
= −〈a+ b, v − w〉+ 〈(A+B0K)w, v − w〉

which yields

〈a+ b, v − w〉 ≥ 〈(A+B0K)w, v − w〉 .

With w = v ± sz (z ∈ Lp(0, T ;W )) and s → 0+, the hemicontinuity of A and the

continuity of B0K proves a+ b = (A+B0K)v in (Lp(0, T ;W ))∗.
For κ 6= 0, we only have that AI + κI + B0K : Lp(0, T ;W ) → (Lp(0, T ;W ))∗ is

monotone and coercive. We thus may replace AI by AI + κI on the left-hand side of

(12) and have to “correct” this by considering the term κvI on the right-hand side of

(12). In view of Lemma 1, this term, however, converges strongly in Lp∗(0, T ;H) and

thus in Lp∗(0, T ;W ∗) ∼= (Lp(0, T ;W ))∗ towards κv.
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After all, we have that v ∈ W fulfills the initial condition v(0) = v0 and the equation

v′ +Av +B0(u0 +Kv) + Cu = f in (Lp(0, T ;W ))∗ .

As was already shown in Lemma 1, we have u = u0+Kv and thus u′ = (Kv)′ = v ∈ W .

This shows u(0) = u0, u
′(0) = v0 as well as

u′′ +Au′ +B0u+ Cu = f in (Lp(0, T ;W ))∗ .

So, u is a solution to the original problem (4).

By contradiction, we can show that not only a subsequence but the whole sequence

converges towards u and v, respectively, if a solution to (4) is unique. ut

Remark 1 Assumption IC on the sequence {v0(I`)}`∈N can always be fulfilled for v0 ∈
H since W is dense in H. Assumption I on σ and cγ , i.e., on the ratios of adjacent step

sizes, is obviously fulfilled for an equidistant partition but also for variable time grids

that are a perturbation of an equidistant partition.

Remark 2 Theorem 2 applies to the weak formulation of (2) and (3) in a bounded

Lipschitz domain Ω ⊆ Rd, supplemented by initial and, e.g., homogeneous Dirichlet

boundary conditions, with the function spaces V = H1
0 (Ω), H = L2(Ω), the operator

B0 : V → V ∗ defined via

〈B0v, w〉 =

∫
Ω
∇v(x) · ∇w(x)dx ,

and

– for (2) with p = 2, W = H1
0 (Ω), A(t) : W →W ∗ (t ∈ [0, T ]) defined via

〈A(t)v, w〉 =

∫
Ω
ψ(x, t, |∇v(x)|)∇v(x) · ∇w(x)dx ,

see also [18, pp. 928ff] for more details on the weak formulation of (2);

– for (3) with p ≥ 2, W = W 1,p
0 (Ω), A(t) ≡ A : W →W ∗ defined via

〈Av,w〉 =

∫
Ω
|∇v(x)|p−2∇v(x) · ∇w(x)dx ,

C(t) ≡ C : V →W ∗ defined via

〈Cv,w〉 =

∫
Ω
c(v(x),∇v(x))w(x)dx ,

see also [14, pp. 88ff.] for more details on the weak formulation of (3) and a

discussion of appropriate boundary conditions (in the case c ≡ 0). The require-

ments on the operator C in Assumption B are fulfilled if, e.g., c(u,∇u) = sinu or

c(u,∇u) = |u|γu with γ ≤ 1 − 2
p (this rather restrictive assumption ensures that

the second time derivative of u is indeed in the dual of the space in which u′ is),

but also more complicated semilinearities would be allowed.

Equation (1) does not fit into our framework since in this example W = Lp(Ω) is not

embedded in V = H1
0 (Ω).
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