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CONVERGENCE OF EIGENVALUES TO THE SUPPORT OF

THE LIMITING MEASURE IN CRITICAL β MATRIX MODELS

C. FAN ‡, A. GUIONNET †, Y. SONG §, AND A. WANG♯

Abstract. We consider the convergence of the eigenvalues to the support of
the equilibrium measure in the β matrix models at criticality. We show a phase
transition phenomenon, namely that, with probability one, all eigenvalues will
fall in the support of the limiting spectral measure when β > 1, whereas this
fails when β < 1.

1. introduction and statement of the result

1.1. Definitions and Known Results. Let B be a subset of the real line. B can
be chosen as the whole real line, an interval, or the union of finitely many disjoint
intervals. For now, let V : B → R be an arbitrary function, and let β > 0 be a
positive real number. In this paper, we consider the β ensemble, i.e a sequence of

N random variables (λ1, . . . , λN ) with law µV ;B
N,β defined as the probability measure

on BN given by

dµV ;B
N,β (λ) =

1

ZV ;B
N,β

N
∏

i=1

dλie
−Nβ

2 V (λi)1B(λi)
∏

1≤i<j≤N

|λi − λj |β , (1.1)

where ZV ;B
N,β is the partition function

ZV ;B
N,β =

ˆ

R

· · ·
ˆ

R

N
∏

i=1

dλie
−Nβ

2 V (λi)1B(λi)
∏

1≤i<j≤N

|λi − λj |β . (1.2)

If β is equal to 1, 2, or 4, µV ;R
N,β is the probability measure induced on the eigen-

values of Ω by the probability measure dΩe−
Nβ
2 Tr(V (Ω)) on a vector space of real

symmetric, Hermitian, and self-dual quaternionic N ×N matrices respectively, see
[Meh04].
Therefore, the β models can be viewed as the natural generalization of these ma-
trix models and we will refer to λi as “eigenvalue” of a "matrix model". For
a quadratic potential, the β ensembles can also be realized as the eigenvalues
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of tridiagonal matrices [DE02]. Even though such a construction is not known
for general potentials, β matrix models are natural Coulomb interaction proba-
bility measures which appear in many different settings. These laws have been
intensively studied, both in physics and in mathematics. In particular, the con-
vergence of the empirical measure of the λi’s (which we will call hereafter the
spectral measure) was proved [ST97, Dei99, AGZ10], and its fluctuations ana-
lyzed [Joh98, Pas06, Shc13]. Moreover, the partition functions as well as the mean
Stieltjes transforms can be expanded as a function of the dimension to all orders
[BIPZ78, ACKM93, ACM92, Ake96, CE06, Che06, BG11, BG13]. It turns out that
both central limit theorems and all order expansions depend heavily on whether
the limiting spectral measure has a connected support. Indeed, when the limiting
spectral measure has a disconnected support, it turns out that even though most
eigenvalues will stick into one of its connected components, some eigenvalues will
randomly switch from one to the other connected components of the support even
at the large dimension limit. This phenomenon can invalidate the central limit
theorem, see e.g. [Pas06, Shc13], and results with the presence of a Theta func-
tion in the large dimension expansion of the partition function [BG13]. In the case
where the limiting measure has a connected support S, and that the eigenvalues are
assumed to belong asymptotically to S, even more refined information could be de-
rived. Indeed, in this case, local fluctuations of the λi’s could first be established in
the case corresponding to Gaussian random matrices, β = 1, 2 or 4 and V (x) = x2

[Meh04], then to tridiagonal ensembles (all β ≥ 0 but V (x) = x2) [RRV06] and
more recently for general potentials and β ≥ 0 [BEY12, BEY, ?, Shc13, FB]. How-
ever, all these articles consider non-critical potentials. We shall below define more
precisely the later case but let us say already that a non-critical potential prevents
the eigenvalues to deviate from the support of the limiting spectral measure as the
dimension goes to infinity. We study in this article β models with critical poten-
tials and whether the eigenvalues stay confined in the limiting support. In fact, we
exhibit an interesting phase transition: we show that if β > 1 the eigenvalues stay
confined whereas if β < 1 some deviate towards the critical point with probability
one. We postpone the study of the critical case β = 1 to further research. Let
us finally point out that the case where the potential is critical, but with critical
parameters tuned with the dimension so that new phenomena occur, was studied
in [Cla, Eyn06]. We restrict ourselves to potentials independent of the dimension.

We next describe more precisely the definition of criticality and our results.

Consider the spectral measure LN := 1
N

∑N
i=1 δλi

, where δλi
is the Dirac measure

centered on λi. LN belongs to the set M1(B) of probability measures on the real
line. We endow this space with the weak topology. Then, LN converges almost
surely. This convergence can be derived from the following large deviation result
(see [BAG97], and [AGZ10, Theorem 2.6.1]) :

Theorem 1.1. Assume that V is continuous and goes to infinity faster than 2 log |x|
(if B is not bounded). The law of LN under µV ;B

N,β satisfies a large deviation prin-

ciple with speed N2 and good rate function Ẽ , where Ẽ = E − inf{E(µ), µ ∈ M1(B)}
with

E [µ] = β

4

¨

(V (ξ) + V (η) − 2 log |ξ − η|) dµ(ξ)dµ(η) . (1.3)

In other words,
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(1)

lim
N→∞

1

N2
logZV ;B

N,β = − inf
µ∈M1(B)

E [µ] .

(2) Ẽ : M1(R) → [0,∞] possesses compact level sets {v : Ẽ(v) ≤ M} for all
M ∈ R+.

(3) for any open set O ⊂ M1(B),

lim inf
N→∞

1

N2
log µV ;B

N,β (LN ∈ O) ≥ − inf
O

Ẽ .

(4) for any closed set F ⊂ M1(B),

lim inf
N→∞

1

N2
logµV ;B

N,β (LN ∈ F ) ≤ − inf
F

Ẽ .

