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Introduction

�e big data revolution disrupted the digital and computing landscape in the early 

2010s [1]. Data torrents produced by corporations such as Google, Amazon, Facebook 

and YouTube, among others, presented a unique opportunity for innovation. Traditional 

signal processing tools and computing methodologies were inadequate to turn these 

big-data challenges into technological breakthroughs. A radical rethinking was urgently 

needed [2, 3].

Large Scale Visual Recognition Challenges [4] set the scene for the ongoing digital rev-

olution. �e quest for novel pattern recognition algorithms [5–7] that sift through large, 
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high-quality data sets eventually led to a disruptive combination of deep learning and 

graphics processing units (GPUs) that enabled a rapid succession of advances in com-

puter vision, speech recognition, natural language processing, and robotics, to mention 

a few [3, 8]. �ese developments are currently powering the renaissance of AI, which is 

the engine of a multi-billion dollar industry.

Within just a few years, the curation of high-quality data sets, e.g., ImageNet  [9]; 

GPU-accelerated computing [10]; open source software platforms—TensorFlow [11], 

PyTorch  [12] among others—to design, train, validate and test AI models; improved 

AI architectures and novel techniques [13, 14] to enhance the performance of deep neu-

ral networks, such as robust optimizers  [15] and regularization techniques [16], led to 

the rapid development of AI tools that significantly outperform other signal processing 

tools on many tasks [17, 18]. Data-driven discovery is now also informing and stirring 

the design of exascale cyberinfrastructure, in which high performance computing (HPC) 

and data have become a single entity, namely HPCD [2, 19].

Convergence of AI and HPC

�e convergence of AI and HPC is being pursued in earnest across the HPC ecosystem. 

Recent accomplishments of this program have been reported in plasma physics  [20], 

cosmology  [21], gravitational wave astrophysics  [22], high energy physics  [23], multi-

messenger astrophysics  [24], materials science  [25], data management of unstructured 

datasets [26, 27], and genetic data [28], among others.

�ese achievements share a common thread, namely, the algorithms developed 

to accelerate the training of AI models in HPC platforms have a strong experimental 

component. To date, there is no rigorous framework to constrain the ideal set of hyper-

parameters that ensures rapid convergence and optimal performance of AI models as 

the number of GPU nodes is increased to accelerate the training stage. Furthermore, it 

is customary that distributed training algorithms in HPC platforms are benchmarked 

using idealized neural network models and datasets, e.g., training a ResNet model [29] 

using the ImageNet dataset [9]. While this approach provides some guidance about the 

optimal performance of HPC platforms for deep learning research, it does not impart 

any insights regarding the actual performance of these facilities when using domain-

inspired AI architectures and optimization schemes to do data driven discovery in the 

context of realistic datasets, which are noisy, incomplete, and heterogenous—vastly dif-

ferent from the ImageNet dataset.

In view of these considerations, some key developments are needed to maximize 

the potential of AI for data-driven discovery: (i) the development of a rigorous math-

ematical framework to make informed choices of domain inspired AI architectures 

and optimization schemes; (ii) the creation of an interdisciplinary effort that brings 

together domain, information science, AI, data and software experts to inform the 

collection and curation of experimental and simulation datasets; (iii) the identifica-

tion of connections between AI data and models, which will facilitate the produc-

tion of commodity software that may be seamlessly applicable to disparate fields that 

share common data and computing data challenges; and (iv) the deployment of AI 

models and data on open source platforms, such as the Data and Learning Hub for 



Page 3 of 12Huerta et al. J Big Data            (2020) 7:88  

Science  [30, 31]. �ese activities will accelerate the adoption of reproducible and 

robust AI tools as commodity software across disciplines.

�ere are several dedicated efforts in the literature to address these timely and rel-

evant challenges, see e.g. [32–34]. In the US, the National Science Foundation (NSF) 

and the Department of Energy (DOE) are spearheading multi-million dollar programs 

for the construction of the next generation of HPC platforms to address computa-

tional grand challenges at the exascale, and on R&D to accelerate the design, deploy-

ment and adoption of innovative AI applications for data-driven discovery in science 

and engineering, and to translate these innovations into tangible societal benefits, 

business and industry. �e funding of new HPC platforms for innovative AI research 

such as Bridges-2, Delta, and Neocortex will provide transformative capabilities by 

introducing new hardware for AI research [35, 36]. �e Frontier, Aurora and El Capi-

tan exascale systems will combine simulation, data science, and machine learning to 

revolutionize how supercomputers are used for scientific discovery and innovation.

