Convergence of Double Fourier Series (¥).

Frep Ustina (Edmonton, Canadaj (*%)

Summary. - Let a 2rn-periodic function f(x, y) be continuous in some neighbourhood of the point
{(x, ¥} except possibly alonyg finitely many lines 1,, U, ..., I, terminating at (x, y). The
problem of convergence of the Fourier sevies of f(x, y} at the poini (x, y) is examined
in some detail. It is established that wunder cerfain restrictions on the variation of
flx, y), and also on the lines 1,, 1y, ..., 1, the fourier series converges to a value bounded
above by the limit superior, and below by the limii inferior of fix 4-u, y+v), w, v— 0,
this value depending on the manner in which the series is summed.

1. - Preliminary Remarks.

The problem of convergence of the double FOURIER series of a function
f(x, y) at a point has been investigated by a number of authors but at the
present time it is still lacking a complete solution. For some of the results
on this topic, the reader is referred to the works of G. H. Harpy [7], L. To-
NELLI [10] and [11}, and E. W. HoBsox [8]. In this paper, we extend some
of these known results. In particular, all of the results referred to require
the existence of f(z+, y+), fl@t, y), f@—, y+) and f@@=, y-) for convergence
at the point (x, g), and thus require that in some neighborhood of this
point, the fanction is coninuous except possibly along lines through this
point, parallel to the coordinate axes. We remove this restriction and relax
somewhat the definition of bounded variation in a neighborhood of this point.

This same problem is pretty well solved in the one dimensional case,
and many of the results may be found in any standard treatise on the
subject. Among these may be mentioned the works of N.K. Bary [1], and
A. ZyemuND [13]. Some of the results carry over from the one dimensional to
the two dimensional case in a very obvious manner. Others, however, are
much more difficult to establish because of the greater amount of work
involved, and also because, for instance, in going to two dimensions, the
definition of bounded variation loses its uniqueness. Some of the ways in
which this concept may be defined can be found in a paper by O.R. ADAMS
and J. A, CLARksoN [5].

(*) The preparation of this paper was financed, in part, by a Canadian Mathematical
Congress Summer Research Grant (1968},
(**) Entrata in Redagione il 8 febbraio 1969.
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2, - Some Preliminary Definitions.

In the sequel, a rectangle with vertices at {a, ¢), (b, ¢), (a, d) and (b, d),
a<b c<d, is denoted by [b, d; a, ¢|, and in particular, for a fixed point
@ @), we let I=1I, y)=[x+rw y+=; o—mn y—r] Ilx; 3)=[x+7?,
y+n; x—8 y—m=), Ily; H=x+=n y+92; x—1xn y—2, and N =
= M, y); 8= Iw; & U Iy: 8, so that N is a cross-neighborhood of the
point (x, ). Also, we let ftb, d; a, ¢)=f(b, d)— fla, d)— [, ¢)+ fla, ).

Let B =1{b, d; a, ¢]. For fixed y, ¢ < y=<d, the total variation of f(x y),
considered as a function of » on [a, 6] is denoted by V{flx); y, B), with
Vif(y): «, R) defined in a similar manner. Occasionally it will be convenient
to consider these total variation functions over a poinft set consisting of a
single line, say the line joining the points (@, ) and («/, y) in the case of
V(f@); ¥, B). In such a case we use the notation V(fx); y, [a, ¥']) or V(f(x);
¥, (a, «')), depending on whether or not the end points are included.

A funefion f(x, %) is said fo be of bounded variation in the ToNELLI
sense on a rectangle B =[b, d; a, c] it V(f(x); y, B) and V{f(y); », B) exist
for almost all x, respectively for almost all y, and if the infegrals

b d

f V(y); %, R, f Vif@); y, By

a c

exist in the LEBESQUE sense. This definition is extended to any open or
closed irregularly shaped region in an obvious manner. First, let E be any
closed region bounded by a simple, closed path. For each real constant c,
the line y = ¢ interseets B on a set of at most countably many eclosed
intervals 7;, and for each g, let

Vifi); y, B)=ZV(f(x); 9, L).
In a similar way, let

Vify); ©, By=%V({fy); =, I).

1t V(fla); y, B) and V(f(y); «, B) exist for almost all y, respectively for
almost all o, and if the integrals

f Vifty); %, Rylw, f View); v, By,
2 B
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where a = {x:Hy and (@, y)e R and B={y:Ha and (¥, y)e R}, exist in
the LEBESGUE sense, then f(x, %) is said to be of bounded variation in the
TONELLI sense on R.

This definition is extended to the case where E is not closed by defining
Vif(x); y, I) as the supremum over Ii of V{f(x); y, I), where I is any
closed interval in I,. V(f(y); =, I) is defined in a similar manner. We use
this general form of definition of bounded variation in the ToNELLI sense
in the sequel. Furthermore, we will say that f(x, y) is of bounded variation
in the restricted TONELLI sense, or more simply of bounded variation 7 on
R if, in addition, the families { V(f(x); y. R)} and { V(f(y); =, R)} are bounded
uniformly for almost all y, respectively for almost all @, on R. Of course,
we are mainly concerned with the behavior of the FOURIER coefficients, and
since these do not change with a change of the function on a set of measure
zero, we may equally well assume that the families { V(f(x); y, E)} and
{ V(f(y); =, R)} are boanded uniformly whenever f(x, y) is of bounded variation
T on B.

For an example of a function which is of bounded variation in the
ToNELLI sense but not of bounded variation T on a region R, let E=[1,1; 0,0]
and let flx, y) = 1/(x*? 4 y'2) if x +9y=+=0, and let f(0, 0)=0. It is easily
seen that f(w, y) is such a funcfion.

Now suppose that V(f(y); x, R) exists for almost all x and the integral

[ vew; « R

o

exists in the LEBESGUE sense, where « is defined as before. If nothing is
assumed about the set { V(f(x); y, R)}, f(®, y) will be said to be of bounded
variation in the TONELLI sense with respect to y on K. If in addition the
tamily { Vif(y); =, R)} is bounded uniformly for almost all x, then flx, )
is said fo be of bounded variation in the restricted TONELLI sense with
respect to ¥ on K, or more simply of bounded variation 7' with respect to
y on R. Bounded variation with respect to & on E is defined in a similar
manner.

3. - Convergence of Double Fourier Series at a Point.

