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CONVERGENCE OF CERTAIN COSINE SUMS IN THE
METRIC SPACE L

BABU RAM

ABSTRACT. We consider here the L' convergence of Rees-Stanojevic cosine
sums to a cosine trigonometric series belonging to the class S defined by
Sidon and deduce as corollaries some previously known results from our
result.

1. Introduction. Sidon [6] introduced the following class of cosine
trigonometric series: Let

a, &
.1 = + > a, cos kx

2 S
be a cosine series satisfying @, = o(1), kK > co. If there exists a sequence {A4,}
such that
(1.2) 4,10, k — oo,

o0
1.3) > 4, < o,
k=0

(14) |Aay| < 4, VK,

we say that (1.1) belongs to the class S.
Let the partial sums of (1.1) be denoted by S,(x) and f(x) = lim,_, . S,(x).
Recently, Garrett and Stanojevic [3] proved that the partial Rees-Stanojevi¢
sums [5]
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(1.5) g.(x) = i Aag, + i
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Aaj cos kx
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converge in the L' metric to (1.1) if and only if given & > 0, there is a
8 (g) > 0 such that

(1.6) fo °

for all n > 0. It has been shown in the same paper that the classical
Young-Kolmogorov-Stanojevi¢ sufficient conditions for integrability of (1.1)
imply (1.6).
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Generalising a classical result [1, p. 204], Teljakovskii [7] proved the
following.

THEOREM A. If (1.1) belongs to the class S, then a necessary and sufficient
condition for L' convergence of (1.1) is a, log n = o(1), n — 0.
2. Lemmas. The proofs of our results are based upon the following lemmas.

LemMa 1 (Fomin [2]). If |¢,| < 1, then
f" n sin(k + 1/2)x
0

,Eock 2sin x/2
where C is a positive absolute constant.
LeMMA 2. If (1.1) belongs to the class S, then
8:(%) = S, (x) = a,4,D,(x),
where D, (x) denotes the Dirichlet kernel.

dx< C(n + 1),

PROOF. Since (1.1) belongs to the class S, we have
[
a4, —0 and 3 |Ag|< oo.
k=0

The conditions of Lemma 1 of Garrett and Stanojevié [3] are thus satisfied
and the result follows.

3. Main result. The main result of this paper reads:

THEOREM. If (1.1) belongs to the class S, then (1.6) holds. Hence
If = &alli=o(1), n— co.
PrROOF. Making use of Abel’s transformation and Lemma 1, we have

[156) - sl ax= [ 3 sa0, ()| ax
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(1.2) and (1.3) now imply the conclusion of the Theorem.
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4. Corollaries. (i) Using Lemma 2, we notice that

S5 = s, de= [17(0) = g(x) + 8,(x) = 8,(x)] dx
<[ = g ()] dxt 78, (x) = S, (x)] dx

<[ = (2] dxt [ lay41D, (x)] dx

and
Sl 12y ()] dx= [ 8,(0) = S, (x)] dx

<[ = s, dx [(17(x) = 8,(x)] d.

Since lim,_, ., [2]|f(x) — g,(x)| dx = 0 by our Theorem and [j|a, D,(x)| dx
behaves like a,,, log n for large values of n, Theorem A of Teljakovskii
follows.

(ii) Let @, — 0 and =¢_,(k + 1)|A%,| < 0. Then g, converges to f in the
metric space L since the trigonometric cosine series (1.1) with quasi-convex
coefficients belongs to the class S if we choose 4, = =%_,|A%,,|. This is
Example 1 of [3].

5. Remark. In [4], Garrett and Stanojevi¢ proved (Corollary B, p. 70) that
their Theorem B extends the Teljakovskii result.

My thanks are due to the referee for his wise comments which have
definitely improved the presentation of this paper.
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