
CONVERGENCE OF ADAPTIVE FEM
FOR A CLASS OF DEGENERATE CONVEX

MINIMIZATION PROBLEMS

CARSTEN CARSTENSEN∗

Abstract. A class of degenerate convex minimization problems
allows for some adaptive finite element method (AFEM) to com-
pute strongly converging stress approximations. The algorithm
AFEM consists of successive loops of the form

SOLVE→ ESTIMATE→ MARK→ REFINE

and employs the bulk criterion. The convergence in Lp′(Ω;Rm×n)
relies on new sharp strict convexity estimates of degenerate convex
minimization problems with

J (v) :=
∫

Ω

W (Dv) dx−
∫

Ω

fv dx for v ∈ V := W 1,p
0 (Ω;Rm).

The class of minimization problems includes strong convex prob-
lems and allows applications in an optimal design task, Hencky
elastoplasticity, or relaxation of 2-well problems allowing for mi-
crostructures.

1. Class of Convex Minimization Problems

This section specifies a class of C1 energy densities W : Rm×n → R
characterized by (H1)-(H2) for some constants 1 < p <∞, 1 ≤ r <∞,
and 0 ≤ s <∞ with

max{(1 + s/r)/(1− 1/r), 2n/(n+ 2)} ≤ p,

through the two-sided growth condition

(H1) |F |p − 1 . W (F ) . 1 + |F |p for all F ∈ Rm×n
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and the convexity control

(1 + |A|s + |B|s)−1|DW (A)−DW (B)|r
. W (B)−W (A)−DW (A) : (B − A) for all A,B ∈ Rm×n.

(H2)

Here and throughout ”·” denotes the scalar product in Rm, ”:” denotes
the scalar product in Rm×n, and the expression ”.” abbreviates an in-
equality up to some multiplicative generic constant, i.e., A . B means
A ≤ cB with some generic constant c > 0, which is independent of the
arguments A,B, F in (H1)-(H2) (but may depend on W and on the
aspect ratio of finite element triangulations).

Finally, t := 1 + s/p and the Hölder conjugate p′ of p satisfy

1 < p′ ≤ r/t <∞, and 1/p+ 1/p′ = 1

and where r/t and r/(r − t) are conjugate exponents, i.e., t/r + (r −
t)/r = 1.

Section 3 exposes a list of examples with (H1)-(H2). The two-sided
growth control (H1) is standard in the form of

|F |p . W (F ) + 1 and W (F ) . 1 + |F |p.
By adding a constant to W (F ), it could be replaced even by

|F |p . W (F ) . 1 + |F |p.
The convexity control (H2) implies the monotonicity condition

(1 + |A|s + |B|s)−1 |DW (A)−DW (B)|
.

(
DW (A)−DW (B)

)
: (A−B) for all A,B ∈ Rm×n

(H3)

from [10, 11]. Under some conditions, (H2) is in fact equivalent to (H3)
[15, 16].

Given such energy density W : Rm×n → R and a bounded Lipschitz
domain Ω ⊂ Rn, n = 2, 3, and some right-hand side f ∈ Lp′(Ω;Rm),
define J : V → R by

(1.1) J (v) :=

∫

Ω

W (Dv) dx−
∫

Ω

f · v dx for v ∈ V := W 1,p
0 (Ω;Rm).

Throughout this paper, Dv(x) denotes the m × n functional matrix
of V at x and we adapt standard notation on Lebesgue and Sobolev
spaces, e.g., W 1,p

0 (Ω) denotes the subset of functions in W 1,p(Ω) with
trace zero on the boundary ∂Ω of Ω.

The minimization problem reads: Seek minimizers in J in V , written

(1.2) u ∈ arg min
v∈V

J (v).
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The existence of minimizers u or u` of (1.1) in V or some closed sub-
space V` of V is guaranteed under (H1)-(H2) while, in general, their
uniqueness fails. However, the respective exact and discrete stress

σ := DW (Du) and σ` = DW (Du`) ∈ Lr/t(Ω;Rm×n)

is unique [11], i.e., σ and σ` do not depend on the choice of u and u`

amongst the set of exact and discrete minimizers. The smoothness of
σ ∈ W 1,p

loc (Ω;Rm×n) has been analysed in [10, 16], while the smoothness
of u is open (recall that u may be non-unique). Therefore the a priori
error estimate (valid for any choice of u ∈ argmin J)

‖σ − σ`‖Lq(Ω;Rm×n) . min
v`∈V`

‖u− v`‖V ,

although it may be regarded as quasi-optimal convergent, has its limi-
tations. The a posteriori error estimates for ‖σ − σ`‖Lq(Ω;Rm×n) known
from the literature even face some reliability-efficiency gap [9], cf. Sec-
tion 2 and Remark 2.1 below. Surprisingly, this does not prevent the
design of convergent adaptive mesh-refining algorithms.

