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CONVERGENCE OF AN ENERGY-PRESERVING SCHEME
FOR THE ZAKHAROV EQUATIONS IN ONE SPACE DIMENSION

R. T. GLASSEY

Abstract. An energy-preserving, linearly implicit finite difference scheme is
presented for approximating solutions to the periodic Cauchy problem for the
one-dimensional Zakharov system of two nonlinear partial differential equa-
tions. First-order convergence estimates are obtained in a standard "energy"
norm in terms of the initial errors and the usual discretization errors.

1. Introduction

In [11] Zakharov introduced a system of equations to model the propagation
of Langmuir waves in a plasma. If we denote by N(x, t) (x e R, t > 0) the
deviation of the ion density from its equilibrium value, and by E(x, t) the
envelope of the high-frequency electric field, then the one-dimensional system
takes the form

(ZS.E) iE, + Exx = NE,

(ZSJV) N„-NXX = -^2(\E\2).

We solve on {x e R, t > 0} and supplement (ZS) by prescribing initial values
for E, N, and Nt :
(1) E(x,0)=E°(x),    N(x,0) = N°(x),    N,(x,0) = N>(x).
Most of the interest to date in (ZS) stems from two particular features. Firstly,
(ZS) admits solitary wave solutions [3]. Secondly, in three space dimensions,
(ZS) was derived to model the collapse of caverns (cf. [11]). An intriguing and
still unresolved question remains in three dimensions as to whether smooth data
can generate a solution which becomes singular in finite time.

As is well known, (ZS) possesses the two formal invariants

/OO /-00\E(x,t)\2dx= /     \E(x,0)\2dx,
-OO J —OO

(3) r (\EX\2 + ¿(M2 + N2) + ;V|£|2) dx = const,
J-oo
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84 R. T. GLASSEY

where v is given by

(4) v = -ux,        uxx = N,.

We know that these are sufficient for global weak existence (cf. [9]). Also
from [9] the same conclusion holds in three dimensions under an additional
"smallness" condition. Moreover, higher-order estimates from [9] guarantee
the existence of a smooth solution in one dimension provided smooth data are
prescribed.

It is such a smooth solution of (ZS) with periodic boundary conditions which
we approximate numerically in this paper. A spectral method is used in [5];
while practical results seem very good, the convergence issue is not rigorously
addressed. Our algorithm uses an approximation of "Crank-Nicolson" type on
the linear parts of (ZS). We approximate the solution over a fixed but arbitrary
time interval 0 < t < T.

The nonlinear terms in (ZS) are then approximated in such a way that:
(i) the discrete L2-norm (over a period) of the approximation to E is

conserved; and
(ii) a discrete analogue of the total energy is conserved.

This discrete energy will be shown to be bounded below by a positive definite
form. The scheme is linearly implicit and involves only two periodic tridiag-
onal solvers to advance one step in time. We obtain first-order convergence
estimates in the natural "energy norm" in terms of initial errors and standard
discretization errors.

In the references we list several papers where conservative schemes have been
employed [2, 4, 6, 8]. Related results are to be found in [1, 10].

The standard summation by parts formula is

Y^Vj(uj+i - 2uj + u,_i) = vj+i(uJ+i
;'=i

j
- !>;+>

j=i
The "summed" terms cancel whenever {w^} , {v^} are /-periodic mesh func-
tions.

Although [9] treats the Cauchy problem on all of space, the methods given
there (i.e., Galerkin) could be extended to deal with the periodic case studied
here. Constants depending on T and the Cauchy data are written cj , while
constants depending only on the data are generically written as c. These will
change from line to line without explicit mention.

This scheme has been implemented; details will appear elsewhere.

2. The finite difference scheme

Let T > 0 be arbitrary; we will approximate the solution to the periodic
Cauchy problem for (ZS) over the time interval 0 < t < T. We first state
hypotheses on the Cauchy data and the solution:

(HO) The Cauchy data
E(x,0) = E°(x),    N(x ,0) = N°(x),    N,(x ,0) = Nl(x)

-Uj)-Vx(UX -Mo)

- Vj)(Uj+i - Uj).
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an energy-preserving scheme for the zakharov equations 85

are C°° and L-periodic. Moreover,
l-L

Nl(x)dx = 0,
Jo

J2 N1 (jh) = 0   for any h > 0 with Jh = L.
;'=i

(HE) The periodic Cauchy problem possesses a unique smooth global solu-
tion.

In order to write the scheme, we define
(5') ôuk=Ax~x(uk+l-uk),

(5")

(6)

ô2uk = Ax 2(uk+x-2uk + uk_i).