In terms of R&D, DOE has launched an initiative to make AI models and data that 

adhere to FAIR data principles (Findable, Accessible, Interoperable, and Reusable). �e 

goal of this program is to set a standard for the production of data that may be reusable 

both by researchers and machines, with little human intervention. It is expected that this 

approach will enable researchers to gain new insights on how AI models abstract knowl-

edge from data, and to quantify how domain-inspired optimization schemes guide AI 

to the right answer in controlled experiments, while also enabling intuitive AI discovery 

that is beyond the reach of existing theories that do not fully capture complex phenom-

ena, such as turbulence [37]. �is program will maximize the use of exascale HPCD plat-

forms, accelerating the development of AI.

While it is customary to quantify the performance of HPC platforms for distributed 

training at scale using idealized datasets and vanilla AI models, i.e., ResNet-50 trained 

with the ImageNet dataset, it is also important to assess the performance of advanced 

cyberinfrastructure facilities to train more complex, domain-inspired AI models with 

realistic, experimental datasets. To provide a broad perspective on the state-of-the-art 

for different domains, we present results for a number of studies that we have conducted 

on NSF and DOE HPC platforms. �e AI models we consider are tailored for image rec-

ognition, classification and regression analyses of telescope image datasets, and time-

series data that describe the collision of black holes. To showcase the use of these models 

and datasets, we have used two NSF funded HPC platforms, namely, the Hardware-

Accelerated Learning (HAL) cluster  [38] at the National Center for Supercomputing 

Applications (NCSA), and the Bridges-AI system  [39] that is part of the Extreme Sci-

ence and Engineering Discovery Environment (XSEDE) at the Pittsburgh Supercomput-

ing Center (PSC); and the DOE-funded Summit supercomputer at Oak Ridge National 

Laboratory [40].

HPC Platforms �e HAL cluster has 64 NVIDIA V100 GPUs distributed evenly 

across 16 nodes, and connected by NVLink 2.0  [38] inside the nodes and EDR Infini-

Band across the nodes. In Bridges-AI [39] we have used the 9 HPE Apollo 6500 servers, 

each with 8 NVIDIA Tesla V100 GPUs with 16 GB of GPU memory each, connected by 

NVLink 2.0.
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AI models and datasets We have used three different AI models: (i) ResNet-50; 

(ii) an AI model to characterize the signal manifold of binary black hole mergers, 

trained with time-series signals that describe gravitational wave signals  [14] (AI-

GW); and (iii) an AI model that classifies galaxy images collected by the Sloan Digital 

Sky Survey (SDSS) [41], and automatically labels galaxy images collected by the Dark 

Energy Survey (DES) [21] (AI-DES). Our results of these analyses indicate:

• Figure  1 shows that ResNet-50 with ImageNet is trained within 41 hours 

using 1 V100 GPU in HAL. �e training is reduced to just over 1 h, achieving 93% 

accuracy, using 64 V100 GPUs in HAL.

• Figure  2 shows that AI-GW is fully trained, achieving state-of-the-art accuracy, 

within 754 hrs using a single V100 GPU in HAL. When scaled to 64 V100 GPUs, 

the training is reduced to 12.4 h.

• Figure  3 shows that AI-GW is fully trained, achieving state-of-the-art accuracy, 

within 38 h using 72 V100 GPUs in Bridges-AI.

Fig. 1 ImageNet ResNet-50 training Global throughput (images/sec) and speed up obtained by 

scaling the training of ResNet-50 using the ImageNet dataset. The training stage is reduced to just over 

1 hour, achieving 93% accuracy, using the entire HAL cluster

Fig. 2 Gravitational Wave Astrophysics with the HAL Deep Learning Cluster The training stage of a deep 

learning model, used to infer how rapidly two colliding black holes rotate, is reduced from 1 month—using 

a single V100 GPU—to 12.4 hours using the entire HAL deep learning cluster at the National Center for 

Supercomputing Applications
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• Figure 4 shows that AI-DES is trained within 2.1 hrs using a single V100 GPU in 

HAL. �e training is reduced to 2.7 min using 64 V100 GPUs in HAL.

