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CONVERGENCE OF EIGENVALUES IN STATE-DISCRETIZATION
OF LINEAR STOCHASTIC SYSTEMS∗

JOSÉ A. DE DONÁ† , GRAHAM C. GOODWIN† , RICHARD H. MIDDLETON† , AND

IAIN RAEBURN‡
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Vol. 21, No. 4, pp. 1102–1111

Abstract. The transition operator that describes the time evolution of the state probability
distribution for continuous-state linear systems is given by an integral operator. A state-discretization
approach is proposed, which consists of a finite rank approximation of this integral operator. As a
result of the state-discretization procedure, a Markov chain is obtained, in which case the transition
operator is represented by a transition matrix. Spectral properties of the integral operator for the
continuous-state case are presented. The relationships between the integral operator and the finite
rank approximation are explored. In particular, the limiting properties of the eigenvalues of the
transition matrices of the resulting Markov chains are studied in connection to the eigenvalues of the
original continuous-state integral operator.

Key words. state-discretization, Markov chains, integral operators, finite rank approximation
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1. Introduction. The understanding and use of links between continuous and
discrete features of systems has proven to be a fruitful area. In some cases, knowledge
of properties from discrete processes gives insight into the continuous counterpart.
On the other hand, the mathematical methods associated with the continuum (e.g.,
differential equations, integrals) very often turn out to be easier for analytical treat-
ment than those associated with discrete coordinate axes (e.g., difference equations,
summations) [2].

The algorithms available for solving discrete-state problems, for example, param-
eter estimation in Markov chains, have a very high computational complexity when
the number of states is large. Typically the number of computations required is pro-
portional to the square of the number of states, for example, the Viterbi algorithm or
the probability grid filter (see, e.g., [13]). On the other hand, the tools available for
solving linear continuous-state problems (e.g., the celebrated Kalman filter) are well
known for their simplicity.

With these advantages of continuous-state algorithms over discrete-state ones in
mind, we are interested in looking at continuous-state approximations to discrete-state
problems. This line of research is aimed at identifying the appropriate geometric struc-
tures in discrete-state models which are amenable to linear continuous-state approxi-
mations. As part of this program of characterization of the class of discrete-state sys-
tems suitable for continuous-state approximation, we are studying the inverse process,
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namely, the properties of discrete-state systems that arise in the state-discretization
of continuous-state linear systems. In particular, this paper examines the asymp-
totic eigenstructure of the discrete-state systems (Markov chains) generated by the
state-discretization of linear continuous-state systems. Related work can be found in
[4, 6, 10] in a general setting. However, since we are restricting our study to linear
continuous-state systems, we are able to provide more specific information about the
structure of the discrete-state approximation.

This paper is organized as follows. In section 2 we present some properties of state
space formulations of linear systems that are relevant for their state-discretization.
An operator which provides the time evolution of continuous-state probability den-
sity functions, together with its eigenvalues and eigenfunctions, is discussed in that
section. In section 3 a state-discretization approach for linear systems is presented,
and properties of the resulting discrete-state Markov chains are discussed. In partic-
ular, it is proved that the eigenvalues of the transition matrices obtained converge
to a subset of the eigenvalues of the original continuous-state operator. Section 4 is
dedicated to an example in order to illustrate the material presented.

2. Discrete-time linear state space models. Let a linear discrete-time sys-
tem be described by the state space equation

xk+1 = Axk + Bvk,(1)

where xk,xk+1 ∈ R
n are the states at discrete-times k and k+1, respectively, vk ∈ R

m

is an independent and identically distributed (iid) sequence of random vectors with
finite variance, and the initial state x0 is assumed to have an arbitrary distribution
with finite variance and independent of vk for all k. A and B are real matrices of
appropriate dimension, and we assume A such that all its eigenvalues belong to the
interior of the unit disk. For simplicity of presentation we will further assume that
the matrix A is invertible (see, e.g., (2)). This condition is naturally satisfied in the
context of time-discretization of a continuous time system (see, e.g., [1]).

