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CONVERGENCE OF FINITE DIFFERENCE SCHEMES
FOR CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS:

THE CORRECTED ANTIDIFFUSIVE FLUX APPROACH

FRÉDÉRIC COQUEL AND PHILIPPE LE FLOCH

Abstract. In this paper, we apply the general method we have presented else-
where and prove the convergence of a class of explicit and high-order accurate
finite difference schemes for scalar nonlinear hyperbolic conservation laws in sev-
eral space dimensions. We consider schemes constructed—from an £-scheme—
by the corrected antidiffusive flux approach. We derive "sharp" entropy inequal-
ities satisfied by both ^-schemes and the high-order accurate schemes under
consideration. These inequalities yield uniform estimates of the discrete space
derivatives of the approximate solutions, which are weaker than the so-called BV
(i.e., bounded variation) estimates but sufficient to apply our previous theory.

1. Introduction

In this work, we are concerned with the Cauchy problem for nonlinear hy-
perbolic scalar conservation laws with several space variables:

(1.1) dtu+dxi(u)+dyg(u) = 0,       u(t,x,y)eR,    te(0, T), (x, y)eR2,

and

(1.2) u(0,x,y) = u0(x,y),        (x,y)eR2,

where f and g:K-»l are Lipschitz continuous functions and the initial data
uQ is a given function in L (R ) n L°°(R ). As is well known, this problem
in general does not admit smooth solutions, so that weak solutions in the sense
of distributions must be considered. Moreover, an entropy condition must be
added to ensure uniqueness in the class of weak solutions (Lax [27]). Recall also
that Volpert [51] has proved the existence and uniqueness of such an entropy
weak solution in the class of bounded functions of bounded variation, and
Kruzkov [22] has extended the result of Volpert to the more general class of
bounded functions.

This paper treats the approximation of the entropy weak solution to prob-
lem (1.1), (1.2) by high-order accurate and explicit finite difference schemes. A
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170 FRÉDÉRIC COQUEL AND PHILIPPE LE FLOCH

previous work (Coquel and Le Floch [7]) has presented a general theory to prove
convergence of finite difference schemes for equations in several space dimen-
sions. In the present work, we apply the method of [7] to get the convergence of
the schemes constructed by the so-called corrected antidiffusive flux approach.

Let us first recall that the classical approach used to show convergence of finite
difference schemes for scalar conservation laws is based on the Lax-Wendroff
Theorem [28, 29]. This requires both a uniform L°°-bound and strong L1-
convergence of the family of approximate solutions. On the other hand, as is
well known, in the case that a uniform estimate of the total variation of the
approximate solutions, i.e., a BV-estimate, is available, the compactness theo-
rem of Helly gives strong L -convergence of the approximate solutions. Actu-
ally, this argument yields convergence of some high-order accurate difference
schemes in the case of equations in only one space dimension, but convergence
of only first-order accurate schemes for equations with several space variables.
Concerning the techniques of derivation of BV-estimates, we refer among oth-
ers to the works of Crandall and Majda [8], Harten [21], Leroux [30, 31], Osher
[35], Osher and Chakravarthy [36], Sanders [37], Shu [39], Sweby [42], and
Tadmor [45].

In contrast with this approach, the theory of Coquel and Le Floch [7] allows
one to prove convergence of finite difference schemes without using a uniform
BV-estimate. The method of proof is based on a uniqueness result in the class of
entropy measure-valued solutions, due to Di Perna [15]. In [7], a certain "weak
estimate" of the space derivatives of the approximate solutions is introduced,
but this estimate indeed turns out to be weaker than the usual BV-estimate.
General convergence theorems which generalize the Lax-Wendroff Theorem are
proved in [7] in the setting of measure-valued solutions. These theorems of
convergence, combined with the uniqueness theorem of Di Perna, yield strong
L -convergence of the sequence of approximate solutions.