Before stating the main result of this paper, we define an integral which
we express as a function ¢(0).

3.1) DeFinitioN. - Let BE(6) be the region bounded by the positive u-axis,
a ray from the origin making an angle 6 with the positive u-axis, and the
boundary of the rectangle [a, b; — a, — b].
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Then
gin # sin v

p(0) = lim du dv, a, b—co,

R(6)

That ¢(0) exists for every real value of 0 and that it is a continuons
function of 6 follows at once from Lemma 1 of Section 5. We use it in
proving our main result:

(3.2) THEOREM. - Let R=[x+ 8, y+8; ® — 8, y—2&], > 0, and let the
k non-intersecting paths to the point (x, y), &, &, .., &, ht1 =104 divide B
into & open regions B;, ¢ =1, 2, ..., k, all enumerated in a counter-clockwise
sequence with E; bounded by &4, /.y, and the boundary of R. Suppose that
for each ¢, I; has a limiting angle of approach to the point (x, y), say b,
0<8; < 2r, and suppose there exists an integer % such that an arbitrary
horizontal or vertical line crosses I, i==1, 2, ..., k, at most %' times. If a
2n-periodic function f(x, y) is absolutely integrable on I, if in the cross-
neighborhood of (x, y), N=N(, g); 8 = Ix; & U I(y; ), fx, y) is of
bounded variation T with respect to y on I(x; 8) and with respect to x on
I(y; 2), and if f(x, y) is continuous at every point of each open region E;
with sup { V(f(®); y, B)}—0 and sup { V(f(y); =, B)}—>0 as 3 -0, then,
holding p/q constant, the mn — {h partial smms s..(x, y) of the Fourier
geries of f(x, y) converge fo

wfr + usfs 4 ...+ wifi,
where
u; = (1/n%) { ¢(tan—Yg/p tan 6;1.)) — @(tan—(g/p tan 6))}
fi=lim f(x + u, y 4 v), u,v—->0, (90+M,?/+@)€Ri
M1+M2+...+’Mk:1
2p = 2m 4 1, 2¢ = 2n + 1,

tan—Yg/p tan 0) being taken in the same quadrant as 9. In particular, if
2m 4 1 = 2n + 1 as m, n - co, then

u; = (1/7%) { p(Bipa) — (6 |, i=1, 2, .., k

Furthermore, u; is independent of p/q if for some integer k", ¥ =0, 1, 2, 3,
8, = k'n/2 and 6, = (" + U)n/2, provided that for some fixed but otherwise
arbitrary &, 0 <e< 1, we have 1/e=p/q=¢ and in this case u; = 1/4.
If, in addition, /; and /4, are rays from fthe point (x, ¥), each of which is
parailel to one of the coordinate axes, and if f(x, y) is also of bounded
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variation T with respect to y on I(y; 8), then the right hand restriction on
p/q is removed. If it is also of bounded variation I with respect to 2 on
I(x; ), then the left hand restriction on p/q is removed also.

(x+my+m)

Ily;8)

4. - Examples and Remarks.

In general, under the hypothesis of the theorem, the restriction on p/q
cannot be removed. For let glx) =0, —n <2 <0, glx)=1, 0 <x < m and
let h(x) be a continuous function with period 2n whose FOURIER series
diverges to infinity at a point &', — = <’ < 0.

The FoURIER series of the function

fle, y) = g@h(y) + gy)h(x)

diverges at every point (@, ¢) and (#, «), and in particular, at the point
(x', «) in the square S = (0, 0; — =, — =), over which the function is identically
zero. On the other hand, for every point (x, y)€ S, all the conditions of the
theorem are satisfied, so that we have convergence to the function value
zero at each point in S provided that for some arbitrary, fixed ¢, 0 <e <1,

l/ez=p/g=¢e, m, n—occ.

dnnali di Matematica 4
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If we let f(x, y) = gl®)h(y), then the Fourisr series of f(x, y) converges
at every point of the rectangle (0, n; — =, — =) provided that p/q =e. If
f(x, ) = k(x)g(y), then we have convergence at every point of the rectangle
(z, 0; — =, — =) provided that 1/¢=p/q. Finally, if f(x, y)= glx), then
f(oe, ) is of bounded variation I' with respect to both variables in I, and
the FOURIER series converges with the restriction on p/g removed entirely.

Since the coefficients u;, ¢ =1, 2, ..., k, are functions of ¢/p, it follows
that the particular value to which the FOURIER series converges depends on
what value of p/q we choose, or to put in another way, it depends on the
ray along which we sum the FoURIER series. This dependence can be shown
directly in the case of some simple functions. We give two examples to
illustrate the point.

ExamMprLE L. - Let fle, y) = 1, (x, y)e B = [ (x, ):0 <y <x and O < < w},
let f(r, ) =0, (x, y)¢ R, and let f(x, y) be periodic with period 2rx in each
variable. The mn-th partial sum of the FOURIER series of f(x, ¥), sn.lx, %),
evaluated at (0, 0) is given by

sin pu sin qv

o dudv -+ o(1)

8n, 20, 0) = 1/r2f fku

—iT, —T

= 1/n jsmpﬂ smqu udv + o(1)

- (1/n%)p(tan~Xg/p),  m, m—oo,  p/g fixed,

since the transformation ' = pu, v' == gv carries the line v == u into the line
v = (g/pw. If we let p/g =1, then 8,0, 0) — 1/n%¢(n/4) = 1/8, m, n— oo.
On the other hand, if p/g = ¢, then 8,0, 0) =0, ¢ —> o0 and 8.0, 0) — 1/4,
e —>0, as m, n »>oco. The geomefric interpretation in this case is obvious.