We will denote the joint probability density function (PDF) of a vector of n ran-
dom variables y, evaluated at the n-tuple (x1, x2, . . . , xn), by fy(x) � fy(x1, x2, . . . , xn),
where x denotes the vector x = (x1, . . . , xn)T ∈ R

n.
We assume here that all the PDFs of interest have compact support and belong

to the Hilbert space L2([a1, b1] × · · · × [an, bn]) (e.g., the uniform distribution). This
assumption is necessary in the proofs below, and from a computational point of view,
in most interesting applications densities do not significantly differ from zero outside
a suitable compact set.

The PDF of xk+1 can then be expressed in terms of those of xk and vk (for
example, by using the auxiliary variables method; see, e.g., [8]) as follows:

fxk+1
(x) =

1

|det(A)|
∫ +∞

−∞
· · ·
∫ +∞

−∞
fxk

(
A−1(x−Bξ)

)
fv(ξ)dξ1 . . . dξm

� (Tfxk
)(x),

(2)

where x ∈ R
n, ξ ∈ R

m and (2) defines a convex operator on the convex space of
PDFs. Since we are interested in spectral properties, we work with the extension of
this operator to the linear space L2([a1, b1] × · · · × [an, bn]). Note that this extension
is the linear operator T on L2([a1, b1]×· · ·× [an, bn]) defined by (2). In (2) we omitted
k in fvk

since vk is iid.
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In what follows we use the n-dimensional characteristic function (which exists for
all distributions; see, e.g., [9]) and denote

Φxk
(iw) = F{fxk

(x)} = Eexp{−iwTxk},(3)

Φv(iw) = F{fv(x)} = Eexp{−iwTv},(4)

where F{·} stands for the Fourier transform and i �
√−1. In expression (3) w ∈ R

n,
and in (4) w ∈ R

m.
In the Fourier transform domain (2) becomes

Φxk+1
(iw) = Φxk

(AT iw)Φv(BT iw) � (T̃Φxk
)(iw),(5)

where w = (w1, . . . , wn)T ∈ R
n and T̃ is the linear operator on Fourier transforms

(which corresponds to the linear operator T ).
Since vk ∈ R

m is iid and the eigenvalues of matrix A are less than unity in
modulus, there exists a stationary PDF, denoted fx∞ , such that satisfies fx∞ = Tfx∞
in (2) (see, for example, Theorems 2.3 and 2.7 in [7] for a proof of the more general
case where the coefficients in the autoregressive model are random).

We let Φx∞ denote the Fourier transform of the stationary distribution, satisfying

Φx∞(iw) = (T̃Φx∞)(iw) = Φx∞(AT iw)Φv(BT iw).(6)

For simplicity, the following theorem is formulated in the Fourier domain, al-
though an equivalent result can be obtained in the state domain (see Remark 2.1).

Theorem 2.1. The complex numbers λT̃ and the functions VT̃ given by

λT̃ = (λ1)
l1(λ2)

l2 . . . (λr)
lr ,(7)

VT̃ (iw) = (vT
1 iw)l1(vT

2 iw)l2 . . . (vT
r iw)lrΦx∞(iw)(8)

are eigenvalues and eigenfunctions of the operator T̃ , where λ1, . . . , λr are the eigen-
values corresponding to each block of the Jordan canonical form of matrix A, r ≤ n
is the number of blocks, v1, . . . ,vr are the corresponding eigenvectors, and l1, . . . , lr
are arbitrary nonnegative integers.

Proof. Substituting expression (8) into (5), we get

(T̃ VT̃ )(iw) � VT̃ (AT iw)Φv(BT iw)

= (vT
1 AT iw)l1(vT

2 AT iw)l2 . . . (vT
r A

T iw)lrΦx∞(AT iw)Φv(BT iw).