This paper is devoted to the application of this theory to a class of finite
difference schemes. To be specific, we focus on the high-order accurate schemes
which are constructed from an ^-scheme (Osher [35]) by the corrected antidif-
fusive flux approach and, for the sake of simplicity, we restrict ourselves to the
schemes defined on regular Cartesian meshes. Actually, the method of proof
presented here is very general and could be applied to the case of irregular
meshes or to implicit schemes, as well as finite volume schemes. Moreover, we
present our results for an equation with two space variables, but the extension
to an arbitrary number of space variables is immediate.

The results of convergence known for the schemes with corrected antidiffusive
flux concern only equations in one space dimension: for instance, Cahouet and
Coquel [3], Leroux and Quesseveur [32], and Vila [50]. The main result of this
paper is a generalization of these results of convergence to the case of equations
with several space variables. Moreover, even in the case of equations with one
space variable, our method turns out to improve existing results.

In order to apply the method of proof of [7], the main difficulty is to derive
a "weak estimate" of the space derivatives of the approximate solutions. Recall
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that this estimate replaces the usual BV-estimate and is weaker than this latter
(see [7]). For this purpose, we obtain in this paper "sharp" entropy inequalities
(in a sense specified in §3 below) satisfied by the schemes under consideration,
i.e., both is-schemes and the high-order schemes with corrected antidiffusive
flux. We emphasize that the above inequality is derived from a sharp evaluation
of the entropy dissipation of the schemes, and the required uniform estimate of
the space derivatives is precisely provided by the term of entropy dissipation
([7, §2] and §4 below).

An outline of the paper is as follows. Section 2 recalls the general method of
proof. The derivation of the sharp entropy inequalities satisfied by certain first-
order schemes is done in §3. Finally, §4 generalizes the inequalities obtained in
§3 to the high-order accurate schemes with corrected antidiffusive flux and gives
the proof of convergence. Throughout the paper, C denotes a positive constant
independent of the increments of the discretization and is not necessarily the
same at each occurrence.

2. Survey of the general theory

This section gives the main results of [7] which will be needed in this paper.
We refer to [7] for the details and the proofs. The main tool used in our
approach is the concept of measure-valued solutions. Instead of functions in
L°°((0, T) x R2), we consider Young measures on (0, T) xR2, that is, weak-
star bounded applications v: (0, T) xR2 -> Prob(l), where Prob(K) is the
space of all measures of probability on E, i.e., nonnegative measures with unit
total mass. As in [15] and [7], all the Young measures will be tacitly assumed
to be supported in a compact set K of R. We recall from Di Perna [ 15] that a
Young measure i/:(0J)xl2-t Prob(R) is a measure-valued solution to the
conservation law (1.1) if it satisfies

(2.1) dt(v,id) + dx(v,i) + dy(v,g) = (j

in the sense of distributions. This definition indeed generalizes the usual notion
of weak L°°-solutions in the sense of distributions (see [15]). Moreover, for
the sake of uniqueness, it is necessary to add an entropy condition (Lax [27]).
Recall that a Lipschitz continuous function (U, F, G) : R —► R is said to be
an entropy for equation ( 1.1 ) if U is a convex function and F and G satisfy
the following compatibility relations:

(2.2) \j'(v)f'(v) = F'(v),    U'(v)g'(v) = G'(v),    a.e.»eR.

Such a function (U, F, G) corresponds to an additional conservation law sat-
isfied by each smooth solution of (1.1). A Young measure v is consistent with
the entropy inequality associated with (U, F, G) if it satisfies

(2.3) dt(v,U) + dx(v,V) + dy(v,G)<0

in the sense of distributions. A measure-valued solution v is an entropy
measure-valued solution if it satisfies (2.3) for all entropies (U, F, G).
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f>0

Then, if u in L°°((0, T) x R ) denotes the unique entropy weak L°°-solution

In the class of entropy measure-valued solutions, Di Perna has proved the
following generalization of the Kruzkov uniqueness theorem [22].