2. AFEM

This section describes the adaptive mesh-refining strategy, proposed
in this paper and states the main result.

2.1. Outline. Given an initial coarse mesh T0, an adaptive finite el-
ement method (AFEM) successively generates a sequence of meshes
T1, T2, . . . and associated discrete subspaces

(2.1) V0
⊂
6= V1

⊂
6= · · · ⊂

6= V`
⊂
6= V`+1

⊂
6= · · · ⊂

6= V

with discrete problems (P0), (P1), (P2), . . . and discrete solutions u0,
u1, u2, . . . and discrete stresses σ0, σ1, σ2, . . . steered by refinement rules
and indicators. A typical loop from V` to V`+1 (at the frozen level `)
consists of the steps

(2.2) SOLVE → ESTIMATE → MARK → REFINE

explained in the following Subsections.

2.2. Input. Input a shape-regular triangulation T0 of Ω ⊂ Rn into
closed triangles (if n = 2) or closed tetrahedra (if n = 3) with associated
first-order finite element space V0; suppose each element domain in T0

(and furthermore in T1, T2, . . . ) has at least one vertex in the interior
of Ω, put level ` := 0.

A triangulation T` is regular if two distinct closed-element domains are
either disjoint or their intersection is one common vertex, one common
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edge (or, if n = 3 possibly one common face). For simplicity, all trian-
gulations in the paper will be regular. Those common faces are called
sides E`, if n = 3. For n = 2, E` are the interior edges.

2.3. SOLVE. Given the triangulation T` with set of interior sides E` and
interior nodes K`, the piecewise affine space P1(T`) reads

P1(T`;Rm) :=
{
v ∈ L∞(Ω;Rm) : ∀T ∈ T`, v|T ∈ P1(T ;Rm)

}
;

P1(T ;Rm) :=
{
v ∈ C∞(T ;Rm) : ∃A ∈ Rm×n ∃b ∈ Rm

∀x ∈ T : v(x) = Ax+ b
}
.

The discrete space V` := V ∩P1(T`;Rm) is the first-order finite element
space and allows for a nodal basis (ϕz : z ∈ K`). Then the step SOLVE

reads: Solve the nonlinear discrete problem

(2.3) u` ∈ arg min
v`∈V`

J (v`) and set σ` := DW (Du`).

The Rm×n-valued stress σ` is piecewise constant with respect to T`.

2.4. ESTIMATE. Given any interior side E ∈ E` with measure |E|, and
normal unit vector νE, compute the jump

JE := [σ`]E νE ∈ Rm

of the discrete normal stresses σ`νE over E, where

[σ`]E(x) := lim
T+3a→x

σ`(a)− lim
T−3b→x

σ`(b)

for all x ∈ E = ∂T+ ∩ ∂T−, and by convention, νE is exterior to T+.
Then define

(2.4) η` :=
(∑

E∈E`

ηp′
E

)1/p′

with ηE := h
1/p′
E |E|1/p′ |JE| for E ∈ E`.

It is essentially known from [9, 11] that η` is a reliable a posteriori error
estimator in the sense that

(2.5) ‖σ − σ`‖r
Lr/t(Ω;Rm×n) . η` + osc`,

cf. Lemma 4.2 below. Here and throughout, osc` denotes data oscilla-
tions. Given any connected open nonvoid ω ⊂ Ω, let

(2.6) osc(f, ω)p′ := diam(ω)p′‖f − fω‖p′

Lp′ (ω)
with fω := |ω|−1

∫

ω

f dx,

the integral mean of f over ω. For each node z in the triangulation T`

with nodal basis function ϕz ∈ V`, let ωz := {x ∈ Ω : ϕ(x) > 0} denote
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the patch of z. Then, recall K` denotes the set of all interior nodes,

(2.7) oscp′
` :=

∑
z∈K`

osc(f, ωz)
p′ .

Since osc` depends on the given data and explicitly on T`, it can easily
be made arbitrarily small by additional refinement steps. This data
oscillation control allows for lim`→∞ osc` = 0; cf. [17, 22] for algorithmic
details.

Remark 2.1. The upper bound in (2.5) is not sharp, the estimator η` is
not efficient, because of r > 1. This is called reliability-efficiency gap
[9].

2.5. MARK. Select a subsetM` of E` in the current triangulation T` with

(2.8) ηp′
` .