ExamprLe 2. - Suppose ¢ 0 <e <1, is given and suppose that in
I=|n, 7; —=w, — =}, fle, y) = 1 on the region B = {(x, y):1e <|y/x| < 1/e},
and f(x, ¥) = 0 otherwise. Geometrically, the region E is swept out by a
line through the origin as this line swings from an angle of tan—'¢ to an
angle of tan—'!/e, and again as it swings from an angle of n/2 4 fan—e
to an angle of n/2 4~ tan—'1/e, all relative to the positive x-axis. As before,
we have
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TR

$nal0, O) = l/fczf flu, v)

=TTy T

sin pu sin gv

5 dudv - o(1)

= l/nzjgm i dudv 4+ o(1)
u v
R

—4/7 [ gltan~! q¢/pe) — (tan~ ge/p)}, P, g >0,

since (0" 4 kn/2) — ¢(0 + kn/2) = ¢(8") — 9(0), E=0, =1, =2, ... Now
let p, g — oc. 1f at the same time, p/g—0 or ¢/p—0, then s,.0, 0)—0,
and this is independent of the value & 0 < ¢ <1, that we choose. On the
other hand, if p/¢g=1 as p, ¢ o0 then s,.(0, 0)— 4/n%{ ptan—1/¢)
— p(tan—e) == 0, and in this case we also have that s..(0, 0) =1, p/g=1,
P, g —>o0, ¢ -3 0. In this case we note that the area of R, the area on which
fle, ) = 1, tends to the area of I as ¢— 0.

Finally, we remark that the function ¢(6) is monotonically increasing
with 6 for 6 > 0. Thus, the constants u;, ¢ =1, 2, ..., £ are all positive,
with the obvious implication that under the conditions of the theorem, the
FoURIER series converges to some value in the interval [m, M), where M
and m are, respectively, the maximum and the minimum of the set of values
[Fri=1,2 ., k).

5. - Some Prelimiuary Lemmas,

To expedite the proofs of our results, we prove a few lemmas. The point
of departure for our work is the function ¢() defined in §3. We content
ourselves here by proving the continuity of ¢(9). That it exists for every
choice of 6, — co <8 << oo, can be shown by a modification of the proof of
continuity, if such a proof should be required, but on the other hand, it is
an immediate corollary of Lemma 1.

(6.1) LeEmMMA 1. - Let E®) be a region in the wuwv-plane bounded by the
positive w-axis, a ray from the origin making an angle 0§ with the positive
u~-axis, and the boundary of the rectangle [a, b; —a, —b], @ >> 0, b > 0. Lef

sin # sin v
o duduy, a, b — co.

R(6)

The function ¢(0) is a continuous function of 0 with ¢kn/4)=|k|n?/8,
k=0 =1, 2 £3, ...



28 F. UsTiNa: Convergence of Double Fourier Series

Proor. - The numerical values of ¢(6) follow immediately on applying
0% G = n/2, and noting that the integrand is an

the known resuit that f

even function in each gariable, glr/4) = 1/2¢(r/2), and for 6 > 0, ¢{6 + =n/2) =
9(8) + n?/4. It remains to prove the continuity of ¢(8), and it is sufficient
to prove it for 0 < 6 < /2.

First consider the interval (0, m/4] and let &, 6” be such that 0 <9,
6" < n/4. Let G be the region in the uv-plane bounded by the rays v = u
tan ' and v = u tan 0” from the origin, and let @ be otherwise unbounded.
Then

o) — o0 = [ 2 02 duay

Let
Y{u, v) = sinu sin v, (u, vje @
=0, (w, v) ¢ G.
Then
5.2) [ 9l0) —9(@) | = (— 1j+uti, j)|
where
Y, v)

dudv.

uth J) :0 o(u + in)(v + jr)

jee]
Summing first by rows, it is clear that the sum X (— 1jbu(i, j) does not
exceed in absolute value the integral =

=]

T

sinu sinw

; — dudv,
w4 in v+ Jn

0,0

where the first square [(¢ 4 1), (j + l)=; ién, jn] in the j-th row, any part
of which belongs to G, is in the i-th column. For ¢ > 0, § > 0, this is bounded
by 4/(é=°), and sinee é>=j, this in turn is bounded by 1/42 If R is the
region bounded by the lines v=wutan¥, v =wtant” and v = nn, where n
is some positive integer, and if A(R) is the area of R, then

(6.3) | o(®) — o(8”) | US‘“’ S0 Y dudo| + 3 177

]—ﬂ

AR+ E 1/7%

,(=n
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Given any ¢ > 0, » many be chosen large enough so that the contribution
of the sum on the right does not exceed ¢/2. On the other hand, 4A(E)— 0
as 8> 6" or as 6”5 §'. Thus, for &' and §” near enough, 4(R) <¢/2, so that
for some & > 0,

lol0) — 9(87) | <e, |0 —08"|<d  0<b, 0" <n/4

This proves continuity of ¢{8) over the interval (0, =/4].

Continunify of ¢(6) over the interval [n/4, n/2) is proved in exactly the
same manner except the region B is taken to be the region bounded by the
lines v = uwtan ¢, v = utan 6" and » = nw, and the summation on the right
in (5.2) outside of R is performed first along the columns to obtain the
analogue of (5.3),

L(6) — o(8") | < A(R) + E 1/

Since o(B) = n?/4 — ¢(r/2 — 0), to complete the proof of the lemma, we
need only consider the case where one of ¢, 67, say 6", equals =/2, and
8 — 6", 8 < 6”. Here the region G is bounded by the positive v-axis, and
the ray from the origin v =wu tan®, and is otherwise unbounded, and R is
bounded by these same two rays and the line v = nm.

With u(é, §) defined as in (5.2), let # be fixed and let k = [nn tan 0]
As before, we get

54 [9(e/2) — o) | =1 & (— 1f+ul, )|
< AB)+| 5 (—1p¥uli, ),

where the summation with respect to j now runs from = to oo.
To estimate the last sum, perform the summation by columns and obtain

@ . 71;STirnu sin v
— 4 iV <<
§§( 1yu(0, j)| _f W o+ dudv
8,0
< 2/n.

T .
sin # s v

0,0

E

148

<1fin, i=1,28, .,k
< Uin <12, >k
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where for ¢ > k, the first square [(¢ - L)%, (j 4 ljn; ém, jn] in the {~th column,
any part of which belongs to G, is in the »n'-th row. Since we may clearly
assume that 6 > =n/4, it follows that %' =4, from which we get the last
inequality. Then from (5.4}, we get

[ 9(/2) — 9061 < A(R)+ 1/m (24 D 1/i] + S 1728

Note that the right hand side above is also a uniform bound for the left
hand side of the inequalities for all angles § such that ¢ <6 < =n/2, for by
increasing 0’ in this range, A(E) is diminished, and the contribution of the
[ee]
sum X (— 1)+Hu(é, j), =1, 2, 3, ..., does not increase in absolute value.
j=n

[00]
Let ¢ >0 be chosen and fix £ so that ¥ 1/ < ¢/3. Now choose n so
k k
that 1/n {24 2 1/i} <<e/3. Then for all 6 such that [tan 8] =%, we have
1

| 9(m/2) — o(t) | < A(R) + 2¢/3.