Theorem 2.1 (Di Perna [15]). Let the initial data u0 be in LX(R2) n L°°(R2).
Assume that v : (0, T) x R -> Prob(R) is a Young measure which satisfies the
following properties:

(1) v is a measure-valued solution to equation (I.I),
(2) v is consistent with all entropy inequalities (2.3),
(3) v assumes its initial data u0 in the following sense:

(2.4) the function (t,x,y)-> (vt x y, |id|) belongs to L°°((0, T), LX(R2)),

and

(2.5) lim I f f (vs x     \id-u0(x,y)\)dxdyds = 0.£0 tJo J*

Then, if u in L°°((0, T) xR2)
to problem (1.1), (1.2), we have

(2.6) vt,x,y = *«t.x.,)>    ct.e.(t,x,y)eR2.

We now consider approximate solutions to (1.1), (1.2) constructed by gen-
eral explicit finite difference schemes, and we recall several general convergence
theorems proved in [7] which are useful to apply Theorem 2.1 in the context
of finite difference schemes. Let us first introduce some notation. Let h,hx,
and h be the time, x-space, and y-space increments of the discretization,
respectively. The mesh ratios

(2-7) AX = A,        Ày = lL
nx y

will be kept constant and should satisfy a Courant-Friedrichs-Levy (CFL) sta-
bility condition. We define a regular grid by setting

(2.8) tn = nh   (neN),       x¡ = ihx,    y¡ = jhy   (i, j e Z or i, j eZ+ \).

We consider approximate solutions u : R+ x R —> R to problem (1.1), (1.2)
which are piecewise constant, i.e., for t e [tn , tn+x)

(2.9) u(t,x, y) = u"j,       xe[xi_xl2,xi+xl2),ye[yj_xl2,yj+xl2).

For / = tQ = 0, (w°  ),   6Z is defined from the initial data u0 by projection,

n J fXi+i/2     ryi+\ß
(2.10) uij = TT /       u0(x,y)dxdy,       i,je1.

nxny Jx¡_in hj-m

Then for each integer n, the sequence (ui i )i jeZ is given by the following
(2k + l)-point explicit difference scheme: for any i, j eZ

(2.11) u"j = ii", - Xx(f"+x/2tJ - ftl/2J) - iy(gî,j+i/2 - SÎj-m) »
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where f"+x/2 j and g" j+x,2 are defined from two given numerical flux functions
/ and g:R2k -*R by

(212)        f¡+i/2j = f(«ni-k+i,j>uí,-k+2j>--'>u'!+k,j)>      i.jez,

gtj+1,2 = S(u"j_k+X, u"j_k+2,..., u"iJ+k),       i,jeZ.

As usual, the functions / and g are assumed to be consistent with the exact
flux functions f and g, i.e., they are Lipschitz continuous and satisfy

(2.13) f(v,v,...,v) = f(v),    g(v,v,...,v) = g(v),       veR.

Assuming that the family of approximate solutions {u } defined by (2.9)-(2.12)
is uniformly bounded in L^-norm,

(2.14) II"*IIl«((o,7-)xr')^c»
one can construct a Young measure v to represent all the L°°-weak-star com-
posite lir
we have
posite limits of u   when h (or a subsequence) tends to zero. In other words,

a(u) -+(v,a),    weak-star in L°°((0, T) x R2),

for each continuous function a: R -> R (Tartar [47, 48]; see also Ball [1] and
Dacorogna [9]). The following result proved in Coquel and Le Floch [7] is an
extension of the Lax-Wendroff Theorem [28, 29].

Theorem 2.2. Assume that the numerical flux functions f and g are consistent
with equation (1.1) and the family of approximate solutions {u } defined by the
difference scheme (2.9)—(2.12) satisfies the following properties:

(1) the uniform L°°-estimate (2.14),
(2) there exists ß in [0, 1) such that

(2.15) A'  E   E j1^-^1+ '"'■;+■    ~^\hxhyh<C,

where the constant C is independent of h (with Xx = h/hx and X  = h/h   kept
constant). Then the Young measure v associated with {u } is a measure-valued
solution to (1.1).

