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Abstract. In this paper, we give a sufficient condition to converge to common fixed point of

a finite step iteration process with errors for two finite families of generalized asymptotically

quasi-nonexpansive mappings in the framework of Banach spaces. Also, we establish some

weak and strong convergence theorems of the above said scheme and mappings using addi-

tional assumptions to the space in the framework of uniformly convex Banach spaces. The

results presented in this paper improve and extend some results of Chen and Guo (2011) [1],

Sitthikul and Saejung (2009) [19] and many others.

1. Introduction

Let K be a nonempty subset of a real Banach space E. Let T : K → K
be a mapping, then we denote the set of all fixed points of T by F (T ). The
set of common fixed points of two mappings S and T will be denoted by
F = F (S) ∩ F (T ). A mapping T : K → K is said to be:

(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.1)
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for all x, y ∈ K.
(2) quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖ (1.2)

for all x ∈ K and p ∈ F (T ).
(3) asymptotically nonexpansive [6] if there exists a sequence {kn} in

[1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ (1.3)

for all x, y ∈ K and n ≥ 1.
(4) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a se-

quence {kn} in [1,∞) with limn→∞ kn = 1 such that

‖Tnx− p‖ ≤ kn ‖x− p‖ (1.4)

for all x ∈ K, p ∈ F (T ) and n ≥ 1.
(5) generalized asymptotically quasi-nonexpansive [7] if F (T ) 6= ∅ and

there exist sequences {kn} in [1,∞) and {sn} in [0,∞) with limn→∞ kn
= 1 and limn→∞ sn = 0 such that

‖Tnx− p‖ ≤ kn ‖x− p‖+ sn (1.5)

for all x ∈ K, p ∈ F (T ) and n ≥ 1.
(6) uniformly L-Lipschitzian if there exists a positive constant L such that

‖Tnx− Tny‖ ≤ L ‖x− y‖ (1.6)

for all x, y ∈ K and n ≥ 1.

If in definition (5), sn = 0 for all n ≥ 1, then T becomes asymptotically
quasi-nonexpansive, and hence the class of generalized asymptotically quasi-
nonexpansive maps includes the class of asymptotically quasi-nonexpansive
maps.

Remark 1.1. It is easy to see that if F (T ) is nonempty, then nonexpansive
mapping, asymptotically nonexpansive mapping and asymptotically quasi-
nonexpansive mappings are the special cases of generalized asymptotically
quasi-nonexpansive mappings.

The class of asymptotically nonexpansive self-mappings was introduced by
Goebel and Kirk [6] in 1972 as an important generalization of the class of
nonexpansive self-mappings, and proved that if K is a nonempty closed convex
subset of a real uniformly convex Banach space and T is an asymptotically
nonexpansive self-mapping of K, then T has a fixed point.

Since then, iteration processes for asymptotically nonexpansive mappings
and asymptotically quasi-nonexpansive mappings in Banach spaces have stud-
ied extensively by many authors (see [2],[5],[8]-[10],[12]-[18]). In 2002, Xu and
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Noor [21] introduced and studied a three-step iteration scheme to approxi-
mate fixed points of asymptotically nonexpansive mappings in Banach space.
Cho et al. [3] extended the work of Xu and Noor to a three-step iterative
scheme with errors in Banach space and proved the weak and strong conver-
gence theorems for asymptotically nonexpansive mappings. In 2009, Sitthikul
and Saejung [19] introduced and studied a finite-step iteration scheme for a
finite family of nonexpansive and asymptotically nonexpansive mappings and
proved some weak and strong convergence theorems in the setting of Banach
spaces. In 2009, Imnang and Suantai [7] introduced and studied a multi-
step iteration iteration scheme for a finite family of generalized asymptotically
quasi-nonexpansive mappings in the framework of Banach spaces. Recently,
Chen and Guo [1] introduced and studied a new finite-step iteration scheme
with errors for two finite families of asymptotically nonexpansive mappings as
follows:

Let K be a nonempty convex subset of a Banach space E with K+K ⊂ K.
Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N asymptotically nonexpansive mappings.
Then the sequence {xn} defined by

x1 = x ∈ K,
x(0)n = xn,

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn + u(1)n ,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn + u(2)n ,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn + u(N−1)n ,

x(N)
n = α(N)

n TnNx
(N−1)
n + (1− α(N)

n )SnNxn + u(N)
n ,

xn+1 = x(N)
n , ∀ n ≥ 1, (1.7)

where {α(i)
n } ⊂ [0, 1] and {u(i)n } are bounded sequences in K for all i ∈ I =

{1, 2, . . . , N}, and the weak and strong convergence theorems are proved,

which improve and generalize some results in [19]. Letting u
(i)
n = 0 for all

n ≥ 1, i ∈ I in (1.7). We have the following:

x1 = x ∈ K,
x(0)n = xn,

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn,

...