Á - Ax '        ß - Ax2
with Ai, Ax > 0. Now for J a positive integer we choose Ax — j, At > 0
such that
(7) nAt < T
and define tl = I At, Xj = jAx   (I = 0, ... , n;    j = 0, ... , J).

Our scheme is
?n+l

(8.2s)

(8.A0

El     1
At + ^PEl + ^0¿E,;2jrn+l 1

-AN»k+N^)(El+E^)

Nn+l —lNn 4- N"~l       1 1
^_ _ U2N£+i - U2Nnk~l = ô2(\E"k\2).Ar2 2" *'*        2l

In both relations k-l, ... , J,    « > 0 in the first and n > 1 in the second.
Here we take £¿ , Ng to be /-periodic mesh functions, i.e.,

E»k=E», N^ = N]   ifk = j(modJ).
The scheme is supplemented with the initial values

(9) E°k=E°(xk),

(10) N°k=N°(xk),        Nkl=N%+AtN\xk).
We claim that the scheme is uniquely solvable: multiplying (S.N) by Ai2 , we
see that the coefficient matrix for the unknown {Nk+l}k=x, of order / x J, is

0      •••
0

(11) AN =

l+X2     -t

2

' 2

1+A2   -f

0 -£    1+A2J
which is invertible by Gerschgorin for any À > 0. The coefficient matrix for
the unknown {E£+X}k=x has the form

(12) U-AE,
where both matrices are square and of order J x J.
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Ae is symmetric and has the form

/(AE)n      -f        0     ...       -{

(13) AE =
.1

2-f (^£)22

v -i    o       -f (^)7yy
where

(i4) (^k^^+^^+^r1)-
Since AE has only real eigenvalues, il - AE is invertible. Thus the scheme is
uniquely solvable at each time step. Indeed, putting n - 0 in (S.E), we can
solve for {El}, since N%, Nkl, E% are known from the data. Putting n = 1
in (S.N), we can then solve for {Nk} and, using {Nk} , we can put n — 1 in
(8..E) and solve for {.E^} , etc.

We summarize with
Lemma 1. Assume the data satisfy (HO).   Then the scheme (&.E), (8.A7) is
uniquely solvable at each time step.
Lemma 2. Let the data satisfy (HO). Define {w£} by

K+i-M + K-i    Nnk+l-N"k t_,        ,_,
Ax2 ~        At       ' ~   ' *" ' ' '

Uq-Uj = 0.

Extend {uk} by defining
unk = u)   if   k = j (mod /).

Then

where

J-i N"+i — N"
u"k = -AxY,G(xk,Xj)   j  At    j

y'=i

«>•»•{%:$:
0<x<y<L,

0 < v < x < L.
Proof. The proof that the given representation is indeed a solution is a straight-
forward computation and is omitted. The only issue is one of compatibility.
Summing the definition of unk , we see that it is required that

£(AT' - N¡¡) = 0.
k=l

When n - 0, this is true by hypotheses (HO) and (10). Using (&.N), we
can write

A/2A^+1 - Ng = N£ - N£~l + ^-Ô2(N£+X + N£~x + 2|££|2).

Using induction, we sum both sides over k. The sum of the first two terms
on the right vanishes by the induction hypothesis; the sum of the remaining
terms vanishes by periodicity.   G
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an energy-preserving scheme for the zakharov EQUATIONS 87

Theorem 1. Let the data satisfy (HO). Then the scheme (8) possesses the follow-
ing two invariants:

(a)
5^ |££|2Ax = const      (nAt < T).

k

(b) Define u\ as in Lemma 2, so that 62unk = (A£+1 - Ng)/At. Then

r;+1 = ax £ [l^+1l2 + WO2 + U(N"k)2 + (AT1)2}
k

+\(N£ + N£+l)\EZ+l\2] = const

for nAt < T. The sums run over 1 < k < J.

Thus the discrete L2-norm of E" over a period is conserved, and the form
of %d  is similar to that for the exact solution in (2), (3).