�ese examples clearly underscore the importance of coupling AI with HPC: (i) it sig-

nificantly speeds up the training stage, enabling the exploration of domain-inspired 

architectures and optimization schemes, which are critical for the design of rigorous, 

trustworthy and interpretable AI solutions; (ii) it enables the use of larger training data 

sets to boost the accuracy and reliability of AI models while keeping the training stage at 

a minimum.

Software and hardware challenges

While open source software platforms have played a key role in the swift evolution of AI, 

they present a number of challenges when used in HPC platforms. �is is because open 

source software platforms such as TensorFlow [11] and PyTorch [12] are updated at 

a much faster pace than libraries deployed cluster-wide on HPC platforms. For instance, 

in typical HPC platforms, software updates customarily take place twice per year  [42, 

43]. In the case of open source AI APIs, releases happen much more often, as can be 

Fig. 3 Gravitational Wave Astrophysics with the XSEDE Bridges-AI Cluster As Fig. 2, but now using the entire 

Bridges-AI cluster at the Pittsburgh Supercomputing Center. In this case, we reduce the training stage to 38 

hours using 72 V100 GPUs

Fig. 4 Cosmology with the HAL Deep Learning Cluster The training stage of a deep learning model, used 

to morphologically classify galaxies between spiral and elliptical classes, is reduced from 2.1 hours—using a 

single V100 GPU—to just 2.7 minutes using the entire HAL deep learning cluster
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seen in the official release timeline of TensorFlow  [44]. Furthermore, producing AI 

models usually requires a unique set of package dependencies. �erefore, the traditional 

use of modules has limited effectiveness since software dependencies change between 

projects and sometimes evolve even during a single project. Common solutions to give 

users more fine-grained control over software environments include containerization, 

e.g., Singularity [45] or Kubernetes [46], and virtual environments such as Ana-

conda  [47] that is provided in HPC platforms such as Bridges, Bridges-AI, Summit, 

and HAL. GPUs play a key role in the renaissance of AI because they have unique fea-

tures to accelerate applications, e.g., they have many cores, provide high throughput, 

they are good for parallel processing and can perform thousands of operations at once. 

While these features are particularly relevant for image recognition analysis, gaming and 

graphics, GPUs are now used extensively in other areas, i.e., autonomous driving and 

robotics. In the context of HPC and AI, our studies indicate that 5 nodes (each node has 

64 Intel KNL 7230 compute cores) in �eta are equivalent to a single V100 GPU. �us, 

given how involved it is to optimally scale the training of AI models in HPC platforms, it 

is apparent the advantage provided by GPU-based HPC platforms for AI research.

We provide below a number of recommendations to streamline the use of HPC 

resources for AI research: 

1. Provide up-to-date documentation and tutorials to set up containers and virtual 

environments, and adequate help desk support to enable smooth, fast-paced project 

life-cycles.

2. Maintain a versatile, up-to-date base container image, and base virtual environment 

that users can easily clone and modify for their specific needs.

3. Distributed training software stacks such as TensorFlow depend on distributed 

training software stacks, e.g., Horovod [48], which in turn depend on system archi-

tecture and specific versions of MPI installed by system and service managers. It is 

important to have clear up-to-date documentation on system architecture and MPI 

versions installed, and clear instructions on how to install/update distributed train-

ing software packages like Horovod into the user’s container/virtual environment.

In addition to these considerations, the AI model architecture, dataset, and training 

optimizer prevent a seamless use of distributed training. Stochastic gradient descent 

(SGD) [49] and its variants are the workhorse optimizer for AI training. �e common 

way to parallelize training is to use “mini-batches” with SGD. In principle, a larger mini-

batch may naively utilize more GPUs (or CPUs). Training time to solution will often 

scale linearly with small batch size. Figures  2 and  4 show good generalization at 64 

GPUs, which amounts to a global batch size of 128 samples. However, it is known that 

as data sets and number of features grow, naively scaling number of GPUs, and subse-

quently batch size, will often take more epochs to achieve an acceptable validation error. 

�e state-of-the art in AI training at scale was reported in [50]. �erein, ResNet was 

trained using a batch size of 64k samples, run across 2048 Tesla P40s. While achieving 

this level of scaling required a lot of experimental work, this benchmark, and others [51], 

indicate that scaling AI models to larger data and feature sets is indeed possible. How-

ever, it requires a considerable amount of human effort to tune the model and training 
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pipeline. A mixture of fast human model development cycle mixed with automated 

hyper-parameter tuning is a candidate solution to tackle this problem.