82 G. S. Saluja and J. K. Kim

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn,

x(N)
n = α(N)

n TnNx
(N−1)
n + (1− α(N)

n )SnNxn,

xn+1 = x(N)
n , ∀ n ≥ 1, (1.8)

where {α(i)
n } ⊂ [0, 1] for all i ∈ I and the author [1] proved weak convergence

theorem of iteration scheme (1.8).

The purpose of this paper is to study the weak and strong convergence of
the iteration scheme (1.7) and (1.8) to converge to common fixed points for
two finite families of uniformly L-Lipschitzian and generalized asymptotically
quasi-nonexpansive mappings in the framework of uniformly convex Banach
spaces. The results presented in this paper improve and extend the corre-
sponding results of Chen and Guo (2011) [1], Sitthikul and Saejung (2009)
[19] and many others.

In order to prove the main results of this paper, we need the following
concepts and lemmas:

Let E be a Banach space with its dimension greater than or equal to 2. The
modulus of convexity of E is the function δE(ε) : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1−
∥∥∥∥1

2
(x+ y)

∥∥∥∥ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖
}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all
ε ∈ (0, 2].

Recall that a Banach space E is said to satisfy Opial’s condition [11] if, for
any sequence {xn} in E, xn → x weakly implies that

lim sup
n−→∞

‖xn − x‖ < lim sup
n−→∞

‖xn − y‖

for all y ∈ E with y 6= x.

A Banach space E has the Kadec-Klee property [19] if for every sequence
{xn} in E, xn → x weakly and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

A mapping T : K → K is said to be semi-compact [2] if for any bounded
sequence {xn} in K such that ‖xn − Txn‖ → 0 as n→∞, then there exists a
subsequence {xnk

} ⊂ {xn} such that xnk
→ x∗ ∈ K strongly.

Lemma 1.2. (See [20]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of
nonnegative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀ n ≥ 1.
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If
∑∞

n=1 βn < ∞ and
∑∞

n=1 rn < ∞, then limn→∞ αn exists. In particular,
{αn}∞n=1 has a subsequence which converges to zero, then limn→∞ αn = 0.

Lemma 1.3. (See [16]) Let E be a uniformly convex Banach space and 0 <
α ≤ tn ≤ β < 1 for all n ∈ N. Suppose further that {xn} and {yn} are
sequences of E such that lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a and
limn→∞ ‖tnxn + (1− tn)yn‖ = a hold for some a ≥ 0. Then limn→∞ ‖xn − yn‖
= 0.

Lemma 1.4. (See [19]) Let E be a real reflexive Banach space with its dual
E∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in E and
p, q ∈ ww(xn) (where ww(xn) denotes the set of all weak subsequential limits
of {xn}). Suppose limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. Then
p = q.

Proposition 1.5. Let K be a nonempty subset of a Banach space E and
{Si}Ni=1, {Ti}Ni=1 : K → K be 2N generalized asymptotically quasi-nonexpansive
mappings. Then there exist sequences {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂
[0,∞) with kn → 1, hn → 1 and sn → 0, tn → 0 as n→∞ such that

‖Sni x− Sni y‖ ≤ kn ‖x− y‖+ sn, ∀n ≥ 1,

and

‖Tni x− Tni y‖ ≤ hn ‖x− y‖+ tn, ∀n ≥ 1,

for all x, y ∈ K and i = 1, 2, . . . , N .

Proof. Since for each i = 1, 2, . . . , N , Si, Ti : K → K are generalized asymp-

totically quasi-nonexpansive mappings, there exist sequences {k(i)n }, {h(i)n } ⊂
[1,∞) and {s(i)n }, {t(i)n } ⊂ [0,∞) with k

(i)
n → 1, h

(i)
n → 1 and s

(i)
n → 0, t

(i)
n → 0

as n→∞ such that

‖Sni x− Sni y‖ ≤ k(i)n ‖x− y‖+ s(i)n , ∀n ≥ 1,

and

‖Tni x− Tni y‖ ≤ h(i)n ‖x− y‖+ t(i)n , ∀n ≥ 1,

for all x, y ∈ K and i = 1, 2, . . . , N .
Letting

kn = max{k(1)n , k(2)n , . . . , k(N)
n }, hn = max{h(1)n , h(2)n , . . . , h(N)

n },
and

sn = max{s(1)n , s(2)n , . . . , s(N)
n }, tn = max{t(1)n , t(2)n , . . . , t(N)

n },
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then we have that {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂ [0,∞) with
kn → 1, hn → 1 and sn → 0, tn → 0 as n→∞ and

‖Sni x− Sni y‖ ≤ k(i)n ‖x− y‖+ s(i)n ≤ kn ‖x− y‖+ sn, ∀n ≥ 1,

and

‖Tni x− Tni y‖ ≤ h(i)n ‖x− y‖+ t(i)n ≤ hn ‖x− y‖+ tn, ∀n ≥ 1,

for all x, y ∈ K and for each i = 1, 2, . . . , N . �

2. Strong convergence theorems

In this section, we first prove the following lemmas in order to prove our
main theorems.