We show that i^" is bounded below by a positive definite form. For this
purpose, we put

(15) ||i?l! = £|25|2Ax,
k

(16) \\ÔEn\\22 = Y,\âEk\2Ax>
k

with similar quantities for N" . We make note of the discrete Sobolev inequality

(17) SUp|«fc|<c||tt||2/2||¿M||2/2
k

valid for periodic mesh functions {uk}. Indeed, denoting the Fourier coeffi-
cients of the mesh function u by {cm}, we write

|w*|<c     Y, + Y,  ) lCml
\|m|<M     \m\>M/

1/2 / v  1/2

< ¿i/1/2 (5>m|2}   +cm-wv(y1
\ m J \ m

m\2\cm\2

and optimize on M.
The last term 3 in <§^ is estimable by

|^| < ± £ m^Ax ^ £ |AT Wf A*
z  k L  k

< J E (w)2+(^+1)2)ax+¿ e \Enk+r*x
k k

for any e > 0. Choosing e = \ , we get the bound

|^| < ± £ Ax((A£)2 + (AT1)2) + ||£"+1|lt
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By the Sobolev inequality (17) and part (a) of the theorem,

\\En+X < cWE^WiWE^Wl < cWE^Wl < c\\ÔE"+x\\2
<-\\\ÔE»+l\\22 + c.

This gives us

Lemma 3. There is a constant c, depending only on the data, such that the
solution of the discrete scheme (S.E), (8.A7) satisfies

£Ax[|££+1|2 + \ÔEnk+l\2 + (ôunk)2 + W)2 + (^+1)2] < c,
k

and hence supfc \E£\ <c.
Proof of Theorem 1. As is well known, part (a) is obtained by multiplying (i.E)
by Ek    + Ek, summing over k,    k = 1,... , J, and taking the imaginary
part.

In order to verify (b), we multiply (S.E) by Enk    - Ë"k and sum on k.
Adding this to its conjugate, we obtain

(18)       I„ + In+1 = \ £(AT' + A?) • 2Re(2ifc»+1 + E"k)(Tk+l - Tk),

where

4  i

'» = ¿ReE(^+1 -Enk)(E?+x -2E? + E?_X)      (m = n, n + l).
k

The right side of (18) equals

(19) l^Y(\Enk+l\2-\Enk\2)(Nnk+X+Nnk).
k

Summing by parts, we get for the left side of (18)

(20) /„ + 7„+1 = "¿r £ \ER\ - E^I2 + ¿j £ \E"k+x - E"k\2.
k k

Thus (19), (20) yield the identity

(2D   -£i^+1i2+Ei^i2 = lE(i£r1i2-i^i2)(Arr'+^)-
k k k

We obtain the contribution from {Ng} by recalling from Lemma 2 that

(22) S2un , »Z+, -** + "£-,  _ NT-Nl
Ax2 At

2,u"k + u"k-and by multiplying (8.A0 by \(u\ + u\ x) and then summing on k. There
results

(23) I-II = 111,
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AN ENERGY-PRESERVING SCHEME FOR THE ZAKHAROV EQUATIONS 89

where

T      1 V- (Nk + l - 2Nk + Nk~l) t   n        n-U
I=?£ —-ATI——M + K )>

11 = \ E ("g L"r ) ̂  - 2N"*+l+N&+N& -2isr*-1+"^ '
k

111=1 £K L"rl) o^"+1i2 - 2^"i2+i^-.i2]-
A:

Term III is summed by parts:

111 = - 2ÂT2 £ [(«4*1+O - («í+"¡r1)] o^"+ii2 - \Enkñ
k

(24)    = -¿îE ["2+«r1-»2-1-cillai2

+ 2¿EK+.+^í-^-"r1]i^i2'

where we have shifted k -* k - 1 to obtain the first sum. Thus, by (22),

111=¿i £ i^i2n+. - 24+4_.)+(«a - 2«r»+«ri)]

(25)        = y£l^ ^r1 - a? a? - Nk~l
At At

1
2Ai E^ftAr'-Ar1).

To evaluate I, we note that by (22)

Nn+l _ Nn        (Nn _ jyii-1 \ j¡n+\ _ 2AT* + tf»-l
J^-J2«^1 = _  iTfc

Ai Ai Ai

Thus,

^¿E^+O^-^r1]

and, summing this by parts, we get

(26) i—^E^+^E^r1)2-
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Summing II now by parts, we find

11 = - ¿ E [k+>+-0 - k+O]
k

= - ¿2 E K + «T1 - <-i - <:!] [AT1 + K~l]
k

+ 4¿2 E K.+"2;i - 4 - o [at1+^r1].
k

where we have again shifted k -+ k - 1 to get the first sum. Thus, by (22),

11 = ¿i B^T1 + AT1) [K+i - M + uU) + («£{ - 2«r' + CD]

= iEw+1+C) Nk+i~Nk  Nk~Nk~l
At At

= ¿Ef(ArrI)2-(Arr1)2]-

Therefore, equation (23) yields
1

2Ä7EW)2-2a7EW+ h2

(27) -¿E^r^-ZATEW"1)24Ai

+ ™5>ii2wr!-*r
Now multiply this by Ai and add the result to (21) to get

-iE^-zEiAT^-Ei^r1!2
fc A:

(28) = 4E(á"2"1)2-iE(Arr1)2-Ewi2

+ \ £ [|^"|2(A?+1 - ^-') + (|^+1|2 - \Enk\2)(Nnk+X + NU)].
z k

The last term here equals

i £ \E"k+l\2(N»k+1 + NU) - i e i*2i2 w + at1)-
z * it

Therefore, when we define ^"+1 as in part (b) of Theorem 1, (28) implies
g^"+1 = g^" and hence ê'J1 = ^ and energy is conserved.   D

In order to state the main theorem, we define the errors by
(29) e"k=E(xk,tn)-E"k,
(30) r¡nk = N(xk,t")-Nnk.
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AN ENERGY-PRESERVING SCHEME FOR THE ZAKHAROV EQUATIONS 91

Here, E£, N£ are computed from the scheme (S.E), (8JV) for nAt < T, 1 <
k<J.
Lemma 4. Let the data satisfy (HO). Define {Ug} by

Vnk+i - 2US + ULi _ C - ig
(31) Ax2 Ai       ' k-ï,...,J     1,

U0 = Uj = 0.
Extend {Ug} by defining

Ug = Uf   if k = j mod /.
Then

J-l nn+l — nn
Unk=-AxYG(xk,xj)'i At  lj

7=1

where

tin n       \     ¡x(1-l)>       0<x<y<L,
(32) ^''Hxi-lh       0<y<x<L.
Proof. The actual computation showing that the given representation is a solu-
tion is easy and is omitted. As in Lemma 2, there remains the compatibility
question. Using the definition (30) of i\\ , we have

ô2Vl = Ai"1 [N(xk, tn+l) - N£+1 - N(xk, tn) + N£]
= -82unk + ACx[N(xk , tn+l) - N(xk , t")].

Therefore, as in Lemma 2, we require that
j

S = Y[N(xk,tn+x)-N(xk,tn)] = 0.
k=l

We expand N(x, t) in a Fourier series with Fourier coefficients {cm} :
»7/     ^     v^     / %       (2imnx\N(x, t) = 2>m(í)exp (     L     )■

Thus, Co(t) is proportional to /0¿ N(x ,t)dx. Integrating (ZS.N) over a
period, we see that this integral is a linear function of i. In fact, cn(i) is
constant in time in view of (HO). Now we write

¿AT(x,,i) = £cm(i)¿exp(2^)
k=l m k=i \ '

and evaluate the inner sum explicitly. Using xk = kAx = kL/J, we see that
this sum over k vanishes unless m = 0, in which case

j
1
k=i
Y,N(xk,t) = Jc0(t).

Hence S = 0 as desired.   D

The norms are defined, e.g., as \\en\\\ = Y,k=i kfcl2^*, etc.
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92 R. T. GLASSEY

Theorem 2. Let T > 0 ; assume (HE) and that the data satisfy (HO). Given
any positive integer J, let /Ax = L and choose At = Ax. Let E£, N£ be
computed from the scheme (%.E), (8.A7), (9), (10) for nAt < T. Define

(33)       g-» = Hfl«"+Illi + ll^"+1H2 + WVH\\\ + ¿(IIt"1!!2. + llfl"Hi)].
(TTziis, (i7" is íAe (square of the) "energy norm" of the errors.)

Then there exists a constant cj depending only on the data and T, with the
property that for Ax sufficiently small, we have

%n < cT [r° + Ax2

Moreover, W° = 0(Ax2), and hence

%"> < cTAx2   as Ax — 0.

The proof of Theorem 2 will be given in the next section.

Remark. The choice Ai = Ax allows us to easily combine several estimates. It
is seen from the proof that the same estimates can be obtained provided Ai is
bounded both above and below by a constant times Ax.

3. Convergence estimates, proof of the main theorem

We begin by defining the standard discretization errors

T"k = ±(E(xk,r+1)-E(xk,t»))

(34)
+ ¿2 (£(**+i > r") - 2E^ ' '") + E(xk-i > *"))

+ ¿2(£(xfc+1, i"+1) - 2E(xk, i"+1) + E(xk^ , i"+1))

- j(N(xk, t") + N(xk, t"+l)){E(xk, t") + E(xk, tn+l))

and

(35)

°£ = ^2(N(xk,tn+l)-2N(xk,tn) + N(xk,tn-1))

- ¿I(A(^+i, tn+x) - 2N(xk , tn+x) + NiXk-t, t"+x))

- ¿j(A(xfe+1, t"~x) - 2N(xk,t"-x) + N(xk_l, t"~x))

- ¿j(\E(xk+l, t")\2 - 2\E(xk , t»)\2 + \E(xk^ , t")\2).