Let & — n/2. Then A(R)—> 0, and so for all & large enough, A(R) < ¢/3,
and for all such 9,

L lm/2) — o) | <e.
This completes the proof of the lemma.
{8.5) CoroLLARY. - Let R be a region in the wv-plane bounded by the

rays v =wntan 6 and v =wutan0’, #” > ¢, and let E be unbounded otherwise.
Then

u(R) = f su;u Sl: Y dudv
R

oxists ag a finite, real number.

Proor.

{5.6) REMARRS. - It is clear that ¢(f) = O(f). Also ¢(6) is monotonically in-
creasing for 6 > 0 as already indicated.

2.7) LemMMA 2. - Let ' be a continuous path in the wv-plane, terminating
at the origin, and let § be the limiting angle of approach of I’ to the origin.
Suppose also that there exists an infeger k' such that any line I parallel to
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either coordinate axis will cross /' at most £’ times. If +" is the ray v = u tan ¢/,
and R’ is the region lying on one side of +' and bounded by ¥, + and the
boundary of the square S=1[8, &; — 8, — &], then

sin py sin qu
u v

dudv =o(l), 50, 1/e=p/q=ce,

R

where ¢ is arbitrary bat fixed, 0 < e <1, and the ofl) term fends to zero
with 3, uniformly in p/q.

(5.8) ReEMARKS. - In general, there will be two such regions, one on each
side of the ray 7.

1f R’ is contained in the interior of two adjacent quadrants, then clearly
r' is in one of these quadrants. Since /' has a limiting angle of approach to
the origin, & can be chosen small enough so that I, and so also R, must
eventually be contained in one quadrant. Thus we assame that R’ is already
contained in some one quadrant.

It R is in some quadrant other than the first, then we can reflect it
in a suitable manner about the appropriate coordinate axes, and reduce the
proof of the lemma to a region B’ in the first quadrant. This can be done
without penalty since the infegrand is an even funection in each variable.

Hence we assume that R is already in the first quadrant.

Proor. — Suppose first that 6 = n/2 so that »' coincides with the positive
v-axig, and R is in the first quadrant. Let » be the ray v — utanf, termi-
nating at the origin, touching 7' at least at one point distinct from the origin
in the interior of S=1[3, &; — 5, — 8], and such that /', restricted to S, lies
entirely on one side of #. Since I’ has a limiting direction of approach to
the origin, it follows that 6 —>=n/2 as & — 0.

Since 1/e=p/q==e¢, the transformations # =pu, v =qgv map the
coordinate axes into the coordinate axes, the path /' into some new path,
and the ray » into a new ray ¢ = u'(g/p)tan6 = u'tan . Because of the
restriction imposed on p/g, the minimum value that ¢/p can take on is e,
so that the minimum slope the transfoimed ray will have is etanf. Since
0—5n/2 as &0, it follows that the lower bound for the slope of the
transformed ray may be taken arbitrarily large by choosing & small enough.

Proceeding as in the proof of Lemma 1, let G be the region bounded
by the positive v~axes, the transform of the path 7/, and the boundary of
the transform of [3, 2; 0, 0]. That is, G is the transform of the region R’
under the transformation u' = up, v' = qv. Let B be that part of G below
the line v = nrn, where n is some integer. Then
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(5.9) ‘fsmpu sin qu dudvl:lfsmu sinv o o
S w v J w v

<AR)+W¥/n(24+31/i)+ ¥ T 1/2,
1 k

where k = [tan ¢] and the factor X’ appears because of the assumption that
a vertical or horizontal line will eross 7' at most % times. Since % is fixed,
choose k large enough so that for a given ¢ >0, the contribution of the
last term on the right in (5.9) does not exceed ¢'/3. Now choose # so that
the middle term does exceed ¢'/3, and choose ¢ so that [tan ¢]= k. This can
always be done since tan ¢ = ¢/ptan 0 =ctanb, so that ¢ —>=n/2 as § — n/2,
and so as 5 — 0.

Now choose 8 so small so that A(R) < ¢'/3. The left side of (5.9} then
does mnot exceed ¢'/3 -+ ¢/3 4 ¢ /3 =¢, proving the lemma for the case
considered.

The case where 6’ =0 and R is along the upper side of the positive
u-axis is proved in a similar manner.

To complete the proof, suppose that the ray 7, is oriented at some angle
0, 0 < § < n/2. With the ray r, v = utanf, as defined above, the transfor-
mation ' = pu, v/ = qv carries 7’ into the ray v = u'(¢/p)tan®, and r into
the ray ¢ = w'(q¢/p)tan 8. The maximum difference in the slopes of these
rays is 1/¢(tan 6 — tan 6), and since §— ¢ as 5 — 0, this difference tends to
zero with 2. .

Given ¢ > 0, choose & so that %’ % 1/é* < ¢ /4. Liet G be the transform

of the region R and let R be the part of G below the line v==%n or to
the left of the line w — krn, or both. Then

(5.10) U’ sin pu sin qv dudv;zfsmu sinv o
u v w
R/

v
G

< A(R) + 2 T 1/8,
k

where the factor &' again appears because of the assumption that a horizontal
or vertical line will cross I’ at most % times, and the factor 2 appears
because a part of G may fall above and a part below the main diagonal in
the transformed plane. The integral over the part of G in the complement
of R is taken over individual squares of the type [(¢ 4 1), (j + l)m; i=, jx),
and the contributions over such squares are summed by columns above the
main diagonal and by rows below the main diagonal.

The second term on the right in (D.10) does not exceed ¢'/2. Since
A(R)—>0 as 00, and so as 80, uniformly in p/q for 1/e =p/q=¢,
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?

it follows that under this restriction, the left hand side does not exceed ¢
if & is taken small enough, uniformly in p/q. This completes the proof of
Lemma 2.