Lemma 2.1. Let E be a real Banach space and K be a nonempty closed
convex subset of E with K + K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1 : K → K be
2N generalized asymptotically quasi-nonexpansive mappings with sequences
{kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂ [0,∞) given in Proposition 1.1 and

F =
⋂N
i=1 F (Si)∩F (Ti) 6= ∅. Let {xn} be the sequence defined by (1.7), where

{α(i)
n } ⊂ [0, 1] for all i ∈ I with the following restrictions:

(i)
∑∞

n=1(knhn − 1) <∞;
(ii)

∑∞
n=1 sn <∞,

∑∞
n=1 tn <∞;

(iii)
∑∞

n=1

∥∥∥u(i)n ∥∥∥ <∞ for all i ∈ I.

Then the limit limn→∞ ‖xn − q‖ exists for all q ∈ F .

Proof. Let q ∈ F . Then from (1.7), we have∥∥∥x(1)n − q∥∥∥ =
∥∥∥α(1)

n Tn1 xn + (1− α(1)
n )Sn1 xn + u(1)n − q

∥∥∥
≤ α(1)

n ‖Tn1 xn − q‖+ (1− α(1)
n ) ‖Sn1 xn − q‖+

∥∥∥u(1)n ∥∥∥
≤ α(1)

n [hn ‖xn − q‖+ tn] + (1− α(1)
n )[kn ‖xn − q‖+ sn] +

∥∥∥u(1)n ∥∥∥
≤ α(1)

n knhn ‖xn − q‖+ α(1)
n tn + (1− α(1)

n )knhn ‖xn − q‖

+(1− α(1)
n )sn + knhn

∥∥∥u(1)n ∥∥∥
≤ knhn ‖xn − q‖+ knhn

{∥∥∥u(1)n ∥∥∥+ sn + tn

}
. (2.1)
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Again using (1.7) and (2.1), we obtain∥∥∥x(2)n − q∥∥∥ =
∥∥∥α(2)

n Tn2 x
(1)
n + (1− α(2)

n )Sn2 xn + u(2)n − q
∥∥∥

≤ α(2)
n

∥∥∥Tn2 x(1)n − q∥∥∥+ (1− α(2)
n ) ‖Sn2 xn − q‖+

∥∥∥u(2)n ∥∥∥
≤ α(2)

n [hn

∥∥∥x(1)n − q∥∥∥+ tn] + (1− α(2)
n )[kn ‖xn − q‖+ tn]

+
∥∥∥u(2)n ∥∥∥

≤ α(2)
n knhn

∥∥∥x(1)n − q∥∥∥+ α(2)
n tn + (1− α(2)

n )knhn ‖xn − q‖

+(1− α(2)
n )sn + knhn

∥∥∥u(2)n ∥∥∥
≤ α(2)

n knhn

[
knhn ‖xn − q‖+ knhn

{∥∥∥u(1)n ∥∥∥+ sn + tn

}]
+(1− α(2)

n )knhn ‖xn − q‖+ (1− α(2)
n )sn + knhn

∥∥∥u(2)n ∥∥∥
≤ k2nh

2
n ‖xn − q‖+ k2nh

2
n

[ ∥∥∥u(1)n ∥∥∥+
∥∥∥u(2)n ∥∥∥ ]

+k2nh
2
n(sn + tn). (2.2)

Continuing the above process, we get that∥∥∥x(i)n − q∥∥∥ ≤ kinhin ‖xn − q‖+ kinh
i
n

i∑
k=1

∥∥∥u(k)n ∥∥∥+ kinh
i
n(sn + tn) (2.3)

for all n ≥ 1 and i ∈ I. In particular,

‖xn+1 − q‖ =
∥∥∥x(N)

n − q
∥∥∥

≤ kNn hNn ‖xn − q‖+ kNn h
N
n

N∑
k=1

∥∥∥u(k)n ∥∥∥+ kNn h
N
n (sn + tn)

= [1 + (kNn h
N
n − 1)] ‖xn − q‖+ kNn h

N
n

N∑
k=1

∥∥∥u(k)n ∥∥∥+ kNn h
N
n (sn + tn)

≤ [1 + (kNn h
N
n − 1)] ‖xn − q‖+R

N∑
k=1

∥∥∥u(k)n ∥∥∥+R(sn + tn) (2.4)

for some R > 0 and all n ≥ 1. It follows from the conditions (i), (ii) and (iii)

that
∑∞

n=1(k
N
n h

N
n −1) <∞,

∑∞
n=1(sn+tn) <∞ and

∑∞
n=1

(∑N
k=1

∥∥∥u(k)n ∥∥∥) <
∞. By Lemma 1.2, we have that limn→∞ ‖xn − q‖ exists. This completes the
proof. �
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Lemma 2.2. Let E be a real uniformly convex Banach space and K be a
nonempty closed convex subset of E with K +K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1 :
K → K be 2N uniformly L-Lipschitzian generalized asymptotically quasi-
nonexpansive mappings with sequences {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂
[0,∞) given in Proposition 1.1 and F =

⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn} be

the sequence defined by (1.7), where {α(i)
n } ⊂ [a, 1− a] for some a ∈ (0, 1) and

all i ∈ I with the following restrictions:

(i)
∑∞

n=1(knhn − 1) <∞;
(ii)

∑∞
n=1 sn <∞,

∑∞
n=1 tn <∞;

(iii)
∑∞

n=1

∥∥∥u(i)n ∥∥∥ <∞ for all i ∈ I.