As usual, these measure the amount by which the exact solutions fail to satisfy
the approximate equations.

Recall that E, N are smooth solutions.

Lemma 5. We have |t£| + |o£| = 0(Ai2 + Ax2) as Ax, At -» 0.
Proof. By Taylor's theorem and (ZS.E) we can write the first three terms T3
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in x\ as

T3 = i (Et(xk , tn) + ¿AtE„(xk, ß2?j + \{Exx(xk, tn) + 0(Ax2))

+ \{Exx(xk, tn+x) + 0(Ax2))       (tn < ßnk < i"+1)

iAt
T= iE,(xk, tn) + l-^E„(xk , ßnk) + 0(Ax2)

+ i [N(xk , t")E(xk, tn) - iE,(xk, tn)]

+ i [N(xk, t"+x)E(xk , i"+1) - iE,(xk, f+x)]

N(xk, t")E(xk, t") + N(xk, tn+x)E(xk, i"+1) + 0(Ax2)

+ l-^E„(xk, ßnk) + I [E,(xk , f) - E,(xk , tn+x)}

+ 0(At2+Ax2).

2 **'""*»''*' . 2
N(xk, tn)E(xk, tn) + N(xk, tn+l)E(xk, tn+l

2
Now the result for xk will follow if

\{N(xk, tn)E(xk, tn) + N(xk, tn+x)E(xk, i"+1))

- \ (N(xk, t") + N(xk, i"+1)) (E(xk, tn) + E(xk, i"+1))
= 0(Ai2 + Ax2).

Simple algebra shows that this expression equals
\ {E(xk , t"+l) - E(xk, tn)) (N(xk, i"+1) - N(xk , t")),

and hence is 0(Ai2).
As for o£ , we use Taylor's theorem again to write

°l =(#«(** , tn) + 0(At2)) - \{Nxx(xk, i"+1) + 0(Ax2))

- \{Nxx(xk, i""1) + 0(Ax2)) - (JL\E(Xk, tn)\2 + 0(Ax2)) .

The result follows from (ZS.N), since

Nxx(xk, t") - \{Nxx(xk, i"+1) + Nxx(xk, i""1)) = 0(Ai2).   D
Recall that the errors are defined by (29), (30). In order to obtain the

equations we subtract (8.E) from the definition (34) of x\ to get
/¿>n+l _ í>n\        i i

+ U2el + U2erx1 [     At     ) Tfc*T Y *k

= xnk+ -\[N(xk, t") + N(xk, tn+l)][E(xk, t") + E(xk, i"+1)]

(36) i
--¡[N£ + N»k+X][Enk+Enk+l]

+ (N»k+N^)(e»k+e»+l)).

= 4 + -}[(< + tk+l){E(xk, t") + E(xk, tn+x))
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94 R. T. GLASSEY

Subtracting (S.N) from (35), the definition of og , we get similarly

tk+x - 2rfk + ig-1    i 2    ,   i 2    ,
(37) Â72 r ^    ~ r **

= ^+«52(|£(xfc,i")|2-|^|2).
In a sequence of lemmas we will derive energy estimates on e and n .

Lemma 6 (L2-estimate of e). There are constants c, Ct such that for Ax, At
sufficiently small,

\\en+x\\22 < (1 + cAzJHel2; + cr(Ai2 + Ax2)2Ai
+ cAt{\\nn+x\\22 + \\nn\\l).

Proof. As in Theorem 1(a), we multiply (36) by ëk+i +è~£ , sum on k, and take
the imaginary part to get

(38) I+ 11 = 111 +IV,
where

I=¿ReE(^+1-^)«+1+^) = ¿E(K+1l2-|^l2).

II = 1 Im £(et+1 + ënk)(ô2e"k+x + S2e"k),
k

in = imE(C1+^2»
k

IV = iIm5>r' + enk)[(4 + tk+x)(E(xk, t") + E(xk, i"+1))],
k

the last simplifying since AT is real. All sums are taken over indices k with
1 <k<J.