Now, by using (6) and the fact that λi and vi are eigenvalues and eigenvectors of
A, we have

(T̃ VT̃ )(iw) = (λ1)
l1(λ2)

l2 . . . (λr)
lr (vT

1 iw)l1(vT
2 iw)l2 . . . (vT

r iw)lrΦx∞(iw),

which, from (7) and (8), can be written as

(T̃ VT̃ )(iw) = λT̃VT̃ (iw).

Remark 2.1. The eigenvalues of T̃ given by (7) are also eigenvalues of T (denoted
λT ). The eigenfunctions of T can be evaluated by noting that (iwj)

lΦx∞(iw) is the
Fourier transform of ∂lfx∞(x)/∂xl

j (see, e.g., [14]). Hence, from (8) it can be seen that
the eigenfunctions of T corresponding to the eigenvalues λT are linear combinations
of high order partial derivatives of fx∞(x) with respect to the components of x =
(x1, . . . , xn)T .
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3. State-discretization of linear state space models. The linear operator T
defined by (2) provides the time evolution of the continuous-state probability density
functions. The state-discretization of the system (1) is performed by approximating
this operator and the PDFs by discrete-state counterparts. We will restrict our study
to a bounded region of the state space: an n-dimensional hypercube X = [a1, b1]×· · ·×
[an, bn] of volume VX . As explained before, we assume that all the PDFs of interest
have compact support inside this region and belong to L2([a1, b1] × · · · × [an, bn]).

To discretize the region X of the state space we use the idea of refinements [6, 10],
i.e., we divide X into Nn subsets of size VX /Nn denoted e1, e2, . . . , eNn , and define
a Markov chain on the resulting discrete state space.

The probability vectors of the Markov chain are given by

pk � (P{xk ∈ e1}, . . . , P{xk ∈ eNn})T ,(9a)

where

P{xk ∈ ej} =

∫
· · ·
∫

ej

fxk
(x)dx1 . . . dxn,(9b)

and the conditional PDF of xk+1 is computed according to (2) as

fxk+1
(x|xk ∈ ej) =

1

|det(A)|
∫ +∞

−∞
. . .

· · ·
∫ +∞

−∞
fxk

(
A−1(x−Bξ)|xk ∈ ej

)
fv(ξ)dξ1 . . . dξm.

(10)

In (10), fxk
( · |xk ∈ ej) is the conditional PDF of the random variable xk evalu-

ated at (·), given the condition that xk belongs to the set ej and is defined as (see,
e.g., [8])

fxk
(y|xk ∈ ej) =




fxk
(y)∫ ··· ∫

ej

fxk
(x)dx1...dxn

if y ∈ ej ,

0 otherwise.

(11)

The transition matrix between time k and k + 1, Qk = {q(k)
ij }, 1 ≤ i, j ≤ Nn, is

then defined as

q
(k)
ij � P{xk+1 ∈ ei|xk ∈ ej} =

∫
· · ·
∫

ei

fxk+1
(x|xk ∈ ej)dx1 . . . dxn.(12)

Notice that we have made explicit the dependence of Qk on k. If this is not
the case, we say that the Markov chain has stationary or homogeneous transition
probabilities, and we denote by Q the transition matrix. Notice also that the matrix
Qk is defined by (10) and (12), and these depend on the PDF fxk

(see (11)). In
order to simplify the computation of the matrix Qk, we approximate the PDFs fxk

used in (11) by functions that assume piecewise-constant values in each subset ei (see
the discussion preceding (24)). This approach has the advantage that the transition
matrices are stationary (see the independence from fxk

in the elements qij of Q in
(24)).
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We denote by λT the eigenvalues of the operator T and by λQ(N) the eigenvalues
of the transition matrix Q obtained with a partition of Nn cells. Notice that the
spectrum of Q, σ(Q), has Nn points. We are interested in the accumulation (or
limit) points of these sets as N → ∞. The following theorem provides a connection
between these accumulation points and the eigenvalues of the operator T .

Theorem 3.1. The set of nonzero limit points, as N → ∞, of eigenvalues λQ(N)
is a subset of the set of eigenvalues λT of the operator T .