(5.11) LemMMA 3. - Let R’ be a region in the axy-plane, bounded by two
non~intersecting paths I’ and !’ terminating at a point (x, y), and the boundary
of the neighbourhood § of (x, y), S=[x43, y+8; x — 2, y—2). Suppose
that ¢ and I” have limiting angles of approach to (z, y), say & and ©” respec-
tively, 6" > ¢, and there exists an integer % such that a horizontal or vertical
line will eross I or I” at most k' times. If flx, y) is defined, continuous and
of bounded variation T on R', and if sup{ V(f(x); y, B)} — 0 and sup { V(f(y);
x, B)} -0 as 8 -0, then

sin pu sin qv
u v

dudv

tim [ e+ 1, 9+ )

R

= wf + o(t),

where the limit is taken as p, ¢—> oo, p/g fixed, the ofl) term tends fo
zero with &, and

f=limfle+u y+v), uv-0, (@+u y+r)ek,

sin pu sin qu
v

w =1n(p/q, B)= limf dudv

R
= gltan—(q/p tan 1) — g(tan—g/p tan 0),
P, 4 —» o0,

the region R being the region bovnded by the rays v = utan ¢, v = utan ¢’,
and the boundary of the square [3, &; — 3, — 2]

Proor. - We identify the point (x, y) with the origin in the ww-plane,
making it convenient to identify a region R, having a prescribed configuration
relative to the point (x, y), with the region R in the wv-plane, having the
same configuration relative to the origin.

Assume that B’ is contained in the first quadrant. Then

Annali di Matematica 5
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sin pu sin QU
u

(5.12) f Floo -+, g o) SRPESIRQY g

R

mff:smpu sm(_}?)d dv
u
4

sin pu sin qv
u

+f{f(w+u, y+v)—1) dudv.

To estimate the first term, we draw the rays r, given by v=wutant, and
r’, given by v = u tan 6", in the uv-plane, and get at most four regions, say
Ry, R;, R{ and Ry, the first two being bounded by # and 7, and the last
two by ¢’ and 1", with R; and B/ on the clockwise side of ¢ and 7"
respectively, and R; and R: on the counter-clockwise side of + and +".
These regions are of the type described in Lemma 2, and we have

sin pu sin gu dudv
u v
%

_ (sin pu singv dude
o u v

=] ]+]

By Lemma 2, each of the last four infegrals is o{l}, 8 —» 0. Now let

sin pu sin gv
0 dudv.

' . sin pu sin qu
= w(p/g R)=hmf up U‘q dudv,  p, q —oo;

R

where p/q is held constant, and get

sin pu sin qu

(5.13) lim 77 f —

R’

dudv

=uf +o(l), p, g->o0,  p/q constant,

where the o{l) term tends to zero with 3.
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To estimate the contribution of the second term, set g{u, v} = flx + 4,
¥+ v)—f, and extend g(u, v) to the square 8§ = S'(¢)= (3, &; 0, 0] by
setting glu, v) =0, (u, v)¢ R. If r is any ray in the first quadrant with end
point at the origin, set

glufr), vir)) = gHu(r), vlr)) —g~(ulr), vir})),

where g+ and g— have the usual meaning and we use the notation (u(r),
v(r)) to indicate that u and v are restricted to vary along »: if 0 is the angle
between v and the positive u-axis, then v = utan ¥,

Above 7, along lines parallel to the v-axis terminating on », let Vt(glv);
u(r), v} and V—iglv); wuir), v) denote the positive and negative variation
functions of g(u, v), considered as functions of v alone for each fixed w,
and set VHg(v); u(r), v) = V—-(g(v); u(r), v) =0 below ». Below r, let VH(g(u);
v(r), u) and V—(g(u); o{r), u) denotc the positive and negative variation
functions of g(u, v), considered as functions of u alone along lines parallel
to the u-axis, and set VHg(u); v(r), u) = V—iglu); v(r), u) = 0) above r. Then

g(%, ,U) = gituw ”} - gé(%, ’U)
where

gitu, v) = gHulr), o) + VHglo); i), o) + VHgle); ofr), u)
gifu, v) = g=(ulr), vir) + V=ig(); ulrl, v+ V=(glv); <), w)

is a decomposition of g(u, v) into two non-negative functions with the property
that above r, these functions are mononically increasing in v, and below r
they are monotonically increasing in u.

For a fixed ray », let M) =sup{gi, g:: (u, vjeS}. Let M(3) = sup
{M(r)}, where now the supremum is taken over all rays in the first quadrant
with end point at the origin. Since [’ exists, sup{|glu, v)|:{u, v)eS'| -0,
8 -0, and also sup{gHulr), v(r)]—0 and sup{g(ulr), vir))} -0, 80
Since sup{ Viflx); o, R')] and sap{ V{(fly); «, E)} tend to zero with 3, it
follows that sup { V¥(g(o}; uir), v)}, sup | V={g(v); ufr), 0]}, sup| V*iglu); ofr),
u)} and sup{ V—(g{u); v(r), )} all tend to zero with &, uniformly in ». Thus
also M(3)— 0, 8 — 0, uniformly in 7.

Let r be fixed and lef

g(u! U) = { M‘a) _gé(u: ,U) } - [ M(B) - g{{u’ ’U) }

= gi(u, v) — gaofut, ).

This is a decomposition of g{u, v) into two functions, and from the foregoing
we conclude that these functions have the following properties. Each function
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is non-negative, and for fixed », each is monotonically decreasing in v above
r, and monotonically decreasing in u below ., These functions are uniformly
bounded in 7, and the uniform bound, M{8), tends to zero with 3.

Let 8" =[p?, ¢3; 0, 0] be the transform of S’ under the transformation
u = pu, v = qv. Proceeding as in the proof of Lemma 1, we get

smpu sin Q’Ud vdv

(5.14) j tu, v)

%

:fg (u v)smu smvdudv

p 9l u v
5
o, OO L
= X (— )Pu(i, j)
0,0

where

ks
.. qindu jn- v\ sinuw sinv
u(é, .?)“JQH( > g )z’n-i—ujn—i—vdudv'

Summing by rows below the transform of the ray v = (p/q)u, and by columns
above this transform, if is easily verified that the above sum does not exceed

the quantity 23| ){n2+2 1/#*} in absolute value. Since M(3) tends to zero

with 3, it follows that the left hand side in (5.14) tends to zero with 3
uniformly in p/q.
The estimate for the integral

sin pu 8in qu v

gl(u} U)
S/

is obtained in a similar manner. Then

sin pu sin gv
"

f{f(x-f—u,yw} 7 duds

R

sin pu sin qv
v

= f [guler, v) — galu, v)] —= dudv

= 0{1) + o(1) = o(1), & — 0.