The minimizers of E are described as follows (see [AGZ10, Lemma 2.6.2]):

Theorem 1.2. E achieves its minimal value at a unique minimizer µeq. Moreover,
µeq has a compact support S. In addition, there exists a constant CV such that:
{

for x ∈ S 2
´

R
dµeq(ξ) ln |x− ξ| − V (x) = CV

for x Lebesgue almost everywhere in Sc 2
´

R
dµeq(ξ) ln |x− ξ| − V (x) < CV .

(1.4)

We will refer to µeq, which is compactly supported, as the equilibrium measure.

Remark 1.3. Theorem 1.1 and Theorem 1.2 imply that under µV ;B
N,β , LN converges

to the equilibrium measure µeq almost surely.

Once the existence of the equilibrium measure is established, one may explore
the convergence of the eigenvalues to the support of the equilibrium measure µeq. It
is shown in [BG11, BG13] that the probability that eigenvalues escape this limiting
support is governed by a large deviation principle with rate function given by

J̃ V ;B(x) = J V ;B(x) + CV (1.5)

with

J V ;B(x) =

{

V (x) − 2
´

dµeq(ξ) ln |x− ξ| x ∈ B\S
−CV otherwise.

(1.6)

The large deviation principle states as follows:

Theorem 1.4. Assume V continuous and going to infinity faster than 2 log |x| (in
the case where B is not bounded). Then

(1) J̃ V ;B is a good rate function.

(2) We have large deviation estimates: for any F ⊆ B\S closed and O ⊆ B\S
open,

lim sup
N→∞

1

N
lnµV ;B

N,β [∃i λi ∈ F] ≤ −β

2
inf
x∈F

J̃ V ;B(x),

lim inf
N→∞

1

N
lnµV ;B

N,β [∃i λi ∈ O] ≥ −β

2
inf
x∈O

J̃ V ;B(x).

The last theorem shows that the support of the spectrum is governed by the
minimizers of J̃ V ;B .
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Definition 1.5. Assume V is continuous. We say that V is non-critical iff J̃ V ;B

is positive everywhere outside of the support of µeq.

Remark 1.6. Theorem 1.2 only ensures J̃ V ;B is positive almost everywhere out-
side of the support of µeq.

Remark 1.7. In the literature, the potential V is also said to be critical when the
density of the equilibrium measure vanishes at an interior point or at an edge point
at a fast rate. We will assume that our potential is not critical in this sense (see
the fourth point in Assumption 1).

A consequence of the second part of the aforementioned theorem is the following:

Corollary 1.8. Let the assumptions in Theorem 1.4 hold. Assume that V is non-
critical. Then

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 0 , (1.7)

for any open set A containing the support of µeq.

Remark 1.9. Since the law of the eigenvalues satisfies a large deviation principle
with rate N, the eigenvalues actually converge to the support exponentially fast (or

more precisely, ∃c > 0, s.t, µV ;B
N,β (∃λi /∈ A) ≤ e−cN for any open set A containing

the support of µeq ).

Remark 1.10. By the definition of the partition function, 1 − µV ;B
N,β (∃λi /∈ A) =

ZV ;A
N,β

ZV ;B
N,β

, thus,

(1.7) ⇔ lim
N→∞

ZV ;A
N,β

ZV ;B
N,β

= 1. (1.8)

In the rest of this article we investigate what happens in the case where V is
critical. This investigation will require the uses of precise estimates on β models
partitions functions derived in [BG11, BG13] and to apply these results we shall
make the following assumption :

Assumption 1. • V : B → R is a continuous function independent of N .
• If ±∞ ∈ B,

lim inf
x→±∞

V (x)

2 ln |x| > 1. (1.9)

• supp (µeq) is a finite union of disjoint intervals, i.e. supp (µeq) of the form

S =
⋃g

h=1 Sh, where Sh = [α−
h , α

+
h ].

• Let B = ∪h[b
−
h , b

+
h ] with b−h ≤ α−

h ≤ α+
h ≤ b+h and set Hard = {a ∈

∪{α−
h , α

+
h } : α±

h = b±h } and Soft = ∪{α−
h , α

+
h }\Hard. Then we assume that

S(x) = π
dµeq

dx

√

∣

∣

∣

∣

∏

a∈Hard(x− a)
∏

a∈Soft(x− a)

∣

∣

∣

∣

.

is strictly positive whenever x ∈ S.
• V is a real analytic function in some open neighborhood A of S : A =
∪g
h=1Ah, Ah = (a−h , a

+
h ) for some a−h < α−

h < α+
h < a+h , and Ah, Ah′ are

disjoint for any h 6= h′.
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Remark 1.11. When V is analytic in a neighborhood of the real line, the third
point of our assumption is automatically satisfied. Here, we assume analyticity
only in a neighborhood of S.

Remark 1.12. Hereafter the neighborhood A will be fixed, but clearly can be chosen
as small as wished, being given it is open and containing S.

We want to investigate whether (1.7) still holds when the restriction on J̃ V ;B is
weakened so that it vanishes outside the support S. Our working hypothesis will
be the following:

Assumption 2. With A given in Assumption 1, assume that J̃ V ;B vanishes only
on the support of the equilibrium measure S and at one point c0 in A

c
. We also

require that V (and therefore J̃ V ;B) extends as a twice continuously differentiable
function in a open neighborhood (c0 − ε, c0 + ε) of c0, for some ε > 0 and that
d2

dx2 J̃ V ;B(c0) > 0. Moreover, for technical reason, we require d2

dx2V ≥ σ > 0 on A.

Remark 1.13. Because J̃ V ;B is a good rate function which is positive outside
A ∪ (c0 − ǫ, c0 + ǫ) for any ǫ > 0 small enough under our assumptions, Theorem

1.4 implies that µV ;B
N,β (∃λi /∈ A ∪ (c0 − ǫ, c0 + ǫ)) goes to zero exponentially fast. In

other words, it is bounded above by e−Ncǫ for some cǫ > 0.