Proof. To maintain the notation as simple as possible, we will prove the theorem
for the case of scalar systems (n = 1). The proof for the multidimensional case is
similar, but with far more complicated notation.

We consider a scalar linear system described by

xk+1 = axk + bvk,(13)

where 0 �= |a| < 1 and b �= 0. As explained before, it is assumed that all distributions
have compact support. In particular we suppose that supp fv ⊆ [−B,B] is fixed.

In the scalar case, the operator T defined by (2) can be written as

(Tfxk
)(x) =

∫ +∞

−∞
k(x, y)fxk

(y)dy,

where the kernel is given by k(x, y) = fv(
x−ay

b )/|b| and satisfies
∫ +∞
−∞ k(x, y)dx = 1.

Here we choose A ≥ |b|B/(1 − |a|) to ensure that the support of Tfxk
lies in [−A,A]

whenever supp fxk
⊆ [−A,A] (and, in a practical situation, we also choose A large

enough to ensure that the support of the initial state distribution satisfies supp fx0
⊆

[−A,A]). Then T becomes the integral operator on L2([−A,A]):

(Tf)(x) =

∫ A

−A

k(x, y)f(y)dy(14)

with k ∈ L2([−A,A] × [−A,A]).
To perform the state-discretization of this system we divide the interval X =

[−A,A] into N1 = N subsets of length 2A
N , denoted e1, . . . , eN , and we define the

operator PN on L2([−A,A]):

PN �
N∑
j=1

IN,j ,(15)

where the operators IN,j are defined as follows:

(IN,jf)(x) =

{ N
2A

∫
ej

f(z)dz if x ∈ ej ,

0 otherwise
(16)

for f ∈ L2([−A,A]).
Notice that the operator PN is a projection onto the N -dimensional subspace

of L2([−A,A]) consisting of functions with N piecewise constant values, and that
PNf = E[f(U)|GN ], where GN is the sigma-algebra generated by the ei, U is the
identity mapping, and the probability space (Ω,F , P ) is such that Ω = R and P is
the uniform probability measure on [−A,A].
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Direct computation shows that the image of the operator PNTPN is constant over
each cell ei, taking the value

(PNTPNf)(x) =
N

2A

N∑
j=1

[(∫
ei

∫
ej

k(x, y)dydx

)(
N

2A

∫
ej

f(z)dz

)]
(17)

for x ∈ ei.
We need to prove now that the operator PNTPN converges, as N → ∞, to T in

the natural norm of operators on L2([−A,A]). For this purpose we use ki,j to denote
the scaled integral of k(x, y) over the cell ei × ej :

ki,j =

(
N

2A

)2 ∫
ei

∫
ej

k(x, y)dydx,(18)

and we define a piecewise-constant function on [−A,A] × [−A,A] by

nk
N (x, y) =

N∑
i=1

N∑
j=1

ki,jXei(x)Xej (y),(19)

where Xei(·) is the indicator function Xei(x) = 1 if x ∈ ei and 0 otherwise.
From (17), (18), and (19) it can be seen that the operator PNTPN is given by an

integral operator with kernel nk
N (·, ·), i.e.,

(PNTPNf)(x) =

∫ A

−A

nk
N (x, y)f(y)dy.(20)

Then, by using Hölder’s inequality, it can be shown from (14) and (20) that

‖T − PNTPN‖ ≤
(∫ A

−A

∫ A

−A

|k(x, y) − nk
N (x, y)|2dydx

) 1
2

.(21)

If the function k is continuous, it is uniformly continuous in the compact interval
[−A,A] × [−A,A]. It follows that the functions nk

N converge uniformly to k. Thus,
in the case of continuous k, it follows from the inequality ‖ · ‖2 ≤ 2A‖ · ‖∞ that the
right-hand side of (21) converges to zero as the number of divisions N tends to infinity.