Combining this with the estimate (5.13) of the contribution of the first term
on the right in (5.12) completes the proof of the main part of the lemma,



F. UstiNa: Convergence of Double Fourier Series 37

To complete the proof, it remains to show that the limit u’ of the integral

J’smpu sin 9 Gude
w

R

as p, ¢ — oo, p/q constant, is given by

pltan=(g/p tan ")) — p(tan—'(q/p tan—1¢).

The transformation ' = pu, v/ = qv carries the region R, bounded by the
rays v = utan®’ and v = wtan ¥, and the boundary of 8’ into the region R,
bounded by the rays v = u(g/p)tan 8 and v = ul(g/p) tan ¢, and the boundary
of 8" =[p8, ¢3; 0, 0]. Since p3, ¢d —> o0 as p, ¢ —> oo, the integral

sin ¥ sinw
f . dudy

uw
R

tends to
¢(tan—{g/p tan §")) — p(tan—(g/ p tan ¥)

by the corollary (5.5) to Lemma 1.

(5.15) COROLLARY. - Liet S =[x + 8, y 4+ &; & — 3, y — 8] be a neighborhood
of the point (x, y), and suppose that & non-intersecting paths L, L, .., &,
bigr = 1, terminating at (x, y), divide S into % open regions Bi, R, ..., Ri,
$0 that the boundary of E; is traced out by I, /4., and the boundary of §,
the paths 4, ¢ =1, 2, ..., % being enumerated in a counter-clockwise sequence.
Suppose that for each ¢, /; has a limiting angle of approach to (x, y), say
6;, and there exists an integer %' such thai a horizontal or vertical line
will cross /; at most &' times. If f(x, ) is continuous in each open region
Ri, and if for each 4, sup{ V(f(x); y, Ri)} -0 and sup{ V(fiy); =, B)}—>0
as & — 0, then

sin pu sin gv

111njfw+u,J+ V) —— dudv

= Mf1 + Usfe + ... ++ wifi + 0(1),

where the limit is taken as p, ¢ — o0, p/q fixed, the o{l) term tends to zero
with 8, and for i =1, 2, ..., k

w; = p{tan—*(g/ p tan ;1)) — p(tan—(q/ p tan 0;))
fi=limf(x +u, y+ v, #, v—0, (v 4+u, z+v)eR

tan—!(q/p tan §) being taken in the same quadrant as 0,
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Proor. - We have

sin pu sin gv

wa—i—“,J-f- y SRR BN gy g,
=U+f++j

Applying Lemma 3 to each of the integrals on the right completes the proof
of the corollary. That tan—Yg/p tan 6) must be taken in the same quadrant
as 0 follows immediately from the geometry of the transformation o' = pu,
v = qv.

sin pu sin gv

fla4u, y+v) dudv.

(5.16) REMARKS. -~ We also have the ftrivial result that for each ¢, u:
exists as a real number, and for every choice of p/g,

M1+M2+...+’Mk=ﬂ?2.

(8.17) LemMuA 4. - Suppose that f(z, y) is of bounded variation T' with
respect to z on the rectangle R =[xz 4=, y+8; 249, y], >0, and for
some & >0, flz, y) is of bounded variation T with respect to y on the part
of B’ above the line I’ through the point {z 4 3, y), with slope &. Then

sm pu sin qv

ffx—l—u T o) dudv

= 0(1)9 p: Q —> O, p/g 2 &.

Proor. - Let ! be any line through the point (z + 3, y) with slope not
less than e. As in the proof of Lemma 3, f(z, y) can be expressed on R’ as
the difference of two functions,

f(.’l) + u, y + ’U) = Ql(u; ’U) - gz(“) ’U),

where the functions gi(u, v} and g.{u, v} are non-negative, monotonically
decreasing in z below ! and monotonically decreasing in y above I. Since
flz, ¥) is bounded, of bounded variation T with respect to « on R’ and with
respect to y on the part of B’ above /', these functions may be assumed to
be uniformly bounded for every choice of line / through (¢4 3, y} with
slope not less than e. Let M({e) be such a uniform bound,
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Then

sin pu 8in qv

(5.18) f flo+u, g+ o) T2 S0 gy gy

_ fg} smpu su:)qe;d udv

—fgz smpu su:qu .

To estimate the contribution of the first integral on the right in (5.18),
assume that p, ¢ are fixed, p/q =<, and gi(u, v) is decreasing monotonically
in u below the line " defined by v = (p/g){u — 3), and that it is decreasing
monotonically in v above this line, and is non-negative. The transformation
w = pu, v = qv allows us to write

fgl(u » smupu sn;qu wdv

sm u sin v
—fgl 7 " dudv

where R = [p=, ¢3; p3, 0] is the tranform of the region R'. This transformation
carries the line /” into the line [, defined by v = u — p3, with unit slope.

The function gl(;—f, g) remains bounded by M(e) and is monotonically decrea-

sing in u below I and in v above !
Now choose integers a, b, ¢, such that

an < pé < (a + 1)«
br <sprn< b+ Ui
cn < @8 <flc+ lm,

and let
d(u, v) = sin u sin v, (u, v)e B
=0, (u, V)¢ R
.o " lin Jmoov Y(u, v)
19 =|lgpl=4+-,=+-1= - .
(5.19) uls, j) fg(p+p q+q)(m+u)w+wdudv

0,0
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Then

fgl(t‘b, v)mnu smvd v
p q u v
R

B, c
= 2 (—1JHufi, j).

a, 0

Performing the summation by columns above ! and by rows below I, we get

R

1S (— 1u, 0f | < Me )f b

w-an v dudv
¢

" s ie s ‘ sin u sin v
IEH{— L+, j | < M(e)iu Fatgm 53-1—»}'7: dudv
< M(s)/](a’ +.7)’ .7= 1’ 2: vy G

T

c—“l’ua,"_ £ udv
§ 1)+ W< M) sinw_sinv .

u4ar v
0,0
< 2M(e)/a
y (— 1)+ sin gin v
l 1)t tu(a + 1, ﬁl{Me)fu-l—a—[—zmv-;-mdudv

< Mie)/ia + i), i=1, 2, ..., ¢

Here the prime indicates that only that part of the first term which results
from performing the integration (5.19) below the line ! enters the sum in
the case of summation by rows, and only that part of the first term which
results from performing the same integration above ! enters the sum in the
case of summation by columns. Collecting the results, we have

(5.20) U ( )?L”ﬁ S0 Y Gy

< Me){4/a+E1/ja+ ) +E 1 ia+ i)

< 2M(e) {2/ +°§°‘. 1/i(a +4) .
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Since ¢ >occas p, ¢ -> o0, and the term inside the brackets tends to zero as
@ — oo, the left hand side in (5.20), and so the first term on the right in
(6.18), is o(1), p, g — <.