Then limn→∞

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ = 0 for all i ∈ I.

Proof. By Lemma 2.1, we know that limn→∞ ‖xn − q‖ exists. So we can as-
sume that

lim
n→∞

‖xn − q‖ = d (2.5)

for all q ∈ F , where d ≥ 0 is nonnegative number. It follows from condition
(iii), (2.3), (2.5) and limn→∞ knhn = 1 that

lim sup
n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ d (2.6)

and so

lim sup
n→∞

∥∥∥TnNx(N−1)n − q + u(N)
n

∥∥∥ ≤ d. (2.7)

Also,

lim sup
n→∞

∥∥∥SnNxn − q + u(N)
n

∥∥∥ ≤ d. (2.8)

Further, from (1.7) and (2.5), we have

d = lim
n→∞

‖x(N)
n − q‖

= lim
n→∞

‖α(N)
n (TnNx

(N−1)
n − q + u(N)

n ) + (1− α(N)
n )(SnNxn − q + u(N)

n )‖.

By Lemma 1.3, we get that

lim
n→∞

∥∥∥SnNxn − TnNx(N−1)n

∥∥∥ = 0

and

lim
n→∞

∥∥∥TnNx(N−1)n − q + u(N)
n

∥∥∥ = d.
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From (2.6), we have

d = lim inf
n→∞

∥∥∥TnNx(N−1)n − q + u(N)
n

∥∥∥
≤ lim inf

n→∞

[
hn

∥∥∥x(N−1)n − q
∥∥∥+ tn

]
+ lim
n→∞

∥∥∥u(N)
n

∥∥∥
= lim inf

n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ lim sup

n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ d

and so

lim
n→∞

∥∥∥x(N−1)n − q
∥∥∥ = d. (2.9)

It follows from the condition (iii), (2.3), (2.5) and limn→∞ knhn = 1 that

lim sup
n→∞

∥∥∥x(N−2)n − q
∥∥∥ ≤ d.

Further, we know that

lim sup
n→∞

∥∥∥TnN−1x(N−2)n − q + u(N−1)n

∥∥∥ ≤ d (2.10)

and

lim sup
n→∞

∥∥∥SnN−1xn − q + u(N−1)n

∥∥∥ ≤ d. (2.11)

From (1.7) and (2.9), we have

d = lim
n→∞

‖x(N−1)n − q‖

= lim
n→∞

‖α(N−1)
n (TnN−1x

(N−2)
n − q + u(N−1)n )

+ (1− α(N−1)
n )(SnN−1xn − q + u(N−1)n )‖. (2.12)

It follows from (2.9)-(2.11) and Lemma 1.3 that

lim
n→∞

∥∥∥SnN−1xn − TnN−1x(N−2)n

∥∥∥ = 0.

Continuing the above process, we obtain the result of Lemma 2.2. This com-
pletes the proof. �

Lemma 2.3. Under the assumptions of Lemma 2.2, if

lim
n→∞

‖xn − Sni xn‖ = 0 (2.13)

for all i ∈ I. Then

lim
n→∞

‖xn − Tixn‖ = 0, ∀ i ∈ I.
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Proof. Since limn→∞

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ = 0 for all i ∈ I by Lemma 2.2. It

follows from (2.13) that

lim
n→∞

∥∥∥xn − Tni x(i−1)n

∥∥∥ = 0 (2.14)

for all i ∈ I. Next, from (1.7), we have

‖xn − xn+1‖ ≤ α(N)
n

∥∥∥xn − TnNx(N−1)n

∥∥∥+ (1− α(N)
n ) ‖xn − SnNxn‖+

∥∥∥u(N)
n

∥∥∥ .
Using (2.13), (2.14) and limn→∞

∥∥∥u(N)
n

∥∥∥ = 0, we have

lim
n→∞

‖xn − xn+1‖ = 0. (2.15)

Since limn→∞ ‖xn − Tn1 xn‖ = 0 by (2.14) and

‖xn − Tni xn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Tni xn

∥∥∥
≤

∥∥∥xn − Tni x(i−1)n

∥∥∥+ L
∥∥∥x(i−1)n − xn

∥∥∥
≤

∥∥∥xn − Tni x(i−1)n

∥∥∥+ Lα(i−1)
n

∥∥∥Tni−1x(i−2)n − xn
∥∥∥

+L(1− α(i−1)
n )