It is a standard result from measure theory that continuous functions on [−A,A]×
[−A,A] constitute a dense subspace of L2([−A,A]× [−A,A]) (see, e.g., [11]). Hence,
for an arbitrary k ∈ L2([−A,A] × [−A,A]), we can approximate k in the 2-norm by
a continuous function g (i.e., ‖k − g‖2 → 0). For any N , the corresponding discrete
approximations nk

N and ng
N , given by (18) and (19), satisfy

‖nk
N − ng

N‖2
2 =

∫ A

−A

∫ A

−A

∑
i,j

Xei(x)Xej (y)|ki,j − gi,j |2dydx

=
∑
i,j

(
2A

N

)2
∣∣∣∣∣
(

N

2A

)2 ∫ A

−A

∫ A

−A

(k(x, y) − g(x, y))Xei(x)Xej (y)dydx

∣∣∣∣∣
2

≤
∑
i,j

(
N

2A

)2

‖(k − g)XeiXej‖2
1.
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Now, writing the identity (k − g)XeiXej ≡ [(k − g)XeiXej ][XeiXej ] and applying
Hölder’s inequality gives

‖nk
N − ng

N‖2
2 ≤

∑
i,j

(
N

2A

)2

‖(k − g)XeiXej‖2
2‖XeiXej‖2

2

=
∑
i,j

‖(k − g)XeiXej‖2
2 = ‖k − g‖2

2(22)

(or we could observe that k �→ nk
N is the orthogonal projection on the span of

{Xei(x)Xej (y)}, and hence is norm-decreasing).
Since we have already seen that ‖ng

N − g‖2 → 0 for the continuous function g,
and since from (22) we have

‖nk
N − k‖2 ≤ ‖nk

N − ng
N‖2 + ‖ng

N − g‖2 + ‖g − k‖2

≤ 2‖k − g‖2 + ‖ng
N − g‖2,

(23)

we deduce that ‖nk
N − k‖2 → 0. Therefore, we conclude from (21) that the operator

PNTPN converges to T in norm.
The transition matrix Q of the resulting Markov chain is defined by (10) and (12).

As explained before, we simplify the computation by taking a piecewise-constant
approximation of fxk

(i.e., of the form f̃xk
= PNfxk

). Then, the elements of the
matrix Q are given by qij = N

2A

∫
ei

∫
ej

k(x, y)dydx. Therefore, the ith element of the

product of the matrix Q and a vector p = {pj}; 1 ≤ j ≤ N, is given by

(Qp)i =
N

2A

N∑
j=1

[(∫
ei

∫
ej

k(x, y)dydx

)
pj

]
.(24)

From (17) and (24) it can be seen that the matrix Q (acting on vectors) and the
operator PNTPN (acting on piecewise-constant functions) are conjugate. To see this,
consider a function f =

∑
i viXei and a vector v = {vi}; 1 ≤ i ≤ N . Then, by

noticing that N
2A

∫
ej

f(z)dz = vj , it can be seen from (17) and (24) that PNTPNf =∑
i(Qv)iXei . It follows immediately that the eigenvalues of the operator PNTPN

and those of the matrix Q are the same, and that the eigenfunctions of PNTPN are
given by the piecewise-constant held versions fvQ

=
∑

i vQiXei of the eigenvectors
vQ = {vQi}Ni=1 of Q.

It remains to prove that the set of nonzero limit points of the eigenvalues of the
operator PNTPN is a subset of the set of eigenvalues of the operator T . For this
purpose, let’s suppose that λ �= 0 is a limit point of a sequence of eigenvalues λN of
PNTPN ; then we have to show that λ is an eigenvalue of T . As we proved before, the
operator PNTPN converges to T in the natural norm of operators on L2([−A,A]).
Hence, (λNI − PNTPN ) converges to (λI − T ) in norm. Since the set of invertible
operators is open [12, Theorem 10.12], if (λNI − PNTPN ) is not invertible (i.e., λN

belongs to the spectrum of PNTPN ) for all N then (λI − T ) is not invertible (i.e.,
λ belongs to the spectrum of T ). Since the operator T is compact [3], and for a
compact linear operator every spectral value, with the possible exclusion of zero, is
an eigenvalue [5, Theorem 8.4–4], the theorem is proved.