∑
E∈M`

ηp′
E .

Given a parameter 0 < Θ < 1 the selection condition (2.8) results from
choosing sufficiently many sides E with bigger ηE in M` such that the
bulk criterion [13, 17, 18, 22] holds:

Θ ηp′
` ≤

∑
E∈M`

ηp′
E .

This is easily arranged with some greedy algorithm.

2.6. REFINE. Refine the triangulation T` and design a refined shape-
regular triangulation T`+1 such that each interior side E = ∂T+∩∂T− ∈
M` is refined in T`+1, for T+, T− ∈ T` and T+∪T− includes at least one
new node on E and at least one new node in the interior of either T+
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Figure 2.1. Possible refinements of a triangle in REFINE

of AFEM. The 5 bisections allow for an interior node
property.
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or T−. For n = 2 the inner node property is easily depicted with 5 bi-
sections as in Figure 2.1. More details on the shape-regular refinement
strategies can be found in [6].

2.7. Output. The AFEM computes a sequence of discrete stresses
σ0, σ1, σ2, . . . in Lp′(Ω;Rm×n) as approximations to σ := DW (Du).
The main result of this paper is the strong convergence of the stresses.

Theorem 2.1 (Convergence Theorem). Suppose (H1)-(H2) and

lim
`→∞

osc` = 0.

Then the sequence of stress fields σ0, σ1, σ2, . . . converges strongly to-
wards the exact stress field σ in Lr/t(Ω;Rm×n).

The technical proof is postponed to Section 4, after the motivating list
of examples in Section 3.

3. Examples and Applications

This section briefly summarizes a few applications with explicit
proofs of (H1)-(H2) and hence with a convergent AFEM.

3.1. Uniformly Convex Minimization. Uniformly convex C1 fun-
ction W : Rm×n → R with globally Lipschitz continuous derivative
DW , i.e., for all A,B ∈ Rm×n there holds

|A−B|2 . DW (A) : (A−B)−W (A) +W (B)

|DW (A)−DW (B)| . |A−B|.
This implies (H1)-(H2) with p = 2 = r and s = 0 and, thus, the class (i)
is included in class (ii). Simple examples are W (F ) = ϕ(|symF |)|F |2
for proper C2 functions ϕ (cf., e.g., [23, Sections 62.3, 62.8-9] and [15,
Exercise 1.7 on page 21]).

3.2. Nonlinear Laplacian. The p-Laplacian satisfies (H1)-(H2) for
any 2 ≤ p <∞ and r = 2, s = p− 2.

Lemma 3.1. Given 1 ≤ p <∞ define the function W : Rm×n → R by
W (A) := |A|p/p. Then there exist a constant c1 = c(p) such that for
all A,B ∈ Rm×n there holds

|DW (A)−DW (B)|2 ≤ c1(|A|p−2 + |B|p−2)

× (W (B)−W (A)−DW (A;B − A)) .
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Proof. Given A,B ∈ Rm×n with A 6= B set a := |A| and b := |B|. A
quick check verifies that the assertion holds for either a = 0 or b = 0
with c1 = max{p, q}. It is therefore assumed that ab > 0 in the sequel
and c := A : B/(ab). Then 0 < t := b/a <∞. The left- and right-hand
side of the assertion vanish for a = b and c = +1. This situation is
therefore excluded in the sequel. Then,

W (B)−W (A)−DW (A;B − A) = bp/p− ap/p− ap−1(cb− a)

= bp/p+ ap/q − ap−1bc

is strictly positive (non-negativity immediately follows from Young’s
inequality and −1 ≤ c ≤ 1). Since

|DW (A)−DW (B)|2 = a2(p−1) + b2(p−1) − 2cap−1bp−1.

The quotient of the left- and the right-hand side of the assertion reads

a2(p−1) + b2(p−1) − 2cap−1bp−1

(ap−2 + bp−2)(bp/p+ ap/q − ap−1bc)
=

1 + t2(p−1) − 2ctp−1

(1 + tp−2)(tp/p+ 1/q − ct)

=: f(t, c).

A direct calculation verifies that ∂f/∂c as a function of c has one
sign (which depends on t and p) and hence is monotone increasing or
decreasing. Therefore

max
−1≤c≤1

f(t, c) = max{f(t, 1), f(t,−1)}

and the assertion reads f(t, 1) ≤ c1 and f(t,−1) ≤ c1 for all 0 < t <∞.
The case c = +1 is the crucial one because tp/p + 1/q − t vanishes
for t = 1. Hospital’s rule yields f(1, 1) = 0. Since f(0, 1) = q and
limt→∞ f(t, 1) = p, one deduces from continuity of f(t, 1) in t that

sup
0<t<∞

f(t, 1) =: c1 <∞.