Potentials V satisfying Assumptions 1 and 2 are easy to build. Indeed, being
given a probability measure µ so that x → f(x) = 2

´

log |x−y|dµ(y) is well defined
and continuous on the whole real line, we simply choose V to be equal to f on the
support S of µ and Lebesgue almost surely strictly greater than f outside S. This
insures that µ is the equilibrium measure of our β-model with potential V as it
satisfies (1.4). We can then choose V − f strictly positive outside S except at the
point c0 where it is strictly convex. To make sure that V also satisfies Assumption
1, we can take µ to be the equilibrium measure for a potential W which is real-
analytic, going to infinity faster than 2 ln |x|, strictly convex in a neighborhood of
S, and non-critical (in the one cut case, we can take W strictly convex everywhere).
We let A = ∪g

h=1(a
−
h , a

+
h ) be a bounded, open neighborhood of the support of µ. We

choose V = W +CW on (−∞, a+g ). We may assume without loss of generality that

J̃ V ;B(a+g ) is strictly positive. We then choose for x > a+g , V (x)−f(x) = d(x−c0)
2

for some d > 0 and c0 > a+g so that d(a+g −c0)
2 = J̃W ;B(a+g ). We have constructed

an equilibrium measure µ for a potential V satisfying Assumptions 1 and 2.

1.2. Main Results.

Theorem 1.14. Given Assumptions 1 and 2, and with A as in assumption 1, c0, ε
as in Assumption 2, we have the following alternative :

• when β > 1,

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 0, (1.10)

• when β < 1,

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 1. (1.11)

Equivalently, for any ǫ ∈ (0, ε), the probability that there exists an eigenvalue in
(c0 − ǫ, c0 + ǫ) goes to zero when β > 1 and to one when β < 1.
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The behavior below β = 1 can be illustrated with the case β = 0 where one
would consider a potential V vanishing on a support S and at a point c0 (where its
second derivative is positive), being strictly positive everywhere else. This corre-
sponds to N independent variables with probability of order N−1/2 to belong to a
small neighborhood of c0 (where the latter probability can be estimated by Laplace
method). However, we will show in this article that this weight has to be corrected

by a term N− β
2 by studying the precise estimates derived in [BG11, BG13]. Essen-

tially, digging back into the latter estimates, one can realize that these corrections
come from Selberg integral and in fact is due to the Coulomb gas interaction. In
this case, it is clear that some eigenvalues will lie in the neighborhood of c0 with
positive probability as soon as β + 1 < 2. The existence of a phase transition for
this phenomenon at β = 1 is new to our knowledge. It suggests that the support
of the eigenvalues of matrices with real coefficients corresponding to β = 1 matrix
models might be more sensible to perturbations of the potential than matrices with
complex coefficients (corresponding to β = 2). This is however not supported by
finite dimensional perturbations of the Wigner matrices since the BBP transition
[BBAP05] does not vary much between these two cases. Let us observe that our
arguments could be carried similarly with several critical points similar to c0 with-
out changing the phase transition. However, if the second derivative of J V ;B at
these critical points could vanish so that J V ;B behaves as |x− c0|q in the vicinity
of c0 for some q > 2, the phase transition would occur at a threshold βq depending
on q (see Remark 5.4).

1.3. Structure of the paper. In Section 2 we reduce the problem to the analysis
of the probability that M eigenvalues are contained in a small neighborhood of c0
while the rest of the N − M eigenvalues are contained in A and state the main
proposition, Proposition 2.1, which give precise estimates of this probability. We
deduce our main result Theorem 1.14 in the case β > 1 in Section 3 and the case
β < 1 in Section 4. Section 5 is devoted to the proof of Proposition 2.1, which we
first give in the case where the equilibrium measure has a connected support and
then extend to the general case. The appendix contains precise concentration of
measures results which are key to our estimates.

1.4. Notation. We use the notation X . Y (resp. X & Y ) to denote X ≤ CY
(resp. X ≥ CY ) for some universal constant C . X ≈ Y when both X . Y
and X & Y hold. We sometimes use a ≪ 1 to denote that a is smaller than any
universal constant involved in the proof.

2. Preliminary and Basic analysis

The probability that a specific subset of M eigenvalues are contained in a small
neighborhood (c0 − ǫ, c0+ ǫ) of c0 while the other N −M eigenvalues are contained

in A shall be denoted by ΦV ;ǫ
N,M,β :

ΦV ;ǫ
N,M,β := µV ;B

N,β (λN−M+1, ..., λN ∈ (c0 − ǫ, c0 + ǫ), λ1, ...λN−M ∈ A) . (2.1)

ΦV ;ǫ
N,M,β depends also on A and B but it will be fixed hereafter as in Assumption 1

so that we do not stress this dependency. ǫ will later be chosen small enough, but
notice that the conclusion will not depend on this choice since the probability that
eigenvalues go in [c0 − ε, c0 + ε]\[c0 − ǫ, c0 + ǫ] goes to zero as N goes to infinity
for any ǫ > 0 by the large deviation principle Theorem 1.4 and Assumption 2. The
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key to prove our main result is to compute the speed at which ΦV ;ǫ
N,M,β goes to zero

as N goes to +∞. Indeed, note that

µV ;B
N,β (∃λi /∈ A) = µV ;B

N,β (∃λi /∈ A ∪ (c0 − ǫ, c0 + ǫ))

+
∑

M>δN

(

N
M

)

ΦV ;ǫ
N,M,β

+
∑

1≤M≤δN

(

N
M

)

ΦV ;ǫ
N,M,β

=: P1 + P2 + P3. (2.2)

Here δ > 0 is a small fixed constant which will be chosen later.
Since J̃ V ;B is a good rate function which is positive outside A ∪ [c0 − ǫ, c0 + ǫ],

Theorem 1.4 implies that for any fixed ǫ > 0, P1 approaches 0 exponentially fast.
In other words, it is controlled by e−Ncǫ for some cǫ > 0.