4. Example. In order to illustrate the convergence of eigenvalues and eigenvec-
tors we consider the following scalar state space model:

xk+1 = 0.5xk + vk,(25)
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Fourth eigenfunction

Fig. 1. Eigenfunctions of the operator T corresponding to the four eigenvalues of larger mag-
nitude (1, 0.5, 0.25, and 0.125, respectively).

where vk ∼ Uniform[−2, 2] is an iid sequence, and x0 ∼ Uniform[−10, 10].

Notice that, by (7), (8), and Remark 2.1, the eigenvalues of the operator T defined
by (2) for the scalar case are the nonnegative integer powers of λ = 0.5, and the
eigenfunctions of T are the stationary PDF fx∞ and its derivatives. In Figure 1 the
stationary PDF fx∞ and its three first derivatives are shown. The eigenfunctions
are ordered according to the magnitude of the corresponding eigenvalue (i.e., the
first eigenfunction corresponds to the larger eigenvalue, etc.). It is easy to see, for the
scalar system (13) and supp fv ≡ [−B,B], that fx∞ has support equal to [ −|b|B/(1−
|a|) , |b|B/(1 − |a|) ]. For this example, supp fx∞ = [−4, 4].

Since all distributions in this example have compact support equal or contained
in the interval [−10, 10] of the real line, the region in the state space to be discretized
is chosen as the interval X = [−10, 10]. This interval is divided into N subsets of size
20/N and a Markov chain is defined on the discrete state space {e1, e2, . . . , eN}. The
transition probability matrix Q is computed using (10) and (12).

In Figure 2 the eight larger eigenvalues of the matrices Q corresponding to differ-
ent values of N (denoted λQ(N)) are shown on a logarithmic scale. Notice that they
converge to the eigenvalues corresponding to the continuous state operator T :

log(λQ(N))

log(0.5)
→ log(0.5l)

log(0.5)
≡ l ; for l = 0, 1, . . . , 7(26)

as N → ∞. Notice also that the number of points N needed for convergence of
the successive eigenvalues is exponentially increasing. The reason for this can be
found in Figure 1. The successive eigenfunctions have peaks, the number of which
increases proportionally to the powers of two. Therefore, in order to have a faithful
representation of them with the eigenvectors of the Q matrices, the number of turning
points of the eigenvectors increases by powers of two. In general, for a particular N ,
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Fig. 2. Eight larger eigenvalues of matrices Q on logarithmic scale (log(λQ(N))/log(0.5)) as
a function of the number of subintervals N .
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Fig. 3. Eigenfunctions of PNTPN corresponding to the four eigenvalues of larger magnitude
for N = 10, 100, 200, and 300 subintervals.

unless an eigenfunction of PNTPN approximates one of T , we cannot expect the
corresponding eigenvalues to be close approximations.

In Figure 3 the eigenfunctions corresponding to the four eigenvalues of larger mod-
ulus of the operators PNTPN for N = 10, 100, 200, and 300 are shown to illustrate
their convergence to the eigenfunctions of T depicted in Figure 1. The eigenfunc-
tions are ordered, as in Figure 1, according to the magnitude of the corresponding
eigenvalue.
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5. Conclusions. Initial results in the characterization of the class of discrete-
state systems amenable to a linear continuous-state approximation have been pre-
sented. In particular, we have explored in this paper the properties of discrete-state
systems that arise in the inverse process, namely, in the state-discretization of lin-
ear continuous-state systems. The method to perform the state-discretization pre-
sented consists of a finite rank discrete approximation of the transition integral op-
erator corresponding to the linear continuous-state system. As a result of this state-
discretization procedure a Markov chain is obtained. In this work we have shown
that the eigenvalues of the resulting Markov chain transition matrices converge to
those of the transition operator of the underlying continuous-state linear model. This
convergence has been illustrated by a scalar example.
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