∥∥Sni−1xn − xn∥∥+ L
∥∥∥u(i−1)n

∥∥∥ (2.16)

for all i = 1, 2, . . . , N . From (2.13), (2.14), (2.16) and limn→∞

∥∥∥u(i−1)n

∥∥∥ = 0,

we have

lim
n→∞

‖xn − Tni xn‖ = 0 (2.17)

for all i ∈ I. It follows from (2.15) and (2.17) that

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥+
∥∥Tn+1

i xn+1 − Tn+1
i xn

∥∥
+
∥∥Tn+1

i xn − Tixn
∥∥

≤ ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥+ L ‖xn+1 − xn‖
+L ‖Tni xn − xn‖

≤ (1 + L) ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥
+L ‖Tni xn − xn‖ . (2.18)

Using (2.15) and (2.17), we get that

lim
n→∞

‖xn − Tixn‖ = 0.

for all i ∈ I. This completes the proof. �
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Lemma 2.4. Under the assumptions of Lemma 2.2, if

‖x− Tiy‖ ≤ ‖Six− Tiy‖ (2.19)

for all x, y ∈ K and i ∈ I. Then

lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0, ∀ i ∈ I.

Proof. By (2.19), we obtain that

0 ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥ ≤ ∥∥∥Sixn − Tni x(i−1)n

∥∥∥
≤

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ (2.20)

for all i ∈ I. It follows from (2.20) and Lemma 2.2 that

lim
n→∞

∥∥∥Sixn − Tni x(i−1)n

∥∥∥ = lim
n→∞

∥∥∥xn − Tni x(i−1)n

∥∥∥ = 0. (2.21)

Since

‖xn − Sixn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Sixn

∥∥∥ . (2.22)

Using (2.21) in (2.22), we obtain

lim
n→∞

‖xn − Sixn‖ = 0 (2.23)

for all i ∈ I. Also,

‖xn − Sni xn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Sni xn

∥∥∥ . (2.24)

Using (2.21) and Lemma 2.2 in (2.24), we obtain

lim
n→∞

‖xn − Sni xn‖ = 0 (2.25)

for all i ∈ I. Thus limn→∞ ‖xn − Tixn‖ = 0 for all i ∈ I by Lemma 2.3. This
completes the proof. �

Theorem 2.5. Let E be a real Banach space and K be a nonempty closed
convex subset of E with K + K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N
uniformly L-Lipschitzian generalized asymptotically quasi-nonexpansive map-
pings with sequences {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂ [0,∞) given in

Proposition 1.1 and F =
⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn} be the sequence

defined by (1.7), where {α(i)
n } ⊂ [a, 1−a] for some a ∈ (0, 1) and all i ∈ I with

the following restrictions:

(i)
∑∞

n=1(knhn − 1) <∞;
(ii)

∑∞
n=1 sn <∞,

∑∞
n=1 tn <∞;

(iii)
∑∞

n=1

∥∥∥u(i)n ∥∥∥ <∞ for all i ∈ I.
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Then {xn} converges strongly to a common fixed point of the mappings
{T1, T2, . . . , TN , S1, S2, . . . , SN} in K if and only if lim infn→∞ d(xn, F ) = 0,
where d(x, F ) = inf{‖x− y‖ : y ∈ F}.

Proof. The necessity of Theorem 2.5 is obvious. So, we will prove the suffi-
ciency. Assume that lim infn→∞ d(xn, F ) = 0. Taking the infimum over all
q ∈ F in (2.4), we have

d(xn+1, F ) ≤ [1 + (kNn h
N
n − 1)]d(xn, F ) +R

N∑
k=1

∥∥∥u(k)n ∥∥∥+R(sn + tn).

By using the conditions (i) - (iii) and Lemma 1.2, we know that limn→∞ d(xn, F )
exists and so limn→∞ d(xn, F ) = 0.

Now, we show that {xn} is a Cauchy sequence in K. In fact, letting bn =

(kNn h
N
n −1), cn = R

{∑N
k=1

∥∥∥u(k)n ∥∥∥+sn+tn

}
in (2.4). For any positive integers

m,n, m > n, from 1 + x ≤ ex for all x ≥ 0 and (2.4), we have

‖xm − q‖ ≤ (1 + bm−1) ‖xm−1 − q‖+ cm−1

≤ ebm−1 ‖xm−1 − q‖+ cm−1

≤ ebm−1 [ebm−2 ‖xm−2 − q‖+ cm−2] + cm−1

≤ e(bm−1+bm−2) ‖xm−2 − q‖+ ebm−1cm−2 + cm−1

≤ e(bm−1+bm−2) ‖xm−2 − q‖+ ebm−1 [cm−2 + cm−1]

≤ . . .