P2 is bounded above by the probability that there are at least δN eigenvalues
close to c0. This implies that the empirical measure LN must put a mass δ in
(c0−ǫ, c0+ǫ), so that it must be at a positive distance of µeq since (c0−ǫ, c0+ǫ)∩S =
∅. By the large deviation principle for the law of LN described in Theorem 1.1, P2

is bounded above by e−cδN
2

for some cδ > 0. Therefore we deduce that for any
δ, ε > 0, there exists c(δ, ǫ) > 0 such that

µV ;B
N,β (∃λi /∈ A) = P3 +O(e−c(δ,ǫ)N). (2.3)

Our goal, therefore, is to control the third term P3.
Since J V ;B goes to infinity at infinity, Theorem 1.4 also shows that the proba-

bility to have an eigenvalue above some finite threshold goes to zero exponentially
fast. Therefore, we may assume without loss of generality that B is a bounded set.

Thus, we are left to analyze ΦV ;ǫ
N,M,β for a bounded set B.

We prove the following bounds in section 5.2:

Proposition 2.1. Let Assumptions 1 and 2 hold. Then, there exist c, δ0, ǫ0 > 0 so
that for δ ∈ (0, δ0), ǫ ∈ (0, ǫ0 ∧ ε), we have uniformly in M ≤ δN

ΦV ;ǫ
N,M,β .

1

N
M(β+1)

2

+O(e−cN2

). (2.4)

On the other hand,

1

N
(β+1)

2

ZV ;A
N,β

ZV ;B
N,β

. ΦV ;ǫ
N,1,β +O(e−cN2

). (2.5)

If one assumes A is connected, Proposition 2.1 follows from the calculation from
[BG11] where the one-cut case in considered. In the general multi-cut case, the
proof of Proposition 2.1 is based on the precise estimate derived in [BG13] for the
partition function and correlators for fixed filling fraction measure, that is with
given number of eigenvalues in each connected part of the support S. One could
also consider the more general multi-cut case where the potential V is replaced by
a non-linear statistic and then use similar estimates derived in [?].

We next give the proof of our main result.
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3. Convergence of the eigenvalues to the support S when β > 1

We next prove the first half of our main Theorem 1.14. To this end, we use the
upper bound (2.4) provided by Proposition 2.1 to find

P3 ≤
∑

1≤M≤δN

(

N
M

)

ΦV ;ǫ
N,M,β .

(

1 +N− (β+1)
2

)N

− 1 . (3.1)

where we used that any error of order e−cN2

in ΦV ;ǫ
N,M,β, 1 ≤ M ≤ δN, is neglectable

in the above sum. Hence, when β > 1, P3 goes to 0 as N goes to +∞. We deduce
by (2.3) that

lim
N→∞

µV ;B
N,β (∃λi /∈ A) = 0 .

Moreover, this is equivalent to the fact that µV ;B
N,β (∃λi ∈ (c0 − ǫ, c0 + ǫ)) goes to

zero by Remark 1.13.

4. Escaping eigenvalues when β < 1

We prove that when β < 1 the probability that no eigenvalues lies in the neigh-
borhood of c0 goes to zero, that is by Remark 1.10, that we have:

lim
N→∞

ZV ;A
N,β

ZV ;B
N,β

= 0. (4.1)

This is done by lower bounding the probability pVN,β that one eigenvalue exactly

lies in the neighborhood of c0. Indeed, as Ai = {λi ∈ (c0 − ǫ, c0 + ǫ), λj ∈ A, j 6= i}
are disjoint as soon as (c0 − ǫ, c0 + ǫ) ∩A = ∅, we have by symmetry

pVN,β = NΦV ;ǫ
N,1,β.

Since pVN,β ≤ 1, we deduce from (2.5) that

N

N
(β+1)

2

ZV ;A
N,β

ZV ;B
N,β

. 1 +N ×O(e−cN2

) ,

which results with
ZV ;A
N,β

ZV ;B
N,β

. N
β−1
2 ,

so that (4.1), and therefore the second part of our main Theorem 1.14, follows.
We first prove Proposition 2.1 in the case where µeq has a connected support

(the one cut case) where our proof is based on the expansion of partition functions
obtained in the one cut case in [BG11], and then turn to the more delicate general
case (multi-cut case) which is based from estimates from [BG13].

5. Proof of Proposition 2.1

We start with the explicit formula for ΦV ;ǫ
N,M,β which can be written as follows :

ΦV ;ǫ
N,M,β =

Z
N

N−M
V ;A

N−M,β

ZV ;B
N,β

ˆ

[c0−ǫ,c0+ǫ]M
Ξ(η1, . . . , ηM )

∏

1≤k<l≤M

|ηk − ηl|β
M
∏

j=1

e−
βM
2 V (ηj)dηj

where
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Ξ(η1, · · · , ηM ) := µ
N

N−M
V ;A

N−M,β





M
∏

j=1

eβ
∑N−M

i=1 ln |ηj−λi|−
β
2 (N−M)V (ηj)





The term
∏

1≤k<l≤M |ηk − ηl|β is bounded by (2ǫ)
βM(M−1)

2 . Thus, we have:

ΦV ;ǫ
N,M,β ≤ (2ǫ)

βM(M−1)
2 YN,MLN,M . (5.1)

with

LN,M :=

ˆ

[c0−ǫ,c0+ǫ]M
Ξ(η1, · · · , ηM )

M
∏

j=1

e−
Mβ
2 V (ηj)dηj .

YN,M :=
Z

N
N−M

V ;A

N−M,β

ZV ;B
N,β

,

(5.2)

We wish to split YN,M into components for further analysis. We make the decom-
position:

YN,M =
ZV,A
N,β

ZV,B
N,β

ỸN,M , ỸN,M = FN,MGN,M , (5.3)

where

FN,M =
Z

N
N−M

V ;A

N−M,β

ZV ;A
N−M,β

, GN,M =
ZV ;A
N−M,β

ZV ;A
N,β

. (5.4)

To get the upper bound in Proposition 2.1, we will use the trivial estimate YN,M ≤
ỸN,M since ZV,A

N,β ≤ ZV,B
N,β . Thus one finally rewrites formula (5.1) as:

ΦV ;ǫ
N,M,β ≤ (2ǫ)

βM(M−1)
2 GN,MFN,MLN,M . (5.5)

We remark here that when M=1, the inequality (5.1) becomes an equality:

ΦV ;ǫ
N,1,β =

ZV ;A
N,β

ZV ;B
N,β

GN,1FN,1LN,1 . (5.6)

(5.6) will be used to prove (2.5).