Assumption (2.15) is a uniform estimate of the discrete space derivatives
L

of {« } that will be called the weak estimate of the space derivatives. For
ß e (0, 1), estimate (2.15) is indeed weaker than a BV-estimate because of the
weight h  . Several comments concerning (2.15) can be found in [7].

Let (U, F, G) be an entropy for equation (1.1); a function (U, F, G) is a
numerical entropy consistent with the (exact) entropy (U, F, G) if the func-

2ktions F and G are Lipschitz-continuous functions defined from R into R
and satisfy

F(v, v,... , v) = F(v),    G(v, v, ... , v) = G(v),       v eR.
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For simplicity, we set
(üS-u(«¿).
'    ri+l/2,j ~ r(-Ui-k+l,j> ••• ' ui+k,j>>

^GlJ+l/2 = G(ulj_k+l,...,ulJ+k),       neN, i,jeZ.
The following theorem is proved in [7].

Theorem 2.3. Assume that the hypotheses (2.13)—(2.15) of Theorem 2.2 are sat-
isfied. Let (U, F, G) be a numerical entropy consistent with an exact entropy
(U, F, G) for equation (1.1). Suppose that the family of approximate solutions
{u } satisfies the following inequality (n e N, i, j eZ):

(2.16) ¿(tC,-^j)+¿(^i/aj-í-./2j)+c(or.y+i/2-G?.;-i/2) **¡.J>
where the term R" , tends to zero in the following weak sense:

(2.17) E   E^.JtcJ'XAV-*0'    whenh^O,
n£N   (,7'eZ

nh<T
1 1for every function <p : (0, T) x R —► R+ of class C with compact support

(Xx = h/hx and X  = h/h   are kept constant). Then the measure-valued solution
v associated with {u } is consistent with the entropy (U, F, G). Moreover, if
{u } satisfies (2.16), (2.17) for all entropy (U, F, G), then v is an entropy
measure-valued solution to (1.1).

Concerning the initial condition (1.2), one has [7]:

Theorem 2.4. Let the initial data «0 be in LX(R2) n L°°(1R2). Assume that the
sequence of approximate solutions [u } satisfies (2.14), (2.15) and the following
uniform Lx-estimate:

(2.18) \\uh(t,-,-)\\L¡{&2)<C,    a.e.t>0.

Suppose moreover that, for one given strictly convex entropy U satisfying U(0) =
0, the discrete entropy inequality (2.16) holds with

(2.19) lim   E   5Z \R"j\hxhyh-*°   as t goes toO.
/,>o   «6N ijez

nh<T

Then the Young measure v associated with the family {u } satisfies the initial
condition (1.2) in the sense (2.4), (2.5).

Theorems 2.2, 2.3, and 2.4 show that the Young measure v associated with
the family of approximate solutions {« } is an entropy measure-valued solution
to (1.1) which satisfies the initial condition (1.2) in the strong sense. Thus, by
Theorem 2.1, v is a Dirac mass, i.e., (2.6) holds. In that case, we can conclude
that u   converges strongly in Lx to the unique entropy weak L°°-solution to
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problem (1.1), (1.2). This method of proof will be applied in §4 of this paper
to show convergence of the schemes constructed by the corrected antidiffusive
flux approach. Recall also that the above method generalizes to finite difference
schemes a result of Szepessy [43, 44] which concerns the streamline diffusion
finite element method.

3. A SHARP ENTROPY INEQUALITY SATISFIED BY  ¿'-SCHEMES

3.1. Introduction. In this section, we derive a sharp entropy inequality for (first-
order accurate) ¿-schemes applied to an equation with one space variable. This
inequality is fundamental for the proofs of convergence of the next section and,
in particular, will be generalized there to equations with several space variables
and to high-order accurate schemes constructed from ¿-schemes.