≤
(m−1∑
k=n

ebk
)
‖xn − q‖+

(m−2∑
k=n

ebk
)m−1∑
k=n

ck

≤
(m−1∑
k=n

ebk
)
‖xn − q‖+

(m−1∑
k=n

ebk
)m−1∑
k=n

ck

≤ Q ‖xn − q‖+Q

∞∑
k=n

ck,

where Q =
∑∞

n=1 e
bk . Thus for any q ∈ F , we have

‖xm − xn‖ ≤ ‖xm − q‖+ ‖xn − q‖

≤ (1 +Q) ‖xn − q‖+Q

∞∑
k=n

ck.

Taking the infimum over all q ∈ F , we obtain that

‖xm − xn‖ ≤ (1 +Q)d(xn, F ) +Q

∞∑
k=n

ck.
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It follows from
∑∞

n=1 cn <∞ and limn→∞ d(xn, F ) = 0 that {xn} is a Cauchy
sequence, K is a closed subset of E and so {xn} converges strongly to q0 ∈ K.
Further, F (Ti) and F (Si) (i = 1, 2, . . . , N) are closed sets, and so F is a
closed subset of K. Therefore, q0 ∈ F , that is, {xn} converges strongly to
a common fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN} in K.
This completes the proof. �

A family {Ti : 1, 2, . . . ,m} of m self-mappings of K with F =
⋂m
i=1 F (Ti) 6=

∅ is said to satisfy condition (B) [1] K if there is a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) and such
that max1≤i≤m

{
‖x− Tix‖

}
≥ f(d(x, F )) for all x ∈ K.

As an application of our Theorem 2.5, we establish another strong conver-
gence result as follows.

Theorem 2.6. Under the assumptions of Lemma 2.4, if the family {T1, T2,
. . . , TN , S1, S2, . . . , SN} satisfies condition (B). Then {xn} converges strongly
to a common fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}.
Proof. By Lemma 2.4, we know that limn→∞ ‖xn − Sixn‖ = 0 and limn→∞
‖xn − Tixn‖ = 0 for all i ∈ I, and so max1≤i≤N

{
‖xn − Sixn‖ , ‖xn − Tixn‖

}
→ 0 (n→∞). It follows from the condition (B) that limn→∞ f(d(xn, F )) = 0.
By the proof of Theorem 2.5, we know that limn→∞ d(xn, F ) exists. Since
f : [0,∞)→ [0,∞) is a nondecreasing function with f(0) = 0 and so limn→∞
d(xn, F ) = 0. By Theorem 2.5, {xn} converges strongly to a common fixed
point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}. This completes the
proof. �

Remark 2.7. Since a nonexpansive and an asymptotically nonexpasive map-
pings with F (T ) 6= ∅ are asymptotically quasi-nonexpasive mappings and
hence generalized asymptotically quasi-nonexpasive mappings. Theorem 2.6
improves and generalizes Theorem 2.2 in [1] and Theorem 1 in [19].

Theorem 2.8. Under the assumptions of Lemma 2.4, if there exists a Ti or
Si, i ∈ I, which is semi-compact. Then {xn} converges strongly to a common
fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}.
Proof. Without loss of generality, we can assume that T1 is semi-compact.
From Lemma 2.1 we know that the sequence {xn} is bounded and limn→∞
‖xn − Sixn‖ = 0 and limn→∞ ‖xn − Tixn‖ = 0 for all i ∈ I by Lemma 2.4.
Since T1 is semi-compact and limn→∞ ‖xn − T1xn‖ = 0, there exists a subse-
quence {xni} ⊂ {xn} such that xni → x∗ ∈ K as i→∞. Thus

‖x∗ − Tix∗‖ = lim
i→∞
‖xni − Tixni‖ = 0
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and

‖x∗ − Six∗‖ = lim
i→∞
‖xni − Sixni‖ = 0

for all i ∈ I. Which implies that x∗ ∈ F =
⋂N
i=1 F (Si) ∩ F (Ti) and so

lim infn→∞ d(xn, F ) ≤ lim infi→∞ d(xni , F ) ≤ limi→∞ ‖xni − x∗‖ = 0. It fol-
lows from Theorem 2.5 that {xn} converges strongly to a common fixed point
of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN} in K. This completes the
proof. �

Remark 2.9. Since an asymptotically nonexpasive mappings with F (T ) 6= ∅
is an asymptotically quasi-nonexpasive mapping and hence generalized asymp-
totically quasi-nonexpasive mappings. Theorem 2.8 improves and generalizes
Theorem 2.3 in [1].

3. Weak convergence theorems

In this section, we prove weak convergence theorems of the iteration scheme
(1.7) and (1.8) in uniformly convex Banach spaces.

Theorem 3.1. Under the assumptions of Lemma 2.4, if E satisfying Opial’s
condition. Assume that the mappings I − Si and I − Ti for all i ∈ I, where
I denotes the identity mapping, are demiclosed at zero. Then {xn} converges
weakly to a common fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}.