In a similar manner, it can be shown that the right side in (5.20) is an
upper bound for the second term on the right in (5.18) as well. Then

gin pu sin gv

f fletu, y+v) dudv

=o(l)+ol)=o(l), p, g2 plg=e.
This completes the proof of the lemma.

6.24 Remark. - If flz, y)} is also of bounded variation T with respect
to y on R/, then M(e) may be replaced by a uniform bound on the functions
g{u, v) and g.(u, v). In such a case, the restriction p/g =¢ can be removed.
Taking this into account, we have

(5.22) COROLLARY 1. - Let >0 be given and let B=[z+4=n, y+ &;
z4-8 y—23Uz—3, y+2%;, z—mn, y—238]=R UR,. If f(z, y), defined
on R, is of bounded variation T with respect to z on B, and if on R, above
the line through {(z + 3, y) with slope ¢ and below the line through the same
point with slope —e¢, and on R, above the line through (z — 38, y) with
slope — ¢ and below the line through the same point with slope ¢, f(z, y) is
is also of bounded variation T with respect fo y, then

gin pu sin qv

ffx+u Y + v} ——— dudv

= 0(1}’ D, 94— p/q2€

If, in addition, f(z, y) is of bounded variation I with respect to y on R,
then the restriction p/g=-¢ is removed.

Proor. -~ Let R=[z+=n, y+23; 2+, ylUz+=n, y; 2+8 y—38 U
[e—23, y+23;,e—m ylUlg—3, y; 2 —mn,y—208]=R UR, U B3 U R;. Then

sin pu sin qv

ffx-{-u Y+ v)—— dudy

n§f+f+f+ﬂﬂw+u, v+ o) 2o 20 qudy

dnnali di Matemarica &



42 F. UstiNna: Convergence of Double Fourier Series.

=fmx+u, YA+ 0) ot y— )+ flo—u, y+ )

gin pu sin gv
pu S gt dudv.
] v

+flz—u, y—v))

By the hypothesis, the functions flz 4 u, y+v), fledu, y—v), fle —u, y +v)
and f(x —wu, y —v) are of bounded variation 7 with respect to z on R,
and with respect to y on the part of Ri above the line through the point
(z 4+ 3, y) with slope e. The corollary now follows by an application of the
lemma and the remark (5.21).

{6.23) COROLLARY 2. - Let e >0 be given and let R=[z+ 3, y+ m;
z2—38 y+8UJz+3 y—23; ¢ -3, y—=x]=R U R,. If f(z, y), defined on
R, is of bounded variation 7" with respect to y on E, and if on B; on the
right of the line through the point {z, y 4- 8} with slope 1/e and on the left
of the line through the same point with slope — 1/e, and on K, on the
right of the line fthrough the point (z, y — 8) with slope — 1/e and on the
left of the line through the same point with slope 1/e, flx, y) is also of
bhounded variation T with respect to z, then

sin pu sin qv
u v

ff(x-i“u:y*}—@) dudv

=o(l), p, g->c0, l/e=p/q.

I, in addition, f(z, y) is of bounded variation T with respect to z on R,
then the restrietion 1/e =>p/q is removed.

Proor. - The proof of Corollary 2 is immediate since it is only a resta-
tement of Corollary 1 with the roles of p, and ¢, 2 and y, # and v, and ¢
and 1/e interchanged.

(5.24) LeMma 5. - Suppose that f(z, y) is defined on the square I =[z - =,
Y+ n; ¢ —=w, y — 7], and suppose that for some &> 0, fiz, y) is of bounded
variation T with respect to « on I(y; 9) and with respect to y on I(z; 8), where
N = N(z, y); 8) = I(z; 8) U Ily; 3) is a cross-neighborhood of the point (z,
y). Then, given ¢ > 0, there exists &' > 0 such that on the cross-neighborhood
N' = Ni(z, y); &), [(=, y) has the following properties. {1} The function f(z, y)
is of bounded variation T with respect to both variables on the square
S=[w+, y+8;0—8 y—5.(2) On R=[a+m y+38; a4, y—&|U
fe -8, y+8;, 2—=xn, y—08}=R8IUR,, flz, y) is of bounded variation T
with respect to z; on the parts of R/ above the line through the point



F. Ustina: Convergence of Double Fourier Series 43

(x 4+ &', y) with slope ¢ and below the line through the same point with slope
—e¢, and on the parts of R; above the line through the point {z — &, y)
with slope — e and below the line through the same point with slope e,
f(z, y) is also of bounded variation T with respect to y. (3) On R' =[x + ¥,
y+n; x""‘a’: y—l—-E]U[l’—i—&/, y_al; x—B,, y’—n]:Rll,URg& ]‘("”’ y) is
of bounded variation T with respect to y; on the parts of Ry on the right
of the line through (z, y + o) with slope 1/¢ and on the left of the line
through the same point with slope — 1/e, and on the parts of K on the
right of the line through (z, y — &) with slope — 1/¢ and on the left of the
line through the same point with slope 1/¢, /(z, y) is also of bounded variation
T with respect to z.

Proor. - That & can be chosen so that fiz, y} is of bounded variation
T with respect to both variables on &, with respect to « on R and with
respect to y on R” is obvious, since by assumption, this is already true for
the case & <3. To prove the remaining part of the leinma, choose &' so
that 0 < 8 < e3/(1l 4 ¢). Then S, the parts of B on which f(z, y) is required
to be of bounded variation I with respect to y, and the parts of R” on which
fiz, y) is required to be of bounded variation T with respect to z are all
contained in the square [ 48, v +5; £ — 8, y — 8], so that the conclusions
of the lemma follow.

6. - Proof of the theorem.

The proof of the Theorem now reduces to interpreting the results of
Section D.