Entropy inequalities for, say, first-order accurate schemes like ¿-schemes
have already been obtained in the literature (see, for instance, Crandall and
Majda [8], Osher [35], Tadmor [45],... ). But in the present work, we are
interested in a stronger version of these inequalities, that we call "sharp''' entropy
inequalities. They are of interest since they yield an estimate of the discrete
space derivatives of the approximate solutions, i.e., precisely an estimate of the
form (2.15). About such sharp entropy inequalities, only partial results have
been obtained in the literature, mainly by authors concerned with applications
of the method of compensated compactness. Some ideas of the proofs below
come from the work of Di Perna [13]; we also mention Lax [26], Ding, Chen,
and Luo [12], and Wang, Li, and Huang [52]. On the other hand, we emphasize
that our results below give the precise CFL-like stability conditions and probably
better estimates of that sort. In particular, we point out a substantial difference
between the Godunov scheme and the modified Lax-Friedrichs scheme [45]: the
rate of entropy dissipation (see below) turns out to be cubic for the former and
quadratic for the latter.

Here is an outline of this section. We first consider in §3.2 the Godunov
scheme and then in §3.3 the modified Lax-Friedrichs scheme. The extension to
a general ¿-scheme is obtained in §3.4 by writing it as a convex combination
of the Godunov scheme and the modified Lax-Friedrichs scheme. Finally, §3.5
is concerned with the class of schemes whose numerical viscosity coefficient is
bounded below by a positive constant.

In this section, since we consider an equation with only one space variable, we
use the notation introduced in §2 except that the letters y, j , etc. are omitted.
The given flux function f is assumed to be of C class and uniformly convex
(several remarks concerning the case of a not necessarily convex function are
also given in this section). Our estimates will depend explicitly on the convexity
modulus of the function / given by

(3.1) <5 = inff"(w)>

the infimum being taken over all u under consideration. The sonic point uf is
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defined by

(3.2) *'(«.) = 0.
For the sake of simplicity in the presentation (it is not a restriction for our
purpose, and the extension to a general entropy is immediate), we shall use
throughout this section the entropy (U, F) defined by

2 pu
(3.3) V(u) = \,    F(«)=/   vi'(v)dv,    V«el.

2 Jo
3.2.   A cubic estimate of the entropy dissipation in the Godunov scheme. For
any uL and uR in R, let f —> w( j ; uL, uR) denote the unique entropy weak
solution to the Riemann problem

dtu + dxf(u) = 0,        t>0, xeR,

and
for x < 0,
for x > 0.

Since the function f is strictly convex, w(-;uL,uR) is composed of either a
shock wave (if uL > uR) or a rarefaction wave (if uL < uR) (see Lax [27]).
Then, the Godunov scheme is defined by its numerical flux function fG given
by

(3.4) fG(uL,uR) = f(w(0;uL,uR)),        uL,uReR.

We assume that the CFL stability restriction on Xx ,

(3.5) ^sup|f'(W)| < i,
u

is satisfied (the supremum is taken over all u under consideration) and will use
an averaged form of the Godunov scheme introduced by Tadmor [45]. Follow-
ing the notation of §2, the sequence (m")„€N ,€Z constructed by the Godunov
scheme can be redefined by
11 c   \ n+1        ]/   n+l,R   ,     n+1 ,L, _.      .      „(3.6a) u¡    = 2-(ui_x/2 +ui+x/2 ),       neN, tel,

where we have set
*)     fb ¡2

(3.6b) tfllp = JT I      w(j¡''u"-\'u") dx'       neN, ieZ,

and

(3.6c) u¿l¡2R = Y l_     w{j¡'u"i'uM)dx>       neN, ieZ.