The analysis for c = −1 is simpler and hence omitted. ¤

3.3. Optimal Design Problem. Let 0 < t1 < t2 and 0 < µ2 < µ1

be positive real numbers with t1µ1 = t2µ2 and consider a convex C1

function ψ : [0,∞) → R with ψ(0) = 0 and

ψ′(t) :=





µ1t for 0 ≤ t ≤ t1,
t1µ1 = t2µ2 for t1 ≤ t ≤ t2,
µ2t for t2 ≤ t.

The energy density W (A) := ψ(|A|), A ∈ Rn, results from a relaxation
process [14]. It satisfies (H1)-(H2) with p = r = 2 and s = 0. Details
can be found in [2].
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3.4. Scalar 2-Well Problem. The scalar convexified 2-well energy
density W results from a relaxation in nonconvex minimization prob-
lems allowing for microstructures [11]. It satisfies (H1)-(H2) with p = 4
and r = 2 = s.

Proposition 3.2. Given distinct F1 and F2 in Rn set A := (F2 −
F1)/2 6= 0 and B := (F1 + F2)/2 where (·)+ := max{0, ·} and (·)2

+ :=
max{0, ·}2. For any F ∈ Rn let

W (F ) := (|F −B|2 − |A|2)2
+ + 4

(|A|2|F −B|2 − (A · (F −B))2
)
.

Then for any F,G ∈ Rn with ξ := (|F − B|2 − |A|2)+ and η := (|G −
B|2 − |A|2)+ there holds

|DW (G)−DW (F )|2
≤ 32(|A|2 + ξ + η)(W (G)−W (F )−DW (F ) · (G− F )).

The proof of Proposition 3.2 is based on two lemmas.

Lemma 3.3. Given A,B ∈ Rn let W (F ) := (|F − B|2 − |A|2)2
+. For

any F and G in Rn let

ξ := (|F −B|2 − |A|2)+ and η := (|G−B|2 − |A|2)+.

Then there holds

|DW (F )−DW (G)|2
≤ 32(|A|2 + ξ + η)(W (G)−W (F )−DW (F ) · (G− F )).

Proof. Let U := F−B, V := G−B, a := |A| and notice thatDW (F ) =
4ξU and DW (G) = 4ηV . In the first case suppose that both, ξ =
|U |2 − a2 and η = |V |2 − a2, are positive. Utilizing

DW (F )−DW (G) = 4(ξU − ηV ) = 4ξ(U − V ) + 4(ξ − η)V

one obtains

1/32 |DW (F )−DW (G)|2 ≤ ξ2|U − V |2 + (ξ − η)2|V |2.
Since |V |2 = η + a2 this proves

(3.1) 1/32 |DW (F )−DW (G)|2 ≤ (a2 + ξ + η)(ξ|U − V |2 + (ξ − η)2).

On the other hand, the preceeding situation allows the direct calcula-
tion of

W (G)−W (F )−DW (F ) · (F −G)

= η2 − ξ2 + 4ξU · (U − V )

= η2 − ξ2 + 2ξ(|U |2 − |V |2) + 2ξ|U − V |2
= 2ξ|U − V |2 + (ξ − η)2.
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The combination with (3.1) shows the assertion in the present first case
of positive ξ and η. For ξ = 0 < η = |V |2 − a2 the assertion reads

16η2|V |2 ≤ 32(a2 + η) η2

which follows immediately from |V |2 ≤ (a2 + η). In the remaining case
η = a < ξ = |U |2 − a2, whence |V | ≤ a < |U |, the assertion reads

16ξ2|U |2 ≤ 32(a2 + ξ)(4ξU · (U − V )− ξ2).

This is equivalent to

ξ2|U |2 ≤ 2(a2 + ξ)(ξ2 + 2ξ(a2 − |V |2) + 2ξ|U − V |2)
and hence follows from |U |2 = a2 + ξ and 0 ≤ a2 − |V |2. ¤
Lemma 3.4. Let S be a symmetric and positive semidefinite real n×n
matrix with spectral radius %(S) and pseudo inverse S+ and induced
seminorm | · |S+, i.e.,

|F |S+ := (F · S+F )1/2 for all F ∈ Rn.

Then the function W : Rn → R defined by

W (F ) := 1/2F · SF for F ∈ Rn

satisfies

%(S)−1|DW (F )−DW (G)|2 ≤ |DW (F )−DW (G)|2S+

= (F −G) · S(F −G)

= 2(W (G)−W (F )− (SF ) · (G− F )).