Proof. Let q ∈ F , from Lemma 2.1 the sequence {‖xn − q‖} is convergent and
hence bounded. Since E is uniformly convex, every bounded subset of E is
weakly compact. Thus there exists a subsequence {xnk

} ⊂ {xn} such that
{xnk

} converges weakly to q∗ ∈ K. From Lemma 2.4, we get that

lim
n→∞

‖xnk
− Sixnk

‖ = 0 and lim
n→∞

‖xnk
− Tixnk

‖ = 0

for all i ∈ I. Since the mappings I −Si and I − Ti for all i ∈ I are demiclosed
at zero, therefore Siq

∗ = q∗ and Tiq
∗ = q∗, which means q∗ ∈ F . Finally, let

us prove that {xn} converges weakly to q∗. Suppose on contrary that there
is another subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly to
p∗ ∈ K and q∗ 6= p∗. Then by the same method as given above, we can
also prove that p∗ ∈ F . From Lemma 2.1 the limits limn→∞ ‖xn − q∗‖ and
limn→∞ ‖xn − p∗‖ exist. By virtue of the Opial condition of E, we obtain

lim
n→∞

‖xn − q∗‖ = lim
nk→∞

‖xnk
− q∗‖

< lim
nk→∞

‖xnk
− p∗‖ = lim

n→∞
‖xn − p∗‖ = lim

nj→∞

∥∥xnj − p∗
∥∥

< lim
nj→∞

∥∥xnj − q∗
∥∥ = lim

n→∞
‖xn − q∗‖
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which is a contradiction so q∗ = p∗. Thus {xn} converges weakly to a common
fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}. This completes
the proof. �

Lemma 3.2. Let E be a real uniformly convex Banach space and K be a
nonempty closed convex subset of E with K +K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1
: K → K be 2N uniformly L-Lipschitzian generalized asymptotically quasi-
nonexpansive mappings with sequences {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂
[0,∞) given in Proposition 1.5 and F =

⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn} be

the sequence defined by (1.8), where {α(i)
n } ⊂ [a, 1− a] for some a ∈ (0, 1) and

all i ∈ I with the following restrictions:

(i)
∑∞

n=1(knhn − 1) <∞;
(ii)

∑∞
n=1 sn <∞,

∑∞
n=1 tn <∞.

Then limn→∞ ‖txn + (1− t)p− q‖ exists for all p, q ∈ F and t ∈ [0, 1].

Proof. By Lemma 2.1, we know that {xn} is bounded. Letting

an(t) = ‖txn + (1− t)p− q‖

for all t ∈ [0, 1]. Then limn→∞ an(0) = ‖p− q‖ and limn→∞ an(1) = ‖xn − q‖
exists by Lemma 2.1. It, therefore, remains to prove the Lemma 3.2 for t ∈
(0, 1). For all x ∈ K, we define the mapping Tn : K → K by

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn,

Tn(x) = α(N)
n TnNx

(N−1) + (1− α(N)
n )SnNx.

It is easy to prove

‖Tnx− Tny‖ ≤ un ‖x− y‖+ c′n, (3.1)

for all x, y ∈ K, where c′n = R(sn + tn), un = (1 + bn) and bn = (kNn h
N
n − 1)

with
∑∞

n=1 c
′
n <∞,

∑∞
n=1 bn <∞ and un → 1 as n→∞. Setting

Sn,m = Tn+m−1Tn+m−2 . . . Tn, m ≥ 1 (3.2)

and

bn,m = ‖Sn,m(txn + (1− t)p)− (tSn,mxn + (1− t)Sn,mq)‖ . (3.3)
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From (3.1) and (3.2), we have

‖Sn,mx− Sn,my‖ ≤ un un+1 . . . un+m−1 ‖x− y‖+

n+m−1∑
i=n

c′i

≤
( n+m−1∏

j=n

uj

)
‖x− y‖+

n+m−1∑
i=n

c′i

= Ln ‖x− y‖+
n+m−1∑
i=n

c′i (3.4)

for all x, y ∈ K, where Ln =
∏n+m−1
j=n uj with Ln → 1 and Sn,mxn = xn+m,

Sn,mp = p for all p ∈ F . Thus

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ bn,m + ‖Sn,m(txn + (1− t)p)− q‖

≤ bn,m + Lnan(t) +
n+m−1∑
i=n

c′i. (3.5)

By using
[
[4], Theorem 2.3

]
, we have

bn,m ≤ φ−1(‖xn − p‖ − ‖Sn,mxn − Sn,mp‖)
≤ φ−1(‖xn − p‖ − ‖xn+m − p+ p− Sn,mp‖)

≤ φ−1
(
‖xn − p‖ − (‖xn+m − p‖ − ‖Sn,mp− p‖)

)
, (3.6)

and so the sequence {bn,m} converges to 0 as n → ∞ for all m ≥ 1. Thus,
fixing n and letting m→∞ in (3.5), we have

lim sup
m→∞

an+m(t) ≤ φ−1
(
‖xn − p‖ −

(
lim
m→∞

‖xm − p‖ − ‖Sn,mp− p‖
))

