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Abstract

Neural networks are vulnerable to adversarial examples, i.e. inputs that are imper-
ceptibly perturbed from natural data and yet incorrectly classified by the network.
Adversarial training [31], a heuristic form of robust optimization that alternates
between minimization and maximization steps, has proven to be among the most
successful methods to train networks to be robust against a pre-defined family of
perturbations. This paper provides a partial answer to the success of adversarial
training, by showing that it converges to a network where the surrogate loss with
respect to the the attack algorithm is within ǫ of the optimal robust loss. Then we
show that the optimal robust loss is also close to zero, hence adversarial training
finds a robust classifier. The analysis technique leverages recent work on the
analysis of neural networks via Neural Tangent Kernel (NTK), combined with mo-
tivation from online-learning when the maximization is solved by a heuristic, and
the expressiveness of the NTK kernel in the ℓ∞-norm. In addition, we also prove
that robust interpolation requires more model capacity, supporting the evidence
that adversarial training requires wider networks.

1 Introduction

Recent studies have demonstrated that neural network models, despite achieving human-level per-
formance on many important tasks, are not robust to adversarial examples—a small and human
imperceptible input perturbation can easily change the prediction label [44, 22]. This phenomenon
brings out security concerns when deploying neural network models to real world systems [20]. In
the past few years, many defense algorithms have been developed [23, 43, 30, 28, 39] to improve the
network’s robustness, but most of them are still vulnerable under stronger attacks, as reported in [3].
Among current defense methods, adversarial training [31] has become one of the most successful
methods to train robust neural networks.

To obtain a robust network, we need to consider the “robust loss” instead of a regular loss. The robust
loss is defined as the maximal loss within a neighborhood around the input of each sample, and
minimizing the robust loss under empirical distribution leads to a min-max optimization problem.
Adversarial training [31] is a way to minimize the robust loss. At each iteration, it (approximately)
solves the inner maximization problem by an attack algorithm A to get an adversarial sample, and
then runs a (stochastic) gradient-descent update to minimize the loss on the adversarial samples.
Although adversarial training has been widely used in practice and hugely improves the robustness
of neural networks in many applications, its convergence properties are still unknown. It is unclear
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whether a network with small robust error exists and whether adversarial training is able to converge
to a solution with minimal adversarial train loss.

In this paper, we study the convergence of adversarial training algorithms and try to answer the above
questions on over-parameterized neural networks. We consider width-m neural networks both for the
setting of deep networks with H layers, and two-layer networks for some additional analysis. Our
contributions are summarized below.

• For an H-layer deep network with ReLU activations, and an arbitrary attack algorithm,
when the width m is large enough, we show that projected gradient descent converges to
a network where the surrogate loss with respect to the attack A is within ǫ of the optimal
robust loss (Theorem 4.1). The required width is polynomial in the depth and the input
dimension.

• For a two-layer network with smooth activations, we provide a proof of convergence, where
the projection step is not required in the algorithm (Theorem 5.1).

• We then consider the expressivity of neural networks w.r.t. robust loss (or robust interpo-
lation). We show when the width m is sufficiently large, the neural network can achieve
optimal robust loss ǫ; see Theorems 5.2 and C.1 for the precise statement. By combining
the expressivity result and the previous bound of the loss over the optimal robust loss, we
show that adversarial training finds networks of small robust training loss (Corollary 5.1 and
Corollary C.1).

• We show that the VC-Dimension of the model class which can robustly interpolate any
n samples is lower bounded by Ω(nd) where d is the dimension. In contrast, there are
neural net architectures that can interpolate n samples with only O(n) parameters and
VC-Dimension at most O(n log n). Therefore, the capacity required for robust learning is
higher.

2 Related Work

Attack and Defense Adversarial examples are inputs that are slightly perturbed from a natural
sample and yet incorrectly classified by the model. An adversarial example can be generated by
maximizing the loss function within an ǫ-ball around a natural sample. Thus, generating adversarial
examples can be viewed as solving a constrained optimization problem and can be (approximately)
solved by a projected gradient descent (PGD) method [31]. Some other techniques have also been
proposed in the literature including L-BFGS [44], FGSM [22], iterative FGSM [26] and C&W
attack [12], where they differ from each other by the distance measurements, loss function or
optimization algorithms. There are also studies on adversarial attacks with limited information about
the target model. For instance, [13, 24, 8] considered the black-box setting where the model is hidden
but the attacker can make queries and get the corresponding outputs of the model.