Proof. Since S is symmetric, S = SS+S, and so DW (F ) = SF satisfies

|S(F −G)|2 ≤ %(S)|S1/2(F −G)|2 = %(S)|S(F −G)|2S+ .

The remaining identity results from

1/2(F −G) · S(F −G) = W (G)−W (F ) + F · S(F −G). ¤

Proof of Proposition 3.2. Notice that W (F ) is the sum of the two en-
ergy densities of the aforegoing lemmas. Indeed, let A0 := A/|A| and
define the symmetric and positive semidefinite matrix S := 1−A0⊗A0.
Then

4
(|A|2|F −B|2 − (A · (F −B))2

)
= 4|A|2|F −B|2S.

Observe the upper bound of S

|DW (G)−DW (F )|2 ≤ 32|ξU − ηV |2 + 32|A|4|U − V |2S
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is estimated in Lemma 3.3 and Lemma 3.4, respectively. This concludes
the proof. ¤

3.5. Vectorial 2-Well Problem. Given two distinct wells E1 and
E2 in Rn×n

sym with minimal energies W 0
1 and W 0

2 in R, we consider the
quadratic elastic energies

Wj(E) := 1/2(E − Ej) : C(E − Ej) +W 0
j for all E ∈ Rn×n

sym .

Energy minimization leads to an optimal choice of the configuration of
the two phases, and so the strain energy density W̃ is modelled by the
minimum

W̃ (E) = min{W1(E),W2(E)} for all E ∈ Rn×n
sym .

The two wells (transformation strains) are said to be compatible if

(3.2) E1 = E2 + 1/2(a⊗ b+ b⊗ a) for some a, b ∈ Rn.

Then the constant γ = 1/2|E2 − E1|2C and the quasiconvexification W

of W̃ = {W1,W2} [14] is given by

W (E) =





W2(E) if W2(E) + γ ≤ W1(E),
1
2
(W2(E) +W1(E))− 1

4γ
(W2(E)−W1(E))2 − γ

4

if |W2(E)−W1(E)| ≤ γ,

W1(E) if W1(E) + γ ≤ W2(E).

The convex W satisfies (H1)-(H2) with p = 2 = r and s = 0.

Proposition 3.5. In the compatible case (3.2) there holds, for all
A,B ∈ Rn×n

sym ,

1/2 |DW (A)−DW (B)|2C−1 ≤ W (B)−W (A)−DW (A) : (B − A).

Proof. A translation of the argument inW allows us to assume, without
loss of generality, that E1 + E2 = 0. For E ∈ Rn×n

sym , let

ϕ(E) := γ−1(W2(E)−W1(E)),

ψ(E) := max{−1,min{1, ϕ(E)}}.
As in [12] one deduces, for E ∈ Rn×n

sym and γϕ(E) = 2(CE1) : E+W 0
2 −

W 0
1 ,

DW (E) = CE − ψ(E)CE1

and observes that ψ(E) = ϕ(E) for E ∈ Rn×n
sym with −1 ≤ ϕ(E) ≤ 1.

The proof of the proposition starts with the discussion of

(3.3) γ/2 (ψ(B)− ψ(A))(ψ(A)− ϕ(A)) ≥ 0.
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In fact, ψ(A) 6= ϕ(A) implies either ψ(A) = 1 < ϕ(A) [notice ψ(B) −
1 ≤ 0] or ψ(A) = −1 > ϕ(A) [notice ψ(B) + 1 ≥ 0] and in each
case (3.3) follows. Algebraic manipulations will show in the sequel
that (3.3) is equivalent to the assertion. Abbreviate σ := DW (A) and
τ := DW (B) to compute the left-hand side of the assertion, namely

1/2 |σ − τ |2C−1 = 1/2 (τ − σ) : C−1(τ + σ) + (σ − τ) : C−1σ.

With C−1(σ − τ) = A−B − ψ(A)E1 + ψ(B)E1, this reads

σ : (A−B)− 1/2 |σ − τ |2C−1

= (ψ(A)− ψ(B))E1 : σ − 1/2 |τ |2C−1 + 1/2 |σ|2C−1 .

The definition of σ and τ and γ/2 = |E1|2C show

1/2 |σ|2C−1 − 1/2 |τ |2C−1 = 1/2 |A|2C − 1/2 |B|2C + γ/4 (ψ(A)2 − ψ(B)2)

− ψ(A)A : CE1 + ψ(B)B : CE1.