This decomposition of the Godunov scheme is helpful to derive the entropy
inequalities below. Recall also that the function

(3.7) FG(uL,uR) = F(w(0+;uL,uR)),        uL,uReR,
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is a numerical entropy-flux for the Godunov scheme associated with the given
(quadratic) entropy (3.3). As is usual, we set

Then, following an idea introduced by Di Perna in [13], we are able to give
a closed formula for the dissipation of entropy in each subcell of the form
[nh, (n + l)h) x [(i + l/2)hx, (i + l)hx) or [nh ,(n+l)h)x [ihx, (i + l/2)hx)
(n e N, i e Z).
Lemma 3.1 (Godunov scheme). Consider the Godunov scheme (3.6) under the
CFL condition (3.5). Then, for each n in N and each i in Z, we have

n+l,R,

(3.8a) _ _      ,    rhj2     /x     m    m  x-,    Tn,R 1     f *' (X      n      n   \        n+l,R
2Vi+l/2 -YjQ W\h'Ui' Um) - "i+1/2 dx

and

(3.8b)

n+l,L,
v(u;;;i2)-v(u;)-2xx(F(u;)-FG\l+x/2)

~.    Tn,L 1/" (x       n       n    \ n+l,L2    ,
= 2KJM/2 - J¡- j_h l2W\p U' ' "i+lj " "'+1/2       dX '

where the terms J"fx/2 and J"+x,2 equal zero except when theRiemann solution
w(-; u", u"+x) contains a shock wave with speed ct"+x/2 and, in this latter case,
they are given by

(3 9a) JnR =iF«+i)-F(M")-<i/2(u(""+i)-u«))'    '/<i/2>0,
,+1/2    \ 0,    otherwise,

and

(39b) J"<L =iFK+.)-F«)-<./2(u(""+.)-U("-))!    ifo»+i/2<0,
/+1/2    \ 0,    otherwise.

Remark 3.1. In the case that the Riemann solution w(- ; u" , u"+x) consists of
a shock wave with zero speed (o"+x/2 = 0), then by definition the term J"f_x,2
equals the amount of entropy dissipation associated with this stationary shock
wave, i.e.,

•Ci/2 = F(M"+i) - F(M")   & ° in general),

while we have /,+1/2 = 0. This is due to the definition (3.7) of the numerical
entropy-flux function.

Proof of Lemma 3.1. We only prove formula (3.8a); the proof of (3.8b) is sim-
ilar. In any zone of smoothness of the function w(-; u", u"+x), we have the
conservation law of entropy

d,V(w{", u% u" x)) + dxF(w(.; u",,ulx)) = 0.
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Thus, by integration over each domain of regularity of the subcell (0, h) x
(0, h J2) and under the CFL condition (3.5), we obtain

f0"  V(W (ji' "< ' "7+»)) dx ~ ~2V{um
(3.10)

+ h{F(u"i+x) - F(w(0+ ; u] , u"i+x))} = hJ^R/2,
with the jump term defined by (3.9a). We then observe that

,„     ,        n       n    NN      ¥T,   n+l,R^ n+l,R,    ,        n       n    , n+l,R,
\J(w(-;ui,ui+x))-V(ui+x/2 )-ui+l/2 {w(-;unuM)-uM/2 )

1 i     /        n       n    % n+1 ,R,2
= \\w(-;ui,uM)-ui+xl2 | ,

since U(m) = u ¡2. Hence, by (3.6b) we have
rKß

Í3-11'

2rn    2.
^-y       U(w(-; m,. , ui+x))dx-U(ui+x/2 )

1     /"Ajt/2 i     /        n       n    s n+\,R,2   ,
= Y J0        \W(-'UfUM)-Ui+l/2  I   dx>

which, used in (3.10), yields the required equality (3.8a).   D
It is easy to verify that the terms of the right-hand sides of formulae (3.8)

are nonpositive. Therefore, adding (3.8a) and (3.8b) and using (3.6a) and the
property of convexity of the function U, we obtain

(3.12)     U(M;+1)-U(M;) + A;t(¿G"!¡.+1/2-¿G";¡_1/2)<0,        «6N,  ieZ.
Inequality (3.12) is the so-called entropy inequality satisfied by the Godunov
scheme (see also, for instance, Crandall and Majda [8]).