Improving the robustness of neural networks against adversarial attacks, also known as defense, has
been recognized as an important and unsolved problem in machine learning. Various kinds of defense
methods have been proposed [23, 43, 30, 28, 39], but many of them are based on obfuscated gradients
which does not really improve robustness under stronger attacks [3]. As an exception, [3] reported
that the adversarial training method developed in [31] is the only defense that works even under
carefully designed attacks.

Adversarial Training Adversarial training is one of the first defense ideas proposed in earlier
papers [22]. The main idea is to add adversarial examples into the training set to improve the
robustness. However, earlier work usually only adds adversarial example once or only few times
during the training phase. Recently, [31] showed that adversarial training can be viewed as solving
a min-max optimization problem where the training algorithm aims to minimize the robust loss,
defined as the maximal loss within a certain ǫ-ball around each training sample. Based on this
formulation, a clean adversarial training procedure based on PGD-attack has been developed and
achieved state-of-the-art results even under strong attacks. This also motivates some recent research
on gaining theoretical understanding of robust error [9, 40]. Also, adversarial training suffers
from slow training time since it runs several steps of attacks within one update, and several recent
works are trying to resolve this issue [41, 53]. From the theoretical perspective, a recent work [46]
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considers to quantitatively evaluate the convergence quality of adversarial examples found in the
inner maximization and therefore ensure robustness. [51] consider generalization upper and lower
bounds for robust generalization. [29] improves the robust generalization by data augmentation with
GAN. [21] considers to reduce the optimization of min-max problem to online learning setting and
use their results to analyze the convergence of GAN. In this paper, our analysis for adversarial is
quite general and is not restricted to any specific kind of attack algorithm.

Global convergence of Gradient Descent Recent works on the over-parametrization of neural
networks prove that when the width greatly exceeds the sample size, gradient descent converges to a
global minimizer from random initialization [27, 18, 19, 1, 55]. The key idea in the earlier literature
is to show that the Jacobian w.r.t. parameters has minimum singular value lower bounded, and thus
there is a global minimum near every random initialization, with high probability. However for
the robust loss, the maximization cannot be evaluated and the Jacobian is not necessarily full rank.
For the surrogate loss, the heuristic attack algorithm may not even be continuous and so the same
arguments cannot be utilized.

Certified Defense and Robustness Verification In contrast to attack algorithms, neural network
verification methods [48, 47, 54, 42, 14, 38] tries to find upper bounds of the robust loss and provide
certified robustness measurements. Equipped with these verification methods for computing upper
bounds of robust error, one can then apply adversarial training to get a network with certified
robustness. Our analysis in Section 4 can also be extended to certified adversarial training.

3 Preliminaries

3.1 Notations

Let [n] = {1, 2, . . . , n}. We use N (0, I) to denote the standard Gaussian distribution. For a vector
v, we use ‖v‖2 to denote the Euclidean norm. For a matrix A we use ‖A‖F to denote the Frobenius
norm and ‖A‖2 to denote the spectral norm. We use 〈·, ·〉 to denote the standard Euclidean inner
product between two vectors, matrices, or tensors. We let O(·), Θ(·) and Ω (·) denote standard Big-O,
Big-Theta and Big-Omega notations that suppress multiplicative constants.

3.2 Deep Neural Networks

Here we give the definition of our deep fully-connected neural networks. For the convenience of
proof, we use the same architecture as defined in [1].2 Formally, we consider a neural network of the
following form.