It is a lengthy but direct verification that W (E), E ∈ Rn×n
sym , can be

written as

W (E) = 1/2E : CE + 1/2(W 0
1 +W 0

2 ) + γ/4ψ(E)(ψ(E)− 2ϕ(E)).

The combination of the preceeding three identities [the last applied to
E = A and E = B] shows

W (B)−W (A) + σ : (A−B)− 1/2 |σ − τ |2C−1

= (ψ(A)− ψ(B))(E1 : CA− ψ(A)γ/2)

− ψ(A)A : CE1 + ψ(B)B : CE1

+ γ/2ϕ(A)ψ(A)− γ/2ϕ(B)ψ(B)

= −γ/2ψ(A)2 + γ/2ψ(A)ψ(B)− ψ(B)E1 : C(A−B)

+ γ/2ϕ(A)ψ(A)− γ/2ϕ(B)ψ(B).

Since E1 : C(A − B) = γ/2(ϕ(A) − ϕ(B)) shows that the preceeding
expression equals the left-hand side of (3.3). ¤
Remark 3.1. The immediate corollary (H3) of Proposition 3.5 is known
from [10, 12] and fundamental for error analysis and regularity.

3.6. Hencky elastoplasticity with hardening. One time step with-
in an elastoplastic evolution problem leads to Hencky’s model. For
various hardening laws and von-Mises yield conditions, an elimination
of internal variables [1] leads to the energy function

(3.4) W (E) :=
1

2
E : CE − 1

4µ
max{0, | devCE| − σy}2/(1 + η)
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for E ∈ Rn×n
sym . Here we adopt notation of the previous section and C is

the fourth-order elasticity tensor, σy > 0 is the yield stress, and η > 0 is
the modulus of hardening. The model of perfect plasticity corresponds
to η = 0 [21]. For η > 0 there holds (H1)-(H2) for p = 2 = r and s = 0.

Proposition 3.6. For all A,B ∈ Rn×n
sym there holds

1/2 |DW (A)−DW (B)|2C−1 ≤ W (B)−W (A)−DW (A) : (B − A).

Proof. Set ψ(x) := 1 − max{0, 1 − σy/(2µx)}/(1 + η) to define the
continuous and monotone decreasing function ψ : [0,∞) → (η/(1 +
η), 1] which satisfies

DW (E) = (λ+2µ/n) tr(E)1+2µψ(| devE|) devE for all E ∈ Rn×n
sym .

Given A,B ∈ Rn×n
sym , the following abbreviations will be used through-

out the remaining part of the proof:

σ := DW (A), a := | devA|, α := ψ(a),

τ := DW (B), b := | devB|, β := ψ(b).

Then the assertion reads

δ := W (B)−W (A) + σ : (A−B)− 1/2 |σ − τ |2C−1 ≥ 0.

In the first three steps one computes δ. The aforementioned formulae
for DW (A) and DW (B) and elementary calculations with the third
formula of Binomi yield in step one that

σ : C−1(σ − τ)− 1/2|σ − τ |2C−1

= 1/2 |σ|2C−1 − 1/2 |τ |2C−1

= (λ/2 + µ/n)(tr(A)2 − tr(B)2) + µ(α2a2 − β2b2).

Step two employs the definition of ψ to rewrite the energy as

W (E) = 1/2 |E|2C − (1 + η)µ (1− ψ(| devE|))2 | devE|2,
for all E ∈ Rn×n

sym . Step three employs the above formulae for σ and τ
to estimate

σ : (A−B)−σ : C−1(σ−τ) = 2µα devA : ((1−α) devA−(1−β) devB).

The Cauchy inequality, leads to

σ : (A−B)− σ : C−1(σ − τ) ≥ 2µα(1− α)a2 − 2µα(1− β)ab.

The left-hand sides considered in the first three steps add up to δ and
so lead to a lower bound of δ. Elementary manipulations with this
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lower bound in step four of the proof yield the estimate

δ/µ ≥ α2a2 − β2b2 + b2 − a2 + (1 + η)(1− α)2a2 − (1 + η)(1− β)2b2

+ 2α(1− α)a2 − 2α(1− β)ab

= η(1− α)2a2 − η(1− β)2b2 + 2(1− β)b(βb− αa)

= η
(
(1− α)a− (1− β)b

)2

+ 2(1− β)b
(
(1 + η)(βb− αa)− η(b− a)

)
.

Step five concerns the function g(x) := xψ(x) which satisfies g′(x) = 1
and g′(x) = η/(1 + η) for 2µx < σy and σy < 2µx, respectively. For
a ≤ b, this and the fundamental theorem of calculus show

(3.5) η(b− a) ≤ (1 + η)

∫ b

a

g′(x) dx = (1 + η)(βb− αa).

