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CONVERGENCE OF CERTAIN COSINE SUMS IN THE
METRIC SPACE L

BABU RAM

Abstract. We consider here the Ll convergence of Rees-Stanojevic cosine

sums to a cosine trigonometric series belonging to the class S defined by

Sidon and deduce as corollaries some previously known results from our

result.

1.   Introduction.   Sidon   [6]   introduced   the   following  class  of  cosine

trigonometric series: Let

a0       °°
(1.1) -y +  2 ak cos k*

L        k = X

be a cosine series satisfying ak = o(\), k -» oo. If there exists a sequence {Ak}

such that

(1.2) Ak{0,       k-^co,

00

(1.3) 2 Ak < oo,
k = 0

(1.4) \àak\<Ak,   VA:,

we say that (1.1) belongs to the class S.

Let the partial sums of (1.1) be denoted by Sn(x) and/(x) = lim„^0O Sn(x).

Recently, Garrett and Stanojevic [3] proved that the partial Rees-Stanojevic

sums [5]

■       n n        n

(1.5) g„(x) = -  2 Aß* + 2   2 Aa,- cos kx
z   Ar = 0 *=1 j = k

converge in the L1 metric to (1.1) if and only if given e > 0, there is a

<5(e) > 0 such that

(1.6) fl
S    àakDk(x)

k = n + X

dx< e

for all n > 0. It has been shown in the same paper that the classical

Young-Kolmogorov-Stanojevic sufficient conditions for integrability of (1.1)

imply (1.6).
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Generalising a classical result [1, p. 204], Teljakovskn [7] proved the

following.

Theorem A. If (1.1) belongs to the class S, then a necessary and sufficient

condition for Lx convergence of (1.1) is a„ log n = o(\), n —> cc.

2. Lemmas. The proofs of our results are based upon the following lemmas.

Lemma 1 (Fomin [2]). If\ck\ < 1, then

JCTTn

»       sin(A: + \/2)x
2 ck dx< C(n + 1),

| ¿fo 2sinx/2

where C is a positive absolute constant.

Lemma 2. If (I.I) belongs to the class S, then

&,(*) = Sn(x) - an+xDn(x),

where Dn(x) denotes the Dirichlet kernel.

Proof. Since (1.1) belongs to the class S, we have

00

ak —> 0   and     2 \^ak\ < °°-
*=o

The conditions of Lemma 1 of Garrett and Stanojevic [3] are thus satisfied

and the result follows.

3. Main result. The main result of this paper reads:

Theorem. 7/(1.1) belongs to the class S, then (1.6) holds. Hence

l|/~&i|Ll= °(1)'       n^co.

Proof. Making use of Abel's transformation and Lemma 1, we have

f\f(x)-gn(x)\dx=r

-/;•'o

-f

2    ¿akDk(x) c
k = n+\

2   Ak-r±Dk(x)
k=n+\ Ak

dx

2 ^,2 -pA(*)
k=n+\ i-O   Ai

Î  vf
c=n+\ J0

2 YAW
7 = 0    Ai

dx

dx

< c 2  (* + OMt-
k = n + \

(1.2) and (1.3) now imply the conclusion of the Theorem.
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4. Corollaries, (i) Using Lemma 2, we notice that

f\f(x) - Sn(x)\ dx = f\f(x) - gn(x) + gn(x) - Sn(x)\ dx

</j/(*) - &■(*)! dx + fo'\gH(x) - Sn(x)\ dx

</j/W - 8«(x)\ dx+fJ\an + xD„(x)\ dx

and

fk+iA, W| dx= C\gn(x) - Sn(x)\ dx

</j/(x) - Sn(x)\ dx+£\f(x) - gn(x)\ dx.

Since lim,,^ /5|/(x) - g„(x)| dx = 0 by our Theorem and r0\an+xD„(x)\ dx

behaves like an+x log« for large values of n, Theorem A of Teljakovskii

follows.

(ii) Let ak -»0 and 2^=I(A: + OIA2^! < oo. Then gn converges to/ in the

metric space L since the trigonometric cosine series (1.1) with quasi-convex

coefficients belongs to the class S if we choose Ak = S^=/t|A2am|. This is

Example 1 of [3].

5. Remark. In [4], Garrett and Stanojevic proved (Corollary B, p. 70) that

their Theorem B extends the Teljakovskii result.

My thanks are due to the referee for his wise comments which have

definitely improved the presentation of this paper.
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