Let x ∈ R
d be the input, the fully-connected neural network is defined as follows: A ∈ R

m×d

is the first weight matrix, W(h) ∈ R
m×m is the weight matrix at the h-th layer for h ∈ [H],

a ∈ R
m×1 is the output layer, and σ(·) is the ReLU activation function.3 The parameters

are W = (vec{A}⊤, vec{W(1)}⊤, · · · , vec{W(H)}⊤,a⊤)⊤. However, without loss of gen-
erality, during training we will fix A and a once initialized, so later we will refer to W as

W = (vec{W(1)}⊤, · · · , vec{W(H)}⊤)⊤. The prediction function is defined recursively:

x(0) = Ax

x(h) = W(h)x(h−1), h ∈ [H] (1)

x(h) = σ
(

x(h)
)

, h ∈ [H]

f(W,x) = a⊤x(H),

where x(h) and x(h) are the feature vectors before and after the activation function, respectively.

Sometimes we also denote x(0) = x(0).

2We only consider the setting when the network output is scalar. However, it is not hard to extend out results
to the setting of vector outputs.

3We assume intermediate layers are square matrices of size m for simplicity. It is not difficult to generalize
our analysis to rectangular weight matrices.
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We use the following initialization scheme: Each entry in A and W(h) for h ∈ [H] follows the
i.i.d. Gaussian distribution N (0, 2

m ), and each entry in a follows the i.i.d. Gaussian distribution

N (0, 1). As we mentioned, we only train on W(h) for h ∈ [H] and fix a and A. For a training
set {xi, yi}ni=1, the loss function is denoted ℓ : (R,R) 7→ R, and the (non-robust) training loss is

L(W) = 1
n

∑n
i=1 ℓ(f(W,xi), yi). We make the following assumption on the loss function:

Assumption 3.1 (Assumption on the Loss Function). The loss ℓ(f(W,x), y) is Lipschitz, smooth,
convex in f(W,x) and satisfies ℓ(y, y) = 0.

3.3 Perturbation and the Surrogate Loss Function

The goal of adversarial training is to make the model robust in a neighbor of each datum. We first
introduce the definition of the perturbation set function to determine the perturbation at each point.

Definition 3.1 (Perturbation Set). Let the input space be X ⊂ R
d. The perturbation set function

is B : X → P(X ), where P(X ) is the power set of X . At each data point x, B(x) gives the
perturbation set on which we would like to guarantee robustness. For example, a commonly used
perturbation set is B(x) = {x′ : ‖x′ − x‖2 ≤ δ}. Given a dataset {xi, yi}ni=1, we say that the

perturbation set is compatible with the dataset if B(xi) ∩ B(xj) 6= φ implies yi = yj . In the rest of
the paper, we will always assume that B is compatible with the given data.

Given a perturbation set, we are now ready to define the perturbation function that maps a data point
to another point inside its perturbation set. We note that the perturbation function can be quite general
including the identity function and any adversarial attack4. Formally, we give the following definition.

Definition 3.2 (Perturbation Function). A perturbation function is defined as a function A : W ×
R

d → R
d, where W is the parameter space. Given the parameter W of the neural network (1),

A(W,x) maps x ∈ R
d to some x′ ∈ B(x) where B(x) refers to the perturbation set defined in

Definition 3.1.

Without loss of generality, throughout Section 4 and 5, we will restrict our input x as well as the
perturbation set B(x) within the surface of the unit ball S = {x ∈ R

d : ‖x‖2 = 1}.

With the definition of perturbation function, we can now define a large family of loss functions on the
training set {xi, yi}ni=1. We will show this definition covers the standard loss used in empirical risk
minimization and the robust loss used in adversarial training.

Definition 3.3 (Surrogate Loss Function). Given a perturbation function A defined in Definition 3.2,
the current parameter W of a neural network f , and a training set {xi, yi}ni=1, we define the
surrogate loss LA(W) on the training set as

LA(W) =
1

n

n
∑

i=1

ℓ(f(W,A(W,xi)), yi).

It can be easily observed that the standard training loss L(W) is a special case of surrogate loss
function when A is the identity. The goal of adversarial training is to minimize the robust loss, i.e.
the surrogate loss when A is the strongest possible attack. The formal definition is as follows:

Definition 3.4 (Robust Loss Function). The robust loss function is defined as

L∗(W) := LA∗(W)

where

A∗(W,xi) = argmax
x′

i
∈B(xi)

ℓ(f(W,x′
i), yi).