We next estimate GN,M and FN,M × LN,M . We shall prove that

Proposition 5.1. Under Assumptions 1 and 2, there exists a small δ > 0, such
that uniformly for M ≤ δN , we have

GN,M ≈ CM
1

N
Mβ
2

eNM( β
2 infξ∈B J V ;B(ξ)+ β

2

´

V (η)dµeq(η))(
N −M

N
)

β
2 (N−M) . (5.7)

Furthermore, there exists a finite positive constant C such that for all 1 ≤ M ≤ δN ,

1

C
e−CM2 ≤ CM ≤ CeCM2

. (5.8)

For the term FN,M × LN,M we have the estimate
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Proposition 5.2. Under Assumptions 1 and 2, there exists a positive constant c
and a finite constant C so that for δ > 0 small enough, such that uniformly on
M ≤ δN ,

FN,MLN,M . eCM2

e−
β
2 NM(

´

V (η)dµeq(η)+inf J V ;B) 1

N
M
2

+O(e−cN2

)

and

FN,1LN,1 & e−
β
2 N(

´

V (η)dµeq(η)+inf J V ;B) 1

N
1
2

+O(e−cN2

) .

Clearly, Propositions 5.1 and 5.2 give Proposition 2.1. First, as the constant c
in Proposition 5.2 is independent from δ, we can choose δ small enough so that

O(e−cN2

) is negligible. Indeed, since G−1
N,M is at most of order eCδN2

, for δ ≤ c/2C

GN,Me−cN2 ≤ e−cN2/2

is negligible compared to

GN,MeCM2

e−
β
2 NM(

´

V (η)dµeq(η)+inf J V ;B) 1

N
M
2

which is decaying only polynomially by Proposition 5.1. We get (2.4) by using
(5.5), Propositions 5.1 and 5.2, we choose ǫ small enough so that 2ǫe4C ≤ 1 so that

the terms in eCM2

disappear, and we observe that (N −M)/N ≤ 1. To derive the
lower bound (2.5), we use (5.6) together with Propositions 5.1 and 5.2. in this case

the term ((N − 1)/N)
β
2 (N−1) is of order one.

The proof of Proposition 5.2 is based on the following proposition.

Proposition 5.3. Under Assumption 1 and 2, there exists positive constants c, C, δ0
so that for δ ∈ (0, δ0), M ≤ δN , for any η1, · · · , ηM belonging to [c0 − ε, c0 + ε], we
have the following uniform estimate:

FN,MΞ (η1, · · · , ηM ) . eCM2

e−
βNM

2

´

V (η)dµeq(η)e−
β
2 N

∑M
j=1 J V ;B(ηj) + O(e−cN2

).
(5.9)

Moreover, for η ∈ [c0 − ε, c0 + ε]

FN,1Ξ (η) & e−
βN
2 (
´

V (x)dµeq(x)+J V ;B(η)) +O(e−cN2

). (5.10)

Let us first deduce Proposition 5.2 from Proposition 5.3. The proof is straight-
forward since by Proposition 5.3

FN,MLN,M . eCM2

e−
β
2 NM

´

V (η)dµeq(η)−NM β
2 inf J V ;B

(
ˆ c0+ǫ

c0−ǫ

e−NJ̃ V ;B(x)dx

)M

+O(e−cN2

)

where we can use Laplace method (recall we assume J̃ V ;B(c0) = 0, d
dx J̃ V ;B(c0) =

0, d2

dx2 J̃ V ;B(c0) > 0, see [AGZ10, section 3.5.3] for details) to get

ˆ c0+ǫ

c0−ǫ

e−NJ̃ V ;B(λ)dλ ≈ 1√
N

.

The proof of the lower bound is similarly deduced from (5.10).
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Remark 5.4. Note that if we would have assumed instead of d2

dx2 J̃ V ;B(c0) > 0

that for some q > 2, J̃ V ;B(x) ≃ |x − c0|q in a neighborhood of c0, we would have
obtained

FN,MLN,M . CeCM2

e−
β
2 NM

´

V (η)dµeq(η)
1

N
M
q

+O(e−cN2

)

and criticality would have occurred at β = 2/q.

5.1. Proof of Proposition 5.1 and 5.3 in the one cut case. To estimate
GN,M and FN,MLN,M in the one cut case, we shall rely on the following results
from [BG11]:

Theorem 5.5. [BG11, Propositions 1.1 and 1.2] If V satisfies Assumption 1 and

2 on A, there exists a universal constant e, and constants F
{k}
β so that we have for

N large enough:

ZV ;A
N,β = N ( β

2 )N+e exp
(

K
∑

k=−2

N−k F
{k}
β + o(N−K)

)

. (5.11)

Moreover, define the correlators given for x ∈ C\A by:

W1(x) := µV ;A
N,β (

∑ 1

x− λi
), W

{−1}
1 (x) := µeq(

1

x− λ
). (5.12)

Then

W1(x) = NW
{−1}
1 (x) +O(1). (5.13)

(5.13) holds uniformly for x in compact regions outside A(in particular near the
critical point c0).

Proof of Proposition 5.1. The fact that

GN,M ≈ CMeMNAβ
1

N
Mβ
2

(
N −M

N
)

β
2 (N−M), (5.14)

where Aβ = −2F
{−2}
β does not depend on N or M and CM . eCM2

is a direct

consequence of (5.11). Moreover, the large deviation principle of Theorem 1.1(1)
yields

−F
{−2}
β = inf E =

β

2
(

ˆ

V (x)dµeq(x)−
ˆ ˆ

log |x− y|dµeq(x)dµeq(y)) .

Also, by definition, since the effective potential is constant on the support of the
equilibrium measure,

inf J V ;B = −CV =

ˆ

V (x)dµeq(x)− 2

ˆ ˆ

log |x− y|dµeq(x)dµeq(y) .

As a consequence

Aβ =
β

2
inf
ξ∈A

J V ;A(ξ) +
β

2

ˆ

V (η)dµeq(η) .