Term I is as desired. For III, we have from Lemma 5
|III|<c5>¿+1|2 + |^|2) + c£|t£|2

k k

< cAx~\\\en+x \\22 + \\en\\22) + cT(At2 + Ax2)2 • /,
and IV is easily estimable by

iivi < c sup ,£(*, oi • £ (iO+i^1/2;"T'i + w>a^
x,t<T , AX- k

<cAx~l[\\en+% + \\e^22 + \\rin+% + \\ri^l].
As before, term II vanishes upon summation by parts. Now we multiply (38)
by AiAx and use the bounds derived above to get

\\en+xII2. < ||en||i + cAt(\\en+x\\\ + \\e"\\22) + cr(Ai2 + Ax2)2 • /AiAx
+ cAt(\\en+l\\22 + \\en\\22 + \\nn+l\\22 + \\t1"\\22).

Thus, we have
(I - cAt)\\en+x\\\ < (1 +cAi)||^||^ + cr(Ai2+Ax2)2Ai

+ cAt(\\r1"+l\\22 + \\r,"\\22),
and the result follows.   D
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AN ENERGY-PRESERVING SCHEME FOR THE ZAKHAROV EQUATIONS 95

When estimating the energy, we will need bounds on the discrete potentials
unk from Lemma 2 and Ug from Lemma 4.

Lemma 7. There is a constant c depending only on the data such that

sup|«£| < c.
k

Proof. We write, using the boundary condition wg = 0,

5>7 - *j_ Ax E'«y-1
;=i

<\\ÔUn\\2(JAx)l/2:

and this is bounded by Lemma 3 and the definition of /.   D

Lemma 8. Let Uk be defined as in Lemma 4. There is a constant c such that

suv\U£\<c(gn)1/2.
k

Proof. The proof is the same as that of Lemma 7, but in the last step we use
the definition of fën from Theorem 2.   G

Lemma 9 (Energy of e ). Let h = At = Ax, and define

II" = i Re J] (E(xk , i") + E(xk , tn+x))(nnk+x + nnkK+x,

m^iE^r'+ADkr1!2-

Then

\\\ôen\\22 + hÇll"-1 + III"-1) - (j-Há^+'H2; + A(IP + III"))
= 0[Ä(^" + r"-1) + Ä3].

Proof. As in Theorem 1(b), we multiply (36) by (ek+l - ek), sum over k,
k = I, ... , J, add the result to its conjugate, and take the real part. There
results the identity

Io = 1 + 11 + 111,
where

I0 = ReE(^"+1 - **)(<*2«" + ¿V)>

|I| = 2RcE*2(«2+1-3)

< cTh2Jx'2h-x'2(\\en+x\\2 + \\en\\2) < cTh(gn + g"-1)1'2,

II = \ Re E(C' + 4)(E(xk, i") + E(xk, t"+x))(enk+l - e*k).
L      k

lll=W^k+K^)(\el^\2-\enk\2).
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We sum lo by parts to get

(4i) io^Ei^-^Ei^r1!2-2^'   *'      2
k k

Next, we rewrite term III as

_1_
2III = i J] [(AT1 + ADkr1!2 - (A? + Ng-X)\e"k\2 + (A»-1 - Afc»+1)|e»|2]

fe
-TTT"-1 J.

2s III" - III""1 + 5 EW"1 - Afc"+1)l^l2.
k

where

(42) DP = $ £(*£+»+ A?)|«J+1|2.

Recall from the definition (Lemma 2) of unk that

-2   n       Nk + l~Nkô2un = _fc_-1<

Thus,
Arn+l _ \r»-l

¿2(4 + 0=     *      ft »
and therefore

III = III" - III"-1 - \h Y \ek\2ô2(unk + unfl).
2    k

We sum by parts to get for the last term the bound

oÍAEl^ll^KI^I + l^r1!)) =0(|k"||0O|^"||2(||<JM"||2 + ||aM"-1||2))

= 0(||e"||1/2||^"||f),
where we have used Lemma 3. Hence,
(43) iii = iun-mn-x + o(g"'-1).

Consider now term II. For brevity we set

(44) wnk=E(xk,tn) + E(xk,tn+x),

so that
wnk - wnk~x = E(xk, i"+1) - E(xk, i""1) = 0(h).