4 Convergence Results of Adversarial Training

We consider optimizing the surrogate loss LA with the perturbation function A(W,x) defined in
Definition 3.2, which is what adversarial training does given any attack algorithm A. In this section,

4It is also not hard to extend our analysis to perturbation functions involving randomness.
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we will prove that for a neural network with sufficient width, starting from the initialization W0,
after certain steps of projected gradient descent within a convex set B(R), the loss LA is provably
upper-bounded by the best minimax robust loss in this set

min
W∈B(R)

L∗(W),

where

B(R) =

{

W :
∥

∥

∥W
(h) −W

(h)
0

∥

∥

∥

F
≤ R√

m
,h ∈ [H]

}

. (2)

Denote PB(R) as the Euclidean projection to the convex set B(R). Denote the parameter W after

the t-th iteration as Wt, and similarly W
(h)
t . For each step in adversarial training, projected gradient

descent takes an update

Vt+1 = Wt − α∇WLA(Wt),

Wt+1 = PB(R)(Vt+1),

where

∇WLA(W) =
1

n

n
∑

i=1

l′ (f(W,A(W,xi)), yi)∇Wf(W,A(W,xi)),

and the derivative ℓ′ stands for ∂ℓ
∂f , the gradient ∇Wf is with respect to the first argument W.

Specifically, we have the following theorem.

Theorem 4.1 (Convergence of Projected Gradient Descent for Optimizing Surrogate Loss). Given

ǫ > 0, suppose R = Ω(1), and m ≥ max
(

Θ
(

R9H16

ǫ7

)

,Θ(d2)
)

. Let the loss function satisfy

Assumption 3.1.5 If we run projected gradient descent based on the convex constraint set B(R) with

stepsize α = O
(

ǫ
mH2

)

for T = Θ
(

R2

mǫα

)

= Ω
(

R2H2

ǫ2

)

steps, then with high probability we have

min
t=1,··· ,T

LA(Wt)− L∗(W∗) ≤ ǫ, (3)

where W∗ = argminW∈B(R) L∗(W).

Remark. Recall that LA(W) is the loss suffered with respect to the perturbation function A. This
means, for example, if the adversary uses the projected gradient ascent algorithm, then the theorem
guarantees that projected gradient ascent cannot successfully attack the learned network. The
stronger the attack algorithm is during training, the stronger the guaranteed surrogate loss becomes.

Remark. The value of R depends on the approximation capability of the network, i.e. the greater R
is, the less L∗(W∗) will be, thus affecting the overall bound on mint LA(Wt). We will elaborate on
this in the next section, where we show that for R independent of m there exists a network of small
adversarial training error.

4.1 Proof Sketch

Our proof idea utilizes the same high-level intuition as [1, 27, 18, 55, 10, 11] that near the initialization
the network is linear. However, unlike these earlier works, the surrogate loss neither smooth, nor
semi-smooth so there is no Polyak gradient domination phenomenon to allow for the global geometric
contraction of gradient descent. In fact due to the the generality of perturbation function A allowed,
the surrogate loss is not differentiable or even continuous in W, and so the standard analysis cannot
be applied. Our analysis utilizes two key observations. First the network f(W,A(W,x)) is still
smooth w.r.t. the first argument6, and is close to linear in the first argument near initialization, which
is shown by directly bounding the Hessian w.r.t. W. Second, the perturbation function A can be
treated as an adversary providing a worst-case loss function ℓA(f, y) as done in online learning.
However, online learning typically assumes the sequence of losses is convex, which is not the case
here. We make a careful decoupling of the contribution to non-convexity from the first argument
and the worst-case contribution from the perturbation function, and then we can prove that gradient
descent succeeds in minimizing the surrogate loss. The full proof is in Appendix A.

5We actually didn’t use the assumption ℓ(y, y) = 0 in the proof, so common loss functions like the cross-
entropy loss works in this theorem. Also, with some slight modifications, it is possible to prove for other loss
functions including the square loss.