Proof of Proposition 5.3. In the one-cut case we can prove this proposition

without the error terms O(e−cN2

) which we will need to deal with the several cut
case. The main tool is to use concentration of measure. In fact we can write

FN,MΞ(η1, . . . , ηM ) = µV ;A
N−M,β

(

e
∑N−M

i=1 hη(λi)
)



Convergence of eigenvalues to the support of the limiting measure 12

with

hη(x) = β
M
∑

i=1

(ln(ηi − x)− 1

2
V (ηi)−

1

2
V (x)) .

Eventhough this function depends on M , concentration inequalities will allow a
uniform control. We develop the necessary estimates in the appendix, see Lemma
A.3. ‖f‖L denotes the Lipschitz norm and ‖f‖∞ the uniform bound on a neigh-
borhood of A. We apply Lemma A.3 with h = hη. As the ηi are away from A,
‖hη‖2L is uniformly bounded by CM2 for some finite constant C, whereas ‖hη‖∞ is
of order M . Hence, we deduce from Lemma A.3 that

e−CMe(N−M)µeq(hη) ≤ FN,MΞ(η1, . . . , ηM ) ≤ eCM2

e(N−M)µeq(hη) . (5.15)

Note that we can replace above (N − M)µeq(hη) by Nµeq(hη) up to an error of
order M2 which amounts to change the constant C. This completes the proof of
Proposition 5.3 since

µeq(hη) =
β

2
(

M
∑

i=1

2

ˆ

log |ηi − x|dµeq(x) − V (ηi))−
β

2
M

ˆ

V (x)dµeq(x)

= −β

2

M
∑

i=1

J V ;B(ηi)−
β

2
M

ˆ

V (x)dµeq(x) . (5.16)

5.2. Proof of Propositions 5.1 and 5.3 in the general multi-cut case. In
the multi cut case, we have to be more careful since the number of eigenvalues that
are in each connected component of the support of µeq is not a priori fixed. The
idea is therefore that we will have to sum over all possible number of eigenvalues
in these components. Our proof is based on estimates from [BG13] on the fixed
filling fraction measure (see Definition 5.6 below). We introduce some new notation
below.

From the viewpoint of Large Deviation Principle on LN , the number of eigenval-
ues in the interval Ah, which we will call the filling fractions, should in principle be
proportionnal to µeq(Sh), which is the mass of equilibrium measure accumulated
on Ah.

Thus, let’s define f⋆ as the g-tuple denoting the mass of the equilibrium measure
in each of the intervals that comprise the support of the equilibrium measure, i.e.

f⋆ := (µeq(S1), · · · , µeq(Sg)) (5.17)

In order to describe how the N eigenvalues are distributed in the g intervals Ah,
we let

Eg :=

{

(f1, · · · , fg)|
g
∑

h=1

fh = 1, f1, . . . , fg ≥ 0

}

. (5.18)

Now we can define the fixed filling fraction probability measure:
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Definition 5.6. For any
−→
N = (N1, . . . , Ng) so that

−→
N/N ∈ Eg, let the fixed filling

fraction probability measure dµV ;A

N,
−→
N

N
,β

be given by:

dµV ;A

N,
−→
N

N
,β
(λ) :=

1

ZV ;A
N,f,β

g
∏

h=1

[

Nh
∏

i=1

dλh,i 1Ah
(λh,i) e

−βN
2 V (λh,i)

∏

1≤i<j≤N

|λh,i − λh,j |β
]

×
∏

1≤h<h′≤g

∏

1≤i≤Nh

1≤j≤Nh′

|λh,i − λh′,j |β ,

where ZV ;A
N,f,β is the partition function.

The following precise estimate of the fixed filling fraction measure from [BG13,
Theorem 1.4] will be essential in our proof. It extends Theorem 5.5.

Theorem 5.7. If V satisfies Assumption 1 and 2 on A, there exists t > 0 such

that, uniformly for
−→
N
N ∈ Eg that satisfies |

−→
N
N − f⋆| < t, we have:

N !
∏g

h=1(Nh)!
ZV ;A

N,
−→
N

N
,β

= N ( β
2 )N+e exp

(

K
∑

k=−2

N−k F
{k}
−→
N

N
,β
+ o(N−K)

)

. (5.19)

e is some universal constant, F
{k}
f ,β extends as a smooth function for f close enough

to f⋆, and at the value f = f⋆, the derivative of F
{−2}
f ,β vanishes and its Hessian

is negative definite. Assume that
−→
N/N converges towards f . Then, the law of the

empirical measure LN under µV ;A
N,f,β satisfies a large deviation principle with speed

N2 and good rate function Ẽf which is minimized at a unique probability measure
µeq,f , which is also the minimum of E under the constraint that µ(Ah) = fh. In

particular LN converges µV ;A

N,
−→
N

N
,β

almost surely to µeq,f . Moreover, for x ∈ C\A let

W−→
N

N

(x) := µV ;A

N,
−→
N

N
,β
(
∑ 1

x− λi
), W

{−1}
f (x) := µeq,f (

1

x − λ
). (5.20)

Then, there exists t > 0 such that, uniformly for f ∈ Eg and |f − f⋆| < t, we have
an expansion for the correlators:

W−→
N

N

(x) = NW
{−1}
−→
N

N

(x) +O(1). (5.21)

(5.21) holds uniformly for x in compact regions outside A(in our case in particular

near the critical point c0). f → W
{−1}
f (x) extends as a smooth function in a

neighborhood of f⋆ for any x ∈ C\S.
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Proof of Proposition 5.1. By the partition function estimate from Theorem 5.7,
for a sufficiently small κ, we have

ZV ;A
N−M,β =

∑

N1+···+Ng=N−M

(N −M)!