This concludes the proof of δ ≥ 0 in this case. In the case b < a,
the above lower bound of δ shows δ ≥ 0 if β = 1. Hence it remains
to consider b < a and β < 1 which implies σy < 2µb and so g′(x) =
η/(1 + η) for all b < x < a. This yields equality in (3.5) and so proves
δ ≥ 0. ¤

Remark 3.2. Although (H2) holds for η = 0 as well, the linear growth
condition yields a different functional analytical setting in BD(Ω) [21].

4. Proof of Convergence

This section provides a proof of Theorem 2.1 on the convergence of
the stress fields in Lr/t(Ω;Rm×n). Throughout this section, the focus
is on the energy difference

δ` := J (u`)− J (u) ≥ 0.

Due to (2.1), the sequence (δ`)` is monotone decreasing, and hence
convergent to some limit δ ≥ 0. It is essential to prove δ = 0, which is
not known in the beginning of the proof.

Lemma 4.1. There holds

‖σ`+1 − σ`‖r
Lr/t(Ω;Rm×n) . δ` − δ`+1.

Proof. The two-sided growth conditions in (H1) lead in [11] to the
boundedness of discrete minimizers in W 1,p and show

(4.1)

∫

Ω

(1 + |Du`|s + |Du`+1|s)p/s dx . 1.
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Since σ`+1 satisfies the discrete Euler-Lagrange equations, there holds∫

Ω

σ`+1 : D(u` − u`+1) dx =

∫

Ω

f · (u` − u`+1) dx.

Therefore,

δ` − δ`+1 =

∫

Ω

(
W (Du`)−W (Du`+1)− f · (u` − u`+1)

)
dx

=

∫

Ω

(
W (Du`)−W (Du`+1)− σ`+1 : D(u` − u`+1)

)
dx.

An application of (H2) with A = Du`+1(x) and B = Du`(x) leads to
an estimate for all x in Ω. The integral of those inequalities reads∫

Ω

(1 + |Du`|s + |Du`+1|s)−1 |σ` − σ`+1|r dx

.
∫

Ω

(W (Du`)−W (Du`+1)− σ`+1 : D(u` − u`+1)) dx

= δ` − δ`+1.

(4.2)

The Hölder inequality with t and t′ = 1+p/s, 1/t+1/t′ = 1, plus (4.1)
with t′/t = p/s lead to

‖σ`+1 − σ`‖r/t

Lr/t(Ω;Rm×n)
=

∫

Ω

(1 + |Du`|s + |Du`+1|s)−1/t |σ` − σ`+1|r/t

× (1 + |Du`|s + |Du`+1|s)1/t dx

.
(∫

Ω

(1 + |Du`|s + |Du`+1|s)−1 |σ` − σ`+1|r dx
)1/t

.

The combination of this estimate with (4.2) proves the lemma. ¤

Lemma 4.2. There holds (2.5), namely

‖σ − σ`‖r
Lr/t(Ω;Rm×n) . η` + osc` .

Proof. In slightly different notation, it is proven in [11] that

(4.3) ‖σ − σ`‖r
Lr/t(Ω;Rm×n) . η` + ‖hT`

f‖Lp′ (Ω).

It is known since [19, 20] that the volume contribution ‖hT`
f‖Lp′ (Ω)

can be controlled by η` + osc` and so (4.3) leads to the assertion; cf.
[9] for one particular case. The main arguments are recalled here for
convenient reading. A triangle inequality yields, for each free node z,
that

(4.4) ‖f‖Lp′ (ωz) ≤ ‖f − fωz‖Lp′ (ωz) + |fωz | |ωz|1/p′ .
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The integral mean equals

(4.5) fωz |ωz| ≈
∫

Ω

ϕzfωz dx =

∫

Ω

ϕz(f − fωz) dx+

∫

Ω

ϕzf dx.

The combination of (4.4)-(4.5) plus a Hölder inequality shows

(4.6) ‖f‖Lp′ (ωz) . ‖f − fωz‖Lp′ (ωz) + |ωz|−1/p
∣∣∣
∫

Ω

ϕzf dx
∣∣∣.