6It is not jointly smooth in W, which is part of the subtlety of the analysis.
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5 Adversarial Training Finds Robust Classifier

Motivated by the optimization result in Theorem 4.1, we hope to show that there is indeed a robust
classifier in B(R). To show this, we utilize the connection between neural networks and their induced
Reproducing Kernel Hilbert Space (RKHS) via viewing networks near initialization as a random
feature scheme [15, 16, 25, 2]. Since we only need to show the existence of a network architecture
that robustly fits the training data in B(R) and neural networks are at least as expressive as their
induced kernels, we may prove this via the RKHS connection. The strategy is to first show the
existence of a robust classifier in the RKHS, and then show that a sufficiently wide network can
approximate the kernel via random feature analysis. The approximation results of this section will be,
in general, exponential in dimension dependence due to the known issue of d-dimensional functions
having exponentially large RKHS norm [4], so only offer qualitative guidance on existence of robust
classifiers.

Since deep networks contain two-layer networks as a sub-network, and we are concerned with
expressivity, we focus on the local expressivity of two-layer networks. We write the standard
two-layer network in the suggestive way7 (where the width m is an even number)

f(W,x) =
1√
m





m/2
∑

r=1

arσ(w
⊤
r x) +

m/2
∑

r=1

a′rσ(w̄
⊤
r x)



 , (4)

and initialize as wr ∼ N (0, Id) i.i.d. for r = 1, · · · , m
2 , and w̄r is set to be equal to wr,

ar is randomly drawn from {1,−1} and a′r = −ar. Similarly, we define the set B(R) =
{W : ‖W −W0‖F ≤ R}8 for W = (w1, · · · ,wm/2, w̄1, · · · , w̄m/2), W0 being the initialization
of W, and fix all ar after initialization.

To make things cleaner, we will use a smooth activation function σ(·) throughout this section9,
formally stated as follows.

Assumption 5.1 (Smoothness of Activation Function). The activation function σ(·) is smooth, that
is, there exists an absolute constant C > 0 such that for any z, z′ ∈ R

|σ′(z)− σ′(z′)| ≤ C|z − z′|.

Prior to proving the approximation results, we would like to first provide a version of convergence
theorem similar to Theorem 4.1, but for this two-layer setting. It is encouraged that the reader can
read Appendix B for the proof of the following Theorem 5.1 first, since it is relatively cleaner than
that of the deep setting but the proof logic is analogous.

Theorem 5.1 (Convergence of Gradient Descent without Projection for Optimizing Surrogate Loss
for Two-layer Networks). Suppose the loss function satisfies Assumption 3.1 and the activation
function satisfies Assumption 5.1. With high probability, using the two-layer network defined above,

for any ǫ > 0, if we run gradient descent with step size α = O (ǫ), and if m = Ω
(

R4

ǫ2

)

, we have

min
t=1,··· ,T

LA(Wt)− L∗(W∗) ≤ ǫ, (5)

where W∗ = minW∈B(R) L∗(W) and T = Θ(
√
m
α ).

Remark. Compared to Theorem 4.1, we do not need the projection step for this two-layer theorem.
We believe using a smooth activation function can also eliminate the need of the projection step in the
deep setting from a technical perspective, and from a practical sense we conjecture that the projection
step is not needed anyway.

Now we’re ready to proceed to the approximation results, i.e. proving that L∗(W∗) is also small,
and combined with Equation (5) we can give an absolute bound on mint LA(Wt). For the reader’s
convenience, we first introduce the Neural Tangent Kernel (NTK) [25] w.r.t. our two-layer network.

7This makes f(W,x) = 0 at initialization, which helps eliminate some unnecessary technical nuisance.
8Note that we have taken out the term 1√

m
explicitly in the network expression for convenience, so in this

section there is a difference of scaling by a factor of
√
m from the W used in the previous section.

9Similar approximation results also hold for other activation functions like ReLU.
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Definition 5.1 (NTK [25]). The NTK with activation function σ (·) and initialization distribution

w ∼ N (0, Id) is defined as Kσ(x,y) = Ew∼N (0,Id)〈xσ′(w⊤x),yσ′(w⊤y)〉.

For a given kernel K, there is a reproducing kernel Hilbert space (RKHS) introduced by K. We
denote it as H(K). We refer the readers to [36] for an introduction of the theory of RKHS.