N1! · · ·Ng!
· ZV ;A

N−M,
−→
N

N−M
,β
,

≈
∑

N1+···+Ng=N−M,

|
−→
N

N−M
−f⋆|<κ

(N −M)(
β
2 )(N−M)+e exp

(

(N −M)2F
{−2}

−→
N

N−M
,β
+ (N −M)F

{−1}
−→
N

N−M
,β

)

+O(e−CκN
2

)ZV ;A
N−M,β

(5.22)
with some Cκ > 0. In the last step we applied the large deviation principle for the

empirical measure LN−M ; in other words, the sum over all
−→
N such that |

−→
N

N−M −
f⋆| ≥ κ divided by ZV ;A

N−M,β is negligible since it is the probability that the filling
fractions are away from the equilibrium ones, a set on which the distance between
the empirical measure LN−M and the equilibrium measure is positive. We used
Theorem 5.7 to estimate each partition functions in the remaining sum. Similarly,

ZV ;A
N,β =

∑

N1+···+Ng=N

N !

N1! · · ·Ng!
· Z

N
N

;A

N,
−→
N

N
,β
,

≈
∑

N1+···+Ng=N,

|
−→
N

N
−f⋆|<κ

(N)(
β
2 )(N)+e exp

(

(N)2F
{−2}
−→
N

N
,β

+ (N)F
{−1}
−→
N

N
,β

)

.
(5.23)

All that is left to do is to analyze the limiting behavior of :

LK :=
∑

N1+···+Ng=K,

|
−→
N

K
−f⋆|<κ

exp((K)2F
{−2}
−→
N

K
,β

+ (K)F
{−1}
−→
N

K
,β

). (5.24)

Here
−→
N = (N1, · · · , Ng) with

∑

Ni = K. This is done in Lemma 5.8 below, from
where the rest of the argument is exactly as in the one-cut case:

Lemma 5.8.

LK ≈ exp(K2F
{−2}
f⋆,β

+KF
{−1}
f⋆,β

) (5.25)

Proof. According to Theorem 5.7, for f sufficiently close to f⋆, F
{−1}
f and F

{−2}
f

are smooth, and the Hessian of F
{−2}
f ,β is negative definite at f⋆. Thus we can find

constant c, C such that for |f − f⋆| ≤ κ < t, we have

|F {−1}
f ,β − F

{−1}
f⋆,β

| ≤ C|f − f⋆|, (5.26)

F
{−2}
f ,β − F

{−2}
f⋆,β

≤ −c|f − f⋆|2, (5.27)

|F {−2}
f ,β − F

{−2}
f⋆,β

| ≤ C|f − f⋆|2. (5.28)

We first derive the lower bound of LK . Indeed, there exists at least one
−→
N1 :=

(N1, · · · , Ng), such that |
−→
N1

K − f⋆|. 1
K and N1 + · · ·+Ng = K. Thus we can easily

get the following lower bound of Lk with (5.26), (5.28):

LK≥ exp(K2F
{−2}
−→
N1
K

,β
+KF

{−1}
−→
N1
K

,β
) & exp(K2F

{−2}
f⋆,β

+KF
{−1}
f⋆,β

). (5.29)
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Next, we compute the upper bound of LK . Direct computation leads to

LK

exp(K2F
{−2}
f⋆,β

+KF
{−1}
f⋆,β

)

=
∑

N1+···+Ng=K,

|
−→
N

K
−f⋆|<κ

exp(K2(F
{−2}
−→
N

K
,β

− F
{−2}
f⋆,β

) +K(F
{−1}
−→
K

K
,β

− F
{−2}
f⋆,β

))

≤
∑

|
−→
N

K
−f⋆|≤κ

exp(−cK2|
−→
N

K
− f⋆|2 + CK|

−→
N

K
− f⋆|).

(5.30)

In the last step of (5.30), we use (5.26) and (5.27). It is clear that the above right
hand side is bounded from which the claim follows. �

Having established Lemma 5.8, we complete the proof of Proposition 5.1 as in
the one-cut case.

To prove Proposition 5.3, let us notice first that we can replace Ξ by taking the in-
tegral only on filling fractions close to that of the equilibrium measure since the error

will be otherwise of order e−cN2

: for a given configuration λ = (λ1, . . . , λN−M−1)

denote
−−−→
N(λ) = (N1(λ), . . . , Ng(λ)) with Nh(λ) = #{i : λi ∈ Ah}. Then hereafter

we replace Ξ by its localized version :

Ξ(η1, · · · , ηM ) := µ
N

N−M
V ;A

N−M,β (

M
∏

j=1

eβ
∑N−M

i=1 ln |ηj−λi|−
β
2 (N−M)V (ηj)1

|
−−−→
N(λ)
N−M

−f⋆|<κ
) .(5.31)

For any κ > 0, the part we cut-off can be controlled by large deviation principle of

the empirical measure LN , which is of order e−cκN
2

. All our estimates on FN,MΞ
below will be made up to this error that we will not write done to simplify the
exposition. The proof goes again through an expansion of terms where the filling
fractions are fixed.

FN,MΞ(η1, · · · , ηM )=
∑

N−M=N1+···+Ng ,

|
−→
N

N−M
−f⋆|<κ

c−→
N
d−→
N
, (5.32)

where

•
c−→
N

:=
1

ZV ;A
N−M,β

(N −M)!

N1! · · ·Ng!
· ZV ;A

N−M,
−→
N

N−M
,β
, (5.33)

•

d−→
N

:= µV ;A

N−M,
−→
N

N−M
β
(
M
∏

i=1

e
∑N−M

j=1 (−β
2 V (ηi)+β ln |λj−ηi|−

β
2 V (λj))). (5.34)

We use the concentration Lemma A.3 with

h(x) =

M
∑

i=1

hηi
(x) , hη(x) = −β

2
V (x) + β ln |ηi − x| .

Note that ‖h‖2L is of order M2 for η1, · · · , ηM close to c0 and ‖h‖∞ is of order M .
We first estimate d−→

N
and then substitute the estimate into (5.32).
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d−→
N

= µV ;A

N−M,
−→
N

N−M
;β
(e

∑N−M
i=1 h(λi))

M
∏

j=1

e−
β
2 (N−M)V (ηj)

≤ CeCM2

e
(N−M)µ

eq,
−→
N

N−M

(h) M
∏

j=1

e−
β
2 (N−M)V (ηj). (5.35)

Next, we want to substitute µ
eq,

−→
N

N−M

by µeq. By Appendix A.1 in [BG13],

f → µeq,f (hη) is Lipschitz in a neighborhood of f⋆, uniformly in η ∈ [c0 − ǫ, c0 + ǫ]
so that

|µeq(h)− µ
eq,

−→
N

N−M

(h)| = |µeq,f⋆
(h)− µ

eq,
−→
N

N−M

(h)| ≤ CM |
−→
N

N −M
− f⋆|. (5.36)

Combining (5.35), (5.32), (5.36) gives

FN,MΞ (η1, · · · , ηM ) . eCM2

(

M
∏

j=1

e−
β
2 NV (ηj))

×
∑

|
−→
N

N−M
−f⋆|<κ

c−→
N

exp

(

(N −M)(µV ;A
eq (h) + CM |

−→
N

N −M
− f⋆|) +O(M)

)

.