We identify the point (z, y) in the zy-plane with the origin in the
uv-plane, and a region B in the zy-plane, having a fixed configuration
relative to the point (z, y), with a region R, having the same configuration
relative to the origin in the wv-plane. Thus the region E has a fixed
meaning without ambiguity in either plane, and this allows us to transfer
the discussion from ome plane to another penalty. We do this in the sequel
without specific mention.

The mn~th partial sam of the Fourier series of flz, y), sz, v,
evaluated at the point (z, y), is given by

X 1 sin pu sin qv
(6.1) Smalz, Y) = nzf glu, v) “u o dudv

I

where 2m 4 1 = 2p, 2n 4 1 = 2¢, I is the period square and

glu, v) = f(z + u, y 4 vjuv/(4sin u/2 sin v/2).
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If we let sint/t =1 when {=0, then it is easily seen that the variation
properties of f and g over any region in I are identical. If / is of bounded
variation 7' with respect to either variable on any region in I, then so is g,
and conversely. Also, f is bounded, continuous and absolutely integrable
over any such region if and only if g is bounded, continuous and absolutely
integrable. Finally, we note that if B’ is the region described in the statement
of Lemma 3, then

limg(u, v) =limflz4+u, y+v) =1, u, v—>0, (u, v)eR.

From the foregoing, it follows that if we replace f(r 4 u, y 4 v) by
g(u, v} in the statement of the lemmas and corollaries of the preceding
gection, then in each case the conclusions are valid.

We use the notation of Lemma 5 and denote the complement of
N =1z, 2) U Ily; 3) =S U B U R relative to the period square I={[z- =,
y+mn; z—m, y—=x| by C. Fix p/q, then choose ¢ >0, 1/e = p/g=c¢. Since
otherwise we could choose a smaller eross-neighborhood, we assume that on
S, R and R, the function f{z, y) already has the properties (1), (2} and (3},
so that g{u, v} has these properiies in the image of these regions in the

yuv-plane. Then
[ f f f; smpu qmquldv
p .

Since p, g —>oc as m, n->oc0 and g{u, v), and so also g(u, v)/(uv), is
absolutely integrable on C, by the RIEMANN-LEBESGUER lemma we have

(6.3) l/nzfg(u, v) S’“up“ w;qu 1dv

c

{6.2) Smalz, y) = 1/72

= of{l}, D, g -0,

Next, under the hypothesis of Theorem 1, f{x, y), and so also glu, v),
satisfies the hypotheses of Lemmas 3 and 4. By the corollary to Lemma 3,
and the foregoing remarks,

(6.4 1 /n? f glu, v)smup" S”;qu udv

S

=y 4 tafo + ... + wifi + o) 4+ o(1)"

where the o(l), term tends to zero with &, and the o(l)” term tends to zero
as p, g —>oo, p/q fixed. If we denote the coefficients in the corollary to



E. Ustina: Convergence of Double Fourier Series. 45

Lemma 3 by u;, then because of the factor 1/x% the coefficients here are
defined by w; = wi/7% i=1, 2, ..., k.
Finally, by the corollaries 1 and 2 to Lemma 4, we have

(6.5} 1/n2fg(u, v) sxnupu ﬂ%@ﬁ} dudv

=oll), p, g0, p/g=c

(6.6) 1/:t2fg(u, v) S pu S—E%ﬂ dudv

=o(l)y p, g->o0, llez=plg

Using the estimates (6.3) to (6.6) in (6.2) we have

6.7 Smalz, y) = waf1 + Uaofa + ... + wfe + o{1) + o{1)",
p, g—oo,  plg fixed,

where the o(1) term tends to zero with & and the o(l)” term tends to zero
as p, q —> oo

Let ¢’ >0 be given. Choose 3 so small that the o(l) term does not
exceed ¢'/2. Choose an integer % such that for p> %, ¢ >k the o(l)’ term
does not exceed ¢'/2. Then for all such p, g,

l Smnl @, Y) — i — Uafy — oo — 'Mkfkl < ¢,

Since &' > 0 is arbitrary, we conclude the proof of the main result of the
theorem remarking that by Section b,

fi=limf{z + u, y + v), u, v —>0 (u, vie R;,
u; = 1/7{ g(tan—"(q/p tan 0. ,)) — ptan—"g/ p tan 6;)) },

where tan—*(g/p tan ) is taken in the same quadrant as 0.

The remaning results of the theorem follow easily. We have wu; + u; -
v = 1/n%(2n) = 1. That u; = 1/n*{o(fhp) —o(t)}] when p/g=1 is
obvious. Furthermore, u; is independent of p/q if for some integer k’, k' =0,
1, 2 3, 6, =%k"n/2 and 0,4, = (k" + 1)x/2, for then one of tan 6;, tanf, is
zero and the other is infinite, so that o{tan—Yq/p tan 6,1,)) — g{tan—Yg/p
tan #;)) = n?/4 independently of what value we choose for p/q, qp £ 0.
However, in this case the o(1) term in Lemma 3, and so the o{l) term above
might uwot go to zero with & uwiformly in p/g unless the restriction
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1/e =p/q=c¢ is retained. Bat then this error ferm is zero indentically in
p/q if the paths [, and 4y ave rays from the point (z, y).

The restriction on p/q, 1/e =p/q =e, arises in yet another instance.
It arises in obtaining the estimate for the integral

f f;g smpu su;qu wdy

R R

by way of Lemma 4. In this case, this restriction is removed on the right
only if f{z, y) is also of bounded variation T' with respect to y on K, and
it is removed on the left only if f{x, y) is of bounded variation T with
respect to z on R”. For then in the first instance the uniform upper bound
M{e) may be chosen independent of ¢ as regards Corollary 1, and in the
second instance in may be chose independent of 1/e as reaard Corollary 2.
In fact, it is safficient to replace it by M =sup{ Vif(z); y, I(y; 8)} + sup
{ Vitty); =, Ily; 8) ) +sup (| flz, ¥) — Hz", v"}| 1 («', &), (2", y") e I(y; “)} and
M =sup{ Vifly); =, I(z; 8))+sup{ Vifiz); v, Ilz; 8)}+sup{]fiz, ¥)—
flz", y')| 1 (&, o), (2", y")eliz; 3)] in the respective cases. This completes
the proof of the theorem.
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