We write term II as

II = irReE^r1 + tiM(*Fl - ek)
k

= iReE^^r'T1 - i^E^-1« - i^E« - «r■)!;-*-
Jt k k

+ ÍReEw*"^*+1 - iReEttW«£-
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Now we add and subtract the expression

2-ReE<-1rt
k

and define

(45)        ir = iReE^r1«?*1 + j^E^^r1-
k k

Then, using Lemma 4, we can write II as
ll = lln -lln-x + 0(%n-x)

- ¿ReE^lK -»O»*?-1 H-ti^'foP1 - tffc"1)]
(46) *= II" - II""1 + Oí«7""1) + O«^"-1)1/2^")1/2)

-iRe^/i^X-'^^ + ̂ r1)-
fe

We sum the last term here once by parts; it equals

¿Re£ hS(u¡¡ + U£-l)(w»-lôe»k+e»k+xôw»-1)
k

= 0[(\\ÔUn\\2 + ||<5c/"-1||2)(||£(í"-1)||oo||^"||2 + \\Ex(tn-x)U\e"\\2)]
= 0((%n + gn~1)).

Using these estimates in (46), we have

(47) n = ir-n"-1 + 0[£'" + g'"-1].
Finally, we multiply the relation

l0 = I + II + III

by h and use the estimates for each of these terms derived above to get

(48) ^Ôe^2 " îH^1"2 = 0(A3) + 0[h{êr" + r""1)]
+ ii"a + iii"/i-ii"-1/i-iii"-1a,

or

(49)       i\\Se"\\22 + h(nn~l + m"-1) - (5ll^"+1ll2 + A(n" + in"))
= 0(h(%n + gn~l) + h*),

and this is the statement of Lemma 9. D

Lemma 10 ( rç-energy). Let h = At = Ax. Then

- infill - i(ii«í"+1iil+wnb+tt\éun-i\\22+\(\\nl+ii^-'ni)
= 0(A5 + A(g'" + f"-1)).

Proof. Recall from Lemma 4 the relation
r/n     —0TJn -i- TJn m«+1      «n

x2TTn _  ^fe+l      ZtVfe + Uk-\  _ »k      ~"k
0   Uk - h~2 ~ h •
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We multiply the »/-equation (37) by \(U¡/ + Uk~l) and sum over k to get the
identity

(50) h-I2-h = IA + h,
where

k

h = -\Y(u£+vrl)*2ik+l>
k

u = \ Eff*W + Uk~X) = °(h^" + %n~x)x'2)   (by Lemma 8),2 fe

's = i E(^" + U£-l)S2{\E(xk, i")|2 - \E"k\2}.
fc

We sum 72 + h by parts, with the result

(51) h + h = "4e W + tk-X)à(Unk + Unk-X).
fe

Expansion of this yields

- ¿ Bei+c1 - c1 - <-')(^+. + deí - rç - or1)
fe

1   fe

+ ¿ Etc1+Oi^w + w - q? - or1).
Hn fe

where we put k —► fc - 1 to get the first sum. Thus,

/2 + 73 = ¿ E(^+1 + OWE« - 2Cfe" + t£_, + r/»-1 - 2t/;-1 +1/-1]

= ÎBc1+'/r1)[^+'52t/r1]
fe

= ¿ E«+1 + OioiF' - '/fe) + ('/fe - í/fe-1)]
4,1 fe

= ¿E(c/r,)2-c/fe-1)2)
fe

= ¿ E ((O2 + c/fe")2) - ¿ E (o/2)2 + (O2)'4/i Z^Vv''k    >  ^vik) i     4h
fe fe
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Term 75 is summed once by parts, with the result

(52) '»--¿ÇŒVi+tKi-rç-tr1)
• (\E(xk+l, i")|2 - \Enk+x\2 - \E(xk, i")|2 + |^"|2),

and further expansion yields

2h

[{E(xk+i, t") - Ek+x)(E(xk+i, tn) + Ek+x)
-{E(xk,tn)-Enk)(E(xk,tn)+Tk)]

= -¿ReE(¿^+^fe-1)2h

(53) -±.ReY(OU¡; + OU"k-x) [(e"k+x-e"k)(E(xk+l,t") + Enk+x)
fe

[e"k+x {E(xk+l, i") + Enk+X) - el (E(xk, i") + Enk)]

2A

+e£(£(xfc+1, i") - Ë(x,, i") + Tk+X - Tk)

= O (V(\8Unk\ + \ÔUnk-x\)(\ôenk\ + \e»k\(cT + \ÔE»k\))\

= 0(h~x(Wn + g"-1) + h-l\\en\\00(^n + g"-x)l/2\\ÔE"\\2)