On the other hand, the discrete Euler-Lagrange equations show for the
j-th component fj of f and the components σ`,j := (σ`,j1 , . . . , σ`,jn) of
σ`, that

(4.7)

∫

Ω

ϕzfj dx =

∫

Ω

σ`,j · ∇ϕz dx =
∑
E∈E

∫

E

(
[σ`,j] · νE

)
ϕz ds

with an elementwise integration by parts. Let E(z) := {E ∈ E : z ∈
E} denote the set of sides which contribute in (4.7). Then for all
j = 1, 2, . . . ,m components in (4.7) it follows that

(4.8)
∣∣∣
∫

Ωz

fϕz dx
∣∣∣ ≤

( ∑

E∈E(z)

ηp′
E

)1/p′( ∑

E∈E(z)

h
−p/p′
E ‖ϕz‖p

Lp(E)

)1/p

.

Since the last factor in (4.8) is proportional to h
n/p −1
z for hz = diam(ωz),

(4.7)-(4.8) yield

(4.9) |ωz|−p′/p
∣∣∣
∫

Ω

fϕz dx
∣∣∣
p′

. h−p′
z

∑

E∈E(z)

ηp′
E .

Since E(z), for free nodes z ∈ K, have a finite overlap, the combination
of (4.6) and (4.9) shows

‖hT`
f‖p′

Lp′ (Ω)
≈

∑
z∈K

hp′
z ‖f‖p′

Lp′ (ωz)
. osc`(f)p′ + η`.

This and (4.3) proof the assertion. ¤

Remark 4.1. The condition that each element has at least one vertex,
which is a free node, leads to Ω =

⋃
z∈K ωz in the proof of Lemma 4.2.

This can be generalised by enlarging ωz to Ωz by some elements near
the boundary. We refer to [5, 4, 7, 8] for details.

Lemma 4.3. For any E ∈ M` with E = ∂T+ ∪ ∂T− for T+, T− ∈ T`

and ωE = int(T+ ∪ T−) there holds

ηE . ‖σ`+1 − σ`‖Lp′ (ωE ;Rm×n) + ‖f − fωE
‖Lp′ (ωE ;Rm).
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Proof. REFINE allows for nodal basis functions ϕE of a new node mid(E)
in E and ψE of a new node mid(ωE) in either T+ or T−, with respect to
the finer triangulation T`+1 and E, T+, T− from T`. Then, there exists
some linear combination

VE := αϕE + βψE ∈ V`+1 ∩W 1,p
0 (ωE;Rm)

with the following conditions
∫

E

vE ds = |E|,
∫

ωE

vE dx = 0, ‖vE‖V ≈ h−1
E |ωE|1/p.

The construction of such VE is the same as in linear problems [3, 13,
17, 18, 22] and hence the remaining details are neglected and the sub-
sequent outline is kept brief. Since JE is constant along E

|E|JE =

∫

E

([σ`]νE) · vE ds =

∫

ωE

σ` : DvE dx.

Since vE ∈ V`+1 and σ`+1 satisfy the discrete Euler-Lagrange equations,
∫

ωE

σ` : DvE dx =

∫

ωE

(σ` − σ`+1) : DvE dx+

∫

ωE

(f − fωE
) · vE dx

with the constant integral mean fωE
of f over ωE. The combination of

the above identity with Friedrichs inequality ‖vE‖Lp(ωE ;Rm) . hE‖vE‖V

proves

ηE = h
1/p′
E |E|1/p′|JE| . h

1/p′
E |E|1/p

(‖σ` − σ`+1‖Lp′ (ωE ;Rm×n)

+ hωE
‖f − fωE

‖Lp′ (ωE ;Rm)

)‖vE‖V . ¤

Proof of Theorem 2.1. Notice that the patches have a finite overlap and
∑
E∈E`

hp′
E‖f − fωE

‖Lp′ (ωE ;Rm) . oscp′
` .

Hence Lemma 4.3 leads to
∑
E∈M

ηp′
E . ‖σ`+1 − σ`‖p′

Lp′ (Ω;Rm×n)
+ oscp′

` .

This, (2.8) in MARK and Lemma 4.2 show

‖σ − σ`‖rp′

Lr/t(Ω;Rm×n)
. ηp′

` + oscp′
`

.
∑

E∈M`

ηp′
E + oscp′

`

. ‖σ`+1 − σ`‖p′

Lp′ (Ω;Rm×n)
+ oscp′

` .

(4.10)
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Since (δ`) → δ, the right-hand side in Lemma 4.1 converges to zero,
i.e.,

lim
`→∞

‖σ`+1 − σ`‖Lr/t(Ω;Rm×n) = 0.

Since p′ ≤ r/t and |Ω| . 1, the right-hand side in (4.10) tends to zero
as `→∞. This proves the claimed strong convergence

lim
`→∞

‖σ − σ`‖Lr/t(Ω;Rm×n) = 0. ¤
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