In this work, we are interested in a stronger version of this type of inequality.
Namely, we want to estimate carefully the right-hand sides of (3.8) in order to
derive a "sharp" entropy inequality. For this purpose, we notice that Lemma
3.1 shows that both the shock waves of the solutions of Riemann problems and
the L2-type projections used in the Godunov method generate some entropy
dissipation. We expect to estimate these terms of entropy dissipation in terms
of the wave magnitude \u"+x - u"\ of each Riemann problem. For each n in
N and /' in Z, we shall distinguish between two cases, depending on whether
w(-; u", u"+l) is a shock wave or a rarefaction wave (S below is defined by
(3.1)).
Lemma 3.2 (Entropy dissipation of a shock wave in the Godunov scheme). Con-
sider the Godunov scheme under the CFL condition (3.5). Suppose that, for some
n in N and i in Z, the Riemann solution w(-;u",u"+x) consists of a shock
wave (i.e., u" > u"+l) whose speed is denoted by o"+x,2 . Then we have

udCi1//) - u(""+.)+2^(F(«;+,) - c+1/2)
<113a)        < -V,+,/2 {§K+, - "■ I3 + <>/2(i - 2V,+i/2)K+i - <l2}

<0
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and

U(";++,'/2L) - U«) + 2Xx(Fli+x/2 - F(u1))

-Sl+M2){l\Ui+l-Ui\(3.13b) ^-^^-^+1/2^

/2(1 + 2V,+1/2K+1-"-l2|<o,
IÎ       11

-ff/+l/2(]

vv/zere i.".,/2 is defined by'i+l/2

(3.14) 5
«
1+1/2

1-     '/<l/2>0.
o,  «K+1/2<o.

Remark 3.2. Under the assumptions of Lemma 3.2, suppose that the sonic point
ut lies between u"+i and u" and that

f(^+1)-f(«") = 0,

i.e., u" and w"+1 are connected by a stationary shock; then we have

<W = 0> S/+I/2 = °-
Thus, in that case, inequalities (3.13) become

U(0*) - U(""+i) + 2^(F(""+.) - C+./2) * 0
and

U<»G?/Í) - U(ií) + 2Ax(¿G">;+1/2 - F0Í)) < -^K+i - <I' •
Moreover, formulae (3.8) prove in fact that the above inequalities are equalities.
This shows that the local entropy dissipation of the Godunov scheme may admit
a uniform cubic estimate of the form C\u"+X - u"\ , but not a quadratic one.
This is actually related to the property that the numerical viscosity coefficient
of the scheme under consideration vanishes in the "neighborhood" of the sonic
point (§3.5 treats precisely the schemes whose viscosity coefficient is uniformly
bounded below; for these schemes, a quadratic rate is obtained).

Proof of Lemma 3.2. We only demonstrate (3.13a); the proof of (3.13b) is sim-
ilar. By Lemma 3.1 we have to estimate each term of the right-hand side of
(3.8a). Note that the term J"fxR,2 defined in (3.9a) is zero when a"+x ,2 is non-
positive, i.e., when s"+x/2 = 0. Otherwise, we can write

rn,R I   ,+l     »//   , j n        \ ,,   n    ,2      ,   n,2N
J.+i/2=l      vf(v)dv-ai+x/22-((ui+x)  -(«,.)).