(5.37)
Finally, observe as in (5.30) that c−→

N
has a sub-Gaussian tail, that is:

c−→
N

≤ Ce−c(N−M)2|
−→
N

N−M
−f⋆|

2+C(N−M)|
−→
N

N−M
−f⋆|. (5.38)

so that we deduce that
∑

|
−→
N

N−M
−f⋆|<κ

c−→
N
eCM(N−M)|

−→
N

N−M
−f⋆| ≤ CeCM2

, (5.39)

Indeed,

CM(N −M)|
−→
N

N −M
− f⋆| ≤

2

c
C2M2 +

c

2
|N −M |2|

−→
N

N −M
− f⋆|2

so that the term c−→
N
eCM(N−M)|

−→
N

N−M
−f⋆| has also a sub-Gaussian tail up to mul-

tiplying it by eCM2

, thus (5.39) follows from (5.38). Therefore (5.37) yields the
desired upper bound, as in (5.16):

FN.MΞ(η1, · · · , ηM ) . eCM2

(

M
∏

j=1

e−
β
2 (N−M)V (ηj))e(N−M)µeq(h)

≤ CeCM2

e−
βNM

2

´

V (η)dµeq(η)e−N β
2

∑M
j=1 J V ;B(ηj) .

(5.40)

The proof of (2.5) is similar to the one cut case. From (5.32), choosing
−→
N so that

|−→N −Nf⋆| ≤ 1, we get
FN,1Ξ(η) ≥ c−→

N
d−→
N

.

We use Lemma A.3 to lower bound the term in d−→
N

:

d−→
N

≥ e−cM2

e−
β
2 N(J V ;B(η)+

´

V (x)dµeq(x)) .
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The c−→
N

term is bounded from below by the partition function estimate from The-

orem 5.7 as well as the upper bound for ZV ;A
N,β provided by (5.23) and Lemma

5.8.
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Appendix A. Concentration lemmas

A.1. Moments estimate. Here we deduce the following lemma by using the es-
timate for correlator, by a direct application of Cauchy’s integral formula.

Lemma A.1. Let Assumption 1 and 2 hold, let
−→
N = (N1, . . . , Ng) so that

∑

Ni =

N and let µV ;A

N,
−→
N

N
,β

be the fixed filling fractions measure, and µ
eq,

−→
N

N
,
be its limiting

measure. Let h be a function that is holomorphic in a open neighborhood U of A.
Then,

|µV ;A

N,
−→
N

N
,β
(
∑

h(λi)) −Nµ
eq,

−→
N

N

(h)| . C‖h‖∞. (A.1)

where ‖h‖∞ is the supremum norm of h on a contour around A inside U .
This result in particular hold in the one cut case where the fraction is always set to−→
N = N .

Proof. As h is holomorphic, we can write by Cauchy formula, for a contour C around
A,

µV ;A
N,f,β(

∑

h(λi)) =
1

2iπ

ˆ

C

h(ξ)Wf (ξ)dξ

from which the estimate follows from (5.21) (and (5.13) in the one cut case). �

A.2. Concentration estimates. We assumed in Assumption 2 that V is strictly
convex in a neighborhood of A in order to use the following concentration inequality,
see sections 2.3.2, 4.4.17, 4.4.26 in [AGZ10] for more details. Note here that we
fix the component in which each eigenvalue is living so that indeed they only see a
convex potential.

Lemma A.2 (Concentration Inequality). Let f ∈ Eg be given. Let V be a smooth
function such that V ′′(x) ≥ C > 0 for all x ∈ A. Let h be a function that is class

C1 on RN . Let
−→
N = (N1, . . . , Ng) so that

∑

Ni = N . Then

µV ;A

N,
−→
N

N
,β

[

exp{
(

f − µV ;A

N,
−→
N

N
,β
(h)

)

}
]

. e
1

NC
‖h‖2

L , (A.2)

where

‖h‖L :=

√

√

√

√

N
∑

i=1

sup
x∈AN

|∂λi
h(x)|2.

Note that this lemma applies in particular in the one cut case.
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Lemma A.3. Let Assumption 1 and 2 hold and let
−→
N = (N1, . . . , Ng) so that

∑

Ni = N . Then, there exists a finite constant C so that for any h holomorphic in
an open neighborhood of A, we have

e−C‖h‖∞ . µV ;A

N,
−→
N

N
,β
(exp(

N
∑

i=1

(h(λi)−
ˆ

h(η)dµ
eq,

−→
N

N

(η)))) . eC(‖h‖2
L
+‖h‖∞) . (A.3)

Proof. By Jensen’s Inequality:

µV ;A

N,
−→
N

N
,β
(exp(

∑

h(λi))) ≥ exp(µV ;A

N,
−→
N

N
,β
(
∑

h(λi))). (A.4)

The upper bound is based on the concentration equality for fixed filling fractions
of Lemma A.2 with ‖∑h(λi)‖2L = N‖h‖2L so that

µV ;A

N,
−→
N

N
,β
(exp(

∑

h(λi))) ≤ exp{ 1

C
‖h‖2L} exp(µV ;A

N,
−→
N

N
,β
(
∑

h(λi))). (A.5)

Lemma A.2 completes the proof. �
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