We formally make the following assumption on the universality of NTK.

Assumption 5.2 (Existence of Robust Classifier in NTK). For any ǫ > 0, there exists f ∈ H(Kσ),
such that |f(x′

i)− yi| ≤ ǫ, for every i ∈ [n] and x′
i ∈ B(xi).

Also, we make an additional assumption on the activation function σ(·):
Assumption 5.3 (Lipschitz Property of Activation Function). The activation function σ(·) satisfies
|σ′(z)| ≤ C, ∀z ∈ R for some constant C.

Under these assumptions, by applying the strategy of approximating the infinite situation by finite
sum of random features, we can get the following theorem:

Theorem 5.2 (Existence of Robust Classifier near Initialization). Given data set D = {(xi, yi)}ni=1
and a compatible perturbation set function B with xi and its allowed perturbations taking value on
S , for the two-layer network defined in (4), if Assumption 3.1, 5.1, 5.2, 5.3 hold, then for any ǫ, δ > 0,

there exists RD,B,ǫ such that when the width m satisfies m = Ω
(

R4

D,B,ǫ

ǫ2

)

, with probability at least

0.99 over the initialization there exists W such that

L∗(W) ≤ ǫ and W ∈ B(RD,B,ǫ).

Combining Theorem 5.1 and 5.2 we finally know that

Corollary 5.1 (Adversarial Training Finds a Network of Small Robust Training Loss). Given data
set on the unit sphere equipped with a compatible perturbation set function and an associated
perturbation function A, which also takes value on the unit sphere. Suppose Assumption 3.1, 5.1, 5.2,
5.3 are satisfied. Then there exists a RD,B,ǫ which only depends on dataset D, perturbation B and

ǫ, such that for any 2-layer fully connected network with width m = Ω(
R4

D,B,ǫ

ǫ2 ), if we run gradient

descent with stepsize α = O (ǫ) for T = Θ(
R2

D,B,ǫ

ǫα ) steps, then with probability 0.99,

min
t=1,··· ,T

LA(Wt) ≤ ǫ. (6)

Remark 5.1. We point out that Assumption 5.2 is rather general and can be verified for a large class
of activation functions by showing their induced kernel is universal as done in [32]. Also, here we use
an implicit expression of the radius BD,B,ǫ, but the dependence on ǫ can be calculated under specific
activation function with or without the smoothness assumptions. As an example, using quadratic
ReLU as activation function, we solve the explicit dependency on ǫ in Appendix C.2 that doesn’t rely
on Assumption 5.2.

Therefore, adversarial training is guaranteed to find a robust classifier under a given attack algorithm
when the network width is sufficiently large.

6 Capacity Requirement of Robustness

In this section, we will show that in order to achieve adversarially robust interpolation (which is
formally defined below), one needs more capacity than just normal interpolation. In fact, empirical
evidence have already shown that to reliably withstand strong adversarial attacks, networks require a
significantly larger capacity than for correctly classifying benign examples only [31]. This implies,
in some sense, that using a neural network with larger width is necessary.

Let Sδ = {(x1, · · · ,xn) ∈ (Rd)n : ‖xi − xj‖2 > 2δ} and Bδ(x) = {x′ : ‖x′ − x‖2 ≤ δ}, where
δ is a constant. We consider datasets in Sδ and use Bδ as the perturbation set function in this section.

We begin with the definition of the interpolation class and the robust interpolation class.
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Definition 6.1 (Interpolation class). We say that a function class F of functions f : Rd → {1,−1}is
an n-interpolation class10, if the following is satisfied:

∀(x1, · · · ,xn) ∈ Sδ, ∀(y1, · · · , yn) ∈ {±1}n,
∃f ∈ F , s.t. f(xi) = yi, ∀i ∈ [n].

Definition 6.2 (Robust interpolation class). We say that a function class F is an n-robust interpolation
class, if the following is satisfied:

∀(x1, · · · ,xn) ∈ Sδ, ∀(y1, · · · , yn) ∈ {±1}n,
∃f ∈ F , s.t.f(x′

i) = yi, ∀x′
i ∈ Bδ(xi), ∀i ∈ [n].