= 0(/T1(£*"+ «*"-'))
by the Sobolev inequality applied to ||e"||oo •

Lastly, for the term I\ we note from (31) that

s2u»k - ô2url = \{nïx - ni - (ni - nV)) = C' " 2f + **"',
and hence

(54) 7> = ¿ D0? + vjrWivi - urx).2h,
Summing by parts we get

(55) 2A
^-^EKi+C-^-r1]

fe
•[unk+i-unk-+î-{unk-vnk-%

This can be rewritten as

<56)    7> = -¿ E t^)2 - (^fe-1)2] = -¿ Di^ii2. - lUtf-1!!].
fe

Returning now to (50), we multiply it by h2 to get

-\\\ÔU«f2 + \\\ÔUn-'\$
(57) -i(ll»j',+,lli +llalli)+ i(iiií,,ii! + ii»r-1iii)

= 0(h(g"+g"'-i) + hs).
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This completes the proof.   D

Proof of Theorem 2. Let us define h - At - Ax and

(58) H"-1 = \\\ôen\\22 + x2\\ôun-x\\2 + ±(\\vn\\22 + \\nn-l\\22).

Recall the definitions of the terms II" , III" from Lemma 9. Adding the con-
clusions of Lemmas 9 and 10, we get

H» + h(W + III") = H"-1 + h(ïl"-x + III"-1)
+ 0{h(%n + %n~x) + hi),

where, from (33),
(60) %n = \\\en+x\\22 + Hn.

(62)

Now, for a (large) positive constant y (to be chosen below) set

(61) f " = y\\en+x H?, + Hn + h(lln + III").
From (59) and Lemma 6 it follows that

£n<y(l + ch)\\en\\22 + ycTh5 + cyh(\\r}n+x\\\ + \\rjn\\22)
+ H"-1 + h(ll"-x + III"-1) + 0{h(gn + g*""1) + A3)

Now we estimate II", III" easily by

A|II"| = ^ReE (*(**. n + E(xk, i"+1))(^"+1 +nl)ël
L      fe

<C(||£(i")||0O + ||£(i"+1)||

^¿(ll^lli + ll^ll^+clk^ili
(with a constant c depending only on the data), and

(63)

n\¡¡n+l
k

'"+hWII>?"+1 + >/"||2|k"+1||2

A|III"| < lY(N"k+l + N£)K+112

<c||eB+1||0O||A',+1+An||2||*''+1||2

^cdl^+'llz + II^H^II^+'ll^ll^+'ll1/2
by the Sobolev inequality. Since the first factor is bounded by Lemma 3, we
obtain

,«+l||2 + c||<? 1||2(64) A|III"| < l\\ôe"
with c depending only on the data. Adding (63) to (64), we obtain

(65)
A(|H"| + |III"|)<i||^"+1||2 + ^(|

f   1 W  -L. r\\on+\ II2—   J-"      + Hi" II2

\nn+x\\22 + \\t\\22) + c\\en+x\\22

by the definition (58) of H".   It follows that Wn  is strictly positive for a
sufficiently large choice of y, depending only on the data.

In fact, we can choose y large enough so that y > 1 and

(66) Ín>Uen+x\\22 + lHn
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with a constant c > 0 depending only on the data and on y.
Hence, from (62),

(67) r" < f "-1 + cTyh(%n + %"-x) + cTyh\

Now from its definition, we have, since y > 1,

%n = \\\en+x\\22 + Hn<y\\en+x\\\ + Hn
(68) ^ ^

= X* - A(II" + III") < r" + \Hn + c\\en+l \\22,

where we have used (65). Since H" < £?" by (60), we conclude that

(69) \%n<§n + c\\en+x \\22 <Cy£n

in view of (66). For any such (fixed) choice of y, we obtain from (67)

(1 - cTh)§n < ( 1 + cTh)in-1 + cTh\

It follows that for A = Ai = Ax sufficiently small, depending only on T and
the data, we have

§" < cT[Í° + A2].
Since (§n)xl2 is equivalent to (%n)xl2, the first part of the proof is complete.

It remains to estimate %Q . From (29), (30) and (9), (10) we have

e\ = 0,    4 = 0,    nl = 0(h2).
Thus, llrç1!!2 + H»/0!!2; = 0(h4). From Lemma 6 with n = 0, \\ex\\22 = 0(h5),
and hence

llalli = h~x ¿ \exk+x - ex\2 < 4A-1 ¿ \exk\2 = 0(h\
fe=i fe=i

Finally, we bound ||áC/^||2. We multiply the definition of [/£ by Ug , sum
over k, and then sum by parts to get

\\SU% = - E Vktfk - 4) = Ê Ê G(xk, XjWkn) ,
fe=i fe=i j=i

where we have used Lemma 4 again. Since G is continuous, it follows from
general considerations (or from explicit computation, using t]k = 0(h2)) that
the last expression is 0(h2), and this completes the proof.   D
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