We have explored whether the methods we have used in the context of HAL and 

Bridges-AI may work in other HPC platforms optimized for AI research. In Fig. 5 we 

show that our distributed training algorithms exhibit strong scaling up to 1024 nodes 

(6144 V100 GPUs) in the Summit supercomputer at Oak Ridge National Lab. �e scal-

ing efficiency, i.e., how long it takes to cycle through all of the data once, also known as 

Total time / epoch (see y-axis label on the right of Fig. 5) can be affected by many factors, 

e.g., I/O speed, communication, etc., and achieving good efficiency and strong scaling, 

as shown in this Figure, indicates that we have dealt with properly with these factors.

Furthermore, Fig.  5 shows that using 256 nodes (1,536 V100 GPUs) in the Summit 

supercomputer we are able to fully train a physics-inspired version of the WaveNet 

model with time-series data that describes numerical solutions to Einstein’s equations 

that model black hole collisions, attaining state-of-the-art accuracy, within just 1.2 

hours. In other words, we can generalize the methods deployed and tested on NSF-

funded cyberinfrastructure to HPC platforms that have different scale, hardware and 

software.

Open challenges A number of challenges remain towards an optimal exploitation of 

AI and extreme scale computing. For instance, it is recognized that some experimental 

datasets are not in a suitable format to fully exploit data-driven discovery. To address 

this pressing issue, DOE has made significant investments to make AI models and data 

FAIR [52]. Another challenge concerns the design of AI models whose architecture and 

optimization schemes incorporate domain knowledge, enabling AI models to converge 

faster while also enabling intuitive, serendipitous discovery that may not be encapsu-

lated by approximate descriptions of complex phenomena  [37, 53]. It is also essential 

to develop a rigorous approach to maximize the use of HPC platforms for distributed 

training. �is requires a systematic approach to select an optimal set of hyperparam-

eters that enables faster convergence, and creative methods to use less training data to 

achieve state-of-the-art performance. NSF has also funded several institutes to advance 

Fig. 5 Gravitational Wave Astrophysics with Summit As Figure 2, but now using 1,536 V100 GPUs in the 

Summit supercomputer at Oak Ridge National Laboratory. At this scale, the model is trained in 1,2 hours
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the state-of-the-art in AI, seeking new modes of data-driven discovery in science and 

engineering. �ese investments aim to sustain, broaden and accelerate recent break-

throughs in science, technology and industry driven by AI applications  [54]. As these 

projects evolve and mature, it will be essential to facilitate cross-pollination of expertise, 

avoiding duplication and empowering new AI practitioners to access AI scientific soft-

ware that is open source, interpretable, reproducible and trustworthy.

Cloud computing and HPC

Cloud computing and containerization became popular for developing customer facing 

web apps. It allowed a DevOps team—i.e., the team that develops scientific software and 

manages ongoing operations of a data center—to keep strict control of the customer fac-

ing software, while new features and bug fixes were designed, developed, and tested in 

an environment that “looked the same” as a live one. Depending on the business cycle, 

companies could dynamically scale their infrastructure with virtually no overhead of 

purchasing hardware, and then relinquish it when it was no longer needed.

HPC would do well to adopt a DevOps cycle like the ones seen in startup culture. 

However HPC has some unique challenges that make this difficult. (1) Data storage 

separated from compute in the form of a shared file system and an instance on main-

taining a traditional tree like file system. Cloud computing delivers a unit of compute 

and storage in tandem as a single instance and isolates distinct resources. A developer 

using cloud resources treats a compute instance as only the host for their code and must 

explicitly choose how to move large volumes of data on and off. �is is usually done 

by allocating a specialized cloud instance of a data store, e.g., SQL databases. Improved 

cloud solutions provide Kubernetes (and other cluster manager) recipes to allocate 

a skeleton of these resources, but it is still up to the developers to choose exactly how 

data are moved between the resources and to code the specific functions of their app. 

(2) HPC is a shared resource. �at is, many users with different projects see the same 

file system and compute resource. Each developer must wait their turn to see their code 

run. In cloud computing, a resource belongs and is billed to the developer on demand. 