We will use the VC-Dimension of a function class F to measure its complexity. In fact, as shown in
[6] (Equation(2)), for neural networks there is a tight connection between the number of parameters
W , the number of layers H and their VC-Dimension

Ω(HW log(W/H)) ≤ VC-Dimension ≤ O(HW logW ).

In addition, combining with the results in [52] (Theorem 3) which shows the existence of a 4-layer
neural network with O(n) parameters that can interpolate any n data points, i.e. an n-interpolation
class, we have that an n-interpolation class can be realized by a fixed depth neural network with
VC-Dimension upper bound

VC-Dimension ≤ O(n log n). (7)

For a general hypothesis class F , we can evidently see that when F is an n-interpolation class, F
has VC-Dimension at least n. For a neural network that is an n-interpolation class, without further
architectural constraints, this lower bound of its VC-dimension is tight up to logarithmic factors as
indicated in Equation (7). However, we show that for a robust-interpolation class we will have a
much larger VC-Dimension lower bound:

Theorem 6.1. If F is an n-robust interpolation class, then we have the following lower bound on
the VC-Dimension of F

VC-Dimension ≥ Ω(nd), (8)

where d is the dimension of the input space.

For neural networks, Equation (8) shows that any architecture that is an n-robust interpolation
class should have VC-Dimension at least Ω(nd). Compared with Equation (7) which shows an
n-interpolation class can be realized by a network architecture with VC-Dimension O(n log n), we
can conclude that robust interpolation by neural networks needs more capacity, so increasing the
width of neural network is indeed in some sense necessary.

7 Discussion on Limitations and Future Directions

This work provides a theoretical analysis of the empirically successful adversarial training algorithm
in the training of robust neural networks. Our main results indicate that adversarial training will
find a network of low robust surrogate loss, even when the maximization is computed via a heuristic
algorithm such as projected gradient ascent. However, there are still some limitations with our current
theory, and we also feel our results can lead to several thought-provoking future work, which is
discussed as follows.

Removal of projection. It is also natural to ask whether the projection step can be removed, as it is
empirically unnecessary and also unnecessary for our two-layer analysis. We believe using smooth
activations might resolve this issue from a technical perspective, although practically it seems the
projection step in the algorithm is unnecessary in any case.

Generalizing to different attacks. Firstly, our current guarantee of the surrogate loss is based on the
same perturbation function as that used during training. It is natural to ask that whether we can ensure

10Here we let the classification output be ±1, and a usual classifier f outputting a number in R can be treated
as sign(f) here.
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the surrogate loss is low with respect to a larger family of perturbation functions than that used during
training.

Exploiting structures of network and data. Same as the recent proof of convergence on overparame-
terized networks in the non-robust setting, our analysis fails to further incorporate useful network
structures apart from being sufficiently wide, and as a result increasing depth can only hurt the bound.
It would be interesting to provide finer analysis based on additional assumptions on the alignment of
the network structure and data distribution.

Improving the approximation bound. On the expressivity side, the current argument utilizes that a
neural net restricted to a local region can approximate its induced RKHS. Although the RKHS is
universal, they do not avoid the curse of dimensionality (see Appendix C.2). However, we believe in
reality, the required radius of region R to achieve robust approximation is not as large as the theorem
demands. So an interesting question is whether the robust expressivity of neural networks can adapt
to structures such as low latent dimension of the data mechanism [17, 50], thereby reducing the
approximation bound.

Capacity requirement of robustness and robust generalization. Apart from this paper, there are other
works supporting the need for capacity including the perspective of network width [31], depth [49]
and computational complexity [35]. It is argued in [51] that robust generalization is also harder
using Rademacher complexity. In fact, it appears empirically that robust generalization is even
harder than robust training. It is observed that increasing the capacity, though benifiting the dacay of
training loss, has much less effect on robust generalization. There are also other factors behind robust
generalization, like the number of training data [40]. The questions about robust generalization, as
well as to what extent capacity influnces it, are still subject to much debate.

The above are several interesting directions of further improvement to our current result. In fact,
many of these questions are largely unanswered even for neural nets in the non-robust setting, so we
leave them to future work.
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