+Lnan(t) +
n+m−1∑
i=n

c′i, (3.7)

and again letting n→∞, we obtain

lim sup
n→∞

an(t) ≤ φ−1(0) + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is,

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1]. This completes the proof. �
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Theorem 3.3. Let E be a real uniformly convex Banach space such that its
dual E∗ has the Kadec-Klee property and K be a nonempty closed convex
subset of E with K +K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N uniformly
L-Lipschitzian generalized asymptotically quasi-nonexpansive mappings with
sequences {kn}, {hn} ⊂ [1,∞) and {sn}, {tn} ⊂ [0,∞) given in Proposition

1.5 and F =
⋂N
i=1 F (Si)∩F (Ti) 6= ∅. Let {xn} be the sequence defined by (1.8),

where {α(i)
n } ⊂ [a, 1 − a] for some a ∈ (0, 1) and all i ∈ I with the following

restrictions:

(i)
∑∞

n=1(knhn − 1) <∞;
(ii)

∑∞
n=1 sn <∞,

∑∞
n=1 tn <∞;

(iii) ‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i ∈ I.

If the mappings I − Si and I − Ti for all i ∈ I, where I denotes the identity
mapping, are demiclosed at zero. Then {xn} converges weakly to a common
fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}.

Proof. By Lemma 2.1, we know that {xn} is bounded and since E is reflexive,
there exists a subsequence {xnj} of {xn} which converges weakly to some
p ∈ K. By Lemma 2.4, we get that

lim
n→∞

∥∥xnj − Sixnj

∥∥ = 0 and lim
n→∞

∥∥xnj − Tixnj

∥∥ = 0

for all i ∈ I. Since the mappings I−Si and I−Ti for all i ∈ I are demiclosed at
zero, therefore Sip = p and Tip = p for all i ∈ I which means p ∈ F . Now, we
show that {xn} converges weakly to p. Suppose {xni} is another subsequence
of {xn} converges weakly to some q ∈ K. By the same method as above, we
have q ∈ F and p, q ∈ ww(xn). By Lemma 3.2, the limit

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1] and so p = q by Lemma 1.4. Thus, the sequence {xn}
converges weakly to p ∈ F . This completes the proof. �

Remark 3.4. Since a nonexpansive and an asymptotically nonexpasive map-
pings with F (T ) 6= ∅ are asymptotically quasi-nonexpasive mappings and
hence generalized asymptotically quasi-nonexpansive mappings. Theorem 3.3
improves and generalizes Theorem 3.2 in [1] and Theorem 2 in [19].

Example 3.5. Let E = [−π, π] and let T be defined by

Tx = x cosx

for each x ∈ E. Clearly F (T ) = {0}. T is a quasi-nonexpansive mapping since
if x ∈ E and z = 0, then

‖Tx− z‖ = ‖Tx− 0‖ = |x||cos x| ≤ |x| = ‖x− z‖ ,
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and hence T is generalized asymptotically quasi-nonexpansive mapping with
constant sequences {kn} = {1} and {sn} = {0}. But it is not a nonexpansive
mapping and hence asymptotically nonexpansive mapping. In fact, if we take
x = π

2 and y = π, then

‖Tx− Ty‖ =
∥∥∥π

2
cos

π

2
− π cos π

∥∥∥ = π,

whereas

‖x− y‖ =
∥∥∥π

2
− π

∥∥∥ =
π

2
.

Example 3.6. Let E = R and let T be defined by

T (x) =

{
x
2 cos

1
x , if x 6= 0,

0, if x = 0.

If x 6= 0 and Tx = x, then x = x
2 cos

1
x . Thus 2 = cos 1

x . This is imposssible.
T is a quasi-nonexpansive mapping since if x ∈ E and z = 0, then

‖Tx− z‖ = ‖Tx− 0‖ = |x
2
||cos 1

x
| ≤ |x|

2
< |x| = ‖x− z‖ ,

and hence T is generalized asymptotically quasi-nonexpansive mapping with
constant sequences {kn} = {1} and {sn} = {0}. But it is not a nonexpansive
mapping and hence asymptotically nonexpansive mapping. In fact, if we take
x = 2

3π and y = 1
π , then

‖Tx− Ty‖ =

∥∥∥∥ 1

3π
cos

3π

2
− 1

2π
cos π

∥∥∥∥ =
1

2π
,

whereas

‖x− y‖ =

∥∥∥∥ 2

3π
− 1

π

∥∥∥∥ =
1

3π
.

4. Conclusion

By Remark 1.1 it is clear that if F (T ) is nonempty, then nonexpansive
mapping, asymptotically nonexpansive mapping and asymptotically quasi-
nonexpansive mappings are the special cases of generalized asymptotically
quasi-nonexpansive mappings, thus our results are good improvement and
generalization of corresponding results of [1, 19] and many others from the
existing literature.
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