When the resource is released, all of its state-full properties get reset. (3) HPC is very 

concerned with the compute resources interconnect. To have high bandwidth and low 

latency between cloud compute instances, one pays a premium.

In the case of distributed training, one needs to ascertain whether the cloud or HPC 

platforms provide an adequate solution. On-demand, high throughput or cloudbursting 

of single-node applications are ideally suited for the cloud. For instance, in the case of 

genetic data analysis, the KnowEng platform [28] is implemented as a web application 

where the compute cluster is managed by Kubernetes, and provides an example of a 

workflow that can be expanded to include methods for intuitively managing library com-

patibility and cloud bursting. �is cloud-based solution includes: (1) the ability to access 

disparate data; (2) set parameters for complex AI experiments effortlessly; (3) deploy 

computation in a cloud environment; (4) engage with sophisticated visualization tools 

to evaluate data and study results; and (5) save results and access parameter settings of 

prior runs.

However, large distributed training workloads that run for many hours or days will 

continue to excel on a high-end HPC environment. For instance, the typical utilization 
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of the HAL cluster at NCSA tends to be well above 70%. Given that the cost of a sin-

gle V100 GPU node on AWS (p3.2xlarge instance [55]) is $3.06 per hour, HAL provides 

over $141,000 in comparable cloud compute resources every month. �is is far higher 

than the amortized cost of the HAL cluster and its support. A top-tier system like Blue 

Waters, where a node hour is charged at $0.60, 4,228 K20 GPUs might have a cloud cost 

of $2-3M per month.

Industry applications

�e confluence of AI and HPC is a booming enterprise in the private sector. NCSA is 

spearheading its application to support industry partners from the agriculture, health-

care, energy, and financial, sectors to stay competitive on the global market by analyzing 

bigger and more complex data to uncover hidden patterns, reveal market and cash flow 

trends, and identify customer preferences [56]. �e confluence of modeling, simulation 

and AI is another area of growing interest among manufacturing and life science part-

ners, promising to significantly accelerate many extremely difficult and computationally 

expensive methods and workflows in model-based design and analysis [37, 57, 58].

Academic innovation in AI pursues ideas that are exciting and productive, though 

they may not have immediate, tangible benefits. While academic scholarship is curiosity 

driven research, innovative AI applications in industry have as a goal to address com-

putational grand challenges at an accelerated pace, and to apply at scale new solutions 

to profit from them. In brief, while academia and industry pursue distinct goals, it is 

essential that both spheres of activity maintain a close-knit collaboration [59]. �is is a 

critical endeavor because breakthroughs in industry and technology over the last dec-

ade were enabled by basic AI applications. As industrial applications reach new frontiers 

and computational grand challenges arise, it will be essential to continue leveraging AI 

innovation, and explore ways to translate it into tangible solutions that may be deployed 

at scale to produce societal and business benefits. In summary, the training of future 

AI practitioners demands an interdisciplinary approach that includes a clear vision of 

industry needs. �is approach will ensure that academic AI innovation is readily incor-

porated and applied, creating a sustainable paradigm that opens up diverse lines of fund-

ing for AI researchers.

Conclusion

�e convergence of AI and HPC provides the means to address big data challenges in 

science, engineering and industry, and enables the creation of disruptive approaches for 

data-driven discovery and innovation. Realizing these goals demands a concerted effort 

between AI practitioners, HPC and domain experts.

As AI and HPC continue to transform an ever increasing number of disciplines at an 

accelerated pace, we can only image what the future holds once AI is powered with a 

rigorous mathematical framework. In that scenario, it will be possible to optimally use 

oversubscribed HPC platforms, and create intuitive AI solutions that will lead to trans-

formational scientific discoveries, and disruptive solutions in industry and technology

Finally, to contribute to the use of realistic datasets to benchmark HPC platforms, we 

release two neural network models, along with datasets, that we used to produce Figs. 2, 

3, 4 and 5. As the NSF and other funding agencies continue to deploy faster and more 
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powerful HPC platforms for AI research, it is urgent that we provide guidelines to maxi-

mize the use of these resources, and continue training new talent that will catalyze the 

adoption and best AI practices. �is approach was critical in the past to enable the adop-

tion of HPC by industry, and will play a more significant role in the future given the 

eagerness with which industry is adopting AI solutions.
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