And with the Rankine-Hugoniot relation,

1/2<wK+i-w,) = fK+i)-fK)>
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we obtain

'm/2 = T" vi'(«)dv - (f("/+.) - f(""))î(""+i + «0 ■

By integration by parts it is easy to deduce from the above formula that

(3.15) J?;*2 = \ jy (uï - v)(v - u"i+x)i"(v) dv .
i

Hence, ô being given by (3.1), we get
n

(3.16) Ji+x/2 < 2 ¡^   («,• - «)(« - ui+x)dv = -y^K+i - M, I .

since u" > u"+i. We next turn to the second term of the the right-hand side of
(3.8a). Since w(- ; u" , u"+x) contains a shock wave of speed a"+l,2 , which can
be positive or not, we set o"+x,2 + = max(0, o"+x/2) and get

1     fHx/2 I    r(x       n      n   \ n+\,R 2   ,

(3.17) *J0
,      n           ,   n        n+l,R,2  ,   ^ ~ ^x°i+ll2, + ),   n n+\,R.2

= Vi+l/2. + (»l -«1+1/2  )   +-2 ("'+1 ~ "'+'/2  }   •
On the other hand, (3.6b) yields

n+l ,R       -,      n n,/i       it      « \«
M,+ l/2    = 2Kai+l/2, + Ui + i1 - 2^<T,+l/2,+)"l+l :

thus,

(3.18a) w;. - ul+x/2  = (1 - 2A;tex,.+1/2>+)(w¿ - uM)
and

(3.18b) "¿+i-"/+i/2  =2Axff,+i/2)+("/+i-",)-
Using (3.18) in (3.17), we finally find

1    fh*/21    f*7  I    /*     „     „   \       „+1,R 2
rfx

n    n2
(3.19) «x >

= Vw/2+C - 2Vi+l/2,+)« - ""+.)'
The conclusion follows immediately from (3.8a), (3.16), and (3.19).   D

Our second result treats rarefaction waves (ut below is the sonic point defined
by (3.2)).
Lemma 3.3 (Entropy dissipation of a rarefaction wave in the Godunov scheme).
Consider the Godunov scheme under the CFL condition (3.5). Suppose that, for
some n in N and i in Z, the Riemann solution w(-; u", u"+x) consists of a
rarefaction wave (i.e., u" < u"j+x). Then, setting

i- -„, n,L ,i,   n, n '(M,+ i) — f(M/) n,R ,i,   n    .
(3.20) (ri+x/2=f(ut),    oMj2=      V  _     '   ,    (T|.+ 1/2 = f (ul+x),

"¡+1      ui
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we have

V(u%2R) - U«+1) + 2Xx(F(u"i+x) - F"GJ+XI2)

(3.21a)
.      ,     n,R    \  O  ...        n,L ,,   n ,3   ,    n,L  ,   n «,3N ]

^ -KSi+l/2\j2^1 - Si+l/2)\Ui+l - U*\   +í«+l/2l"í+l-"/l  )}
*      n, R   r   ft ,L      n, L   , *       ~ *       n       \2

- ÁxSi+l/2ÍSi+l/2ai+l/2yl ~ Mxai+\/2>

+ 2kx(\ - 2Xxa";R2)(a"+x/2)2}\u"+l - u"\2 < 0,

and

U(0L) - u<"?) + 2VC+i/2 - *(«?))
,      ,   ,, n,L  ,  Ó   ,  n,/l  , n,3   ,   /, n,R  N,   n n.3^

" Íi+1/2)Í2{J'+1/2|M* " Mí '  + (      íí+i/2)l«i+i - "i I }

~^(! -^'^{(i +2^<'Í2)2^K+i/2)2
-(1-S1+l/2)i7,+ l/2(1+2/lJC(7i+l/2)  }l"l+l-«|l    ^°>

where s"f_x/2 and s"fx,2 are defined by (a = L or R)

( 1,    ifa":xn>Q,(3 22) í '     = J ,+1/2
t0,    i/ff/+1/2<0.

Remark 3.3. Under the assumption of Lemma 3.3, if w, lies between m" and
u"+x and the relation f(u"+x) - i(u") = 0 holds, then

Si+l/2 _ U '      Ji+l/2 ~~ V '       C7/+l/2 - U •

Thus, in that case, inequalities (3.21) become

(3.23a)   \5(u1tl¡2R) " UiO + ̂ (FO^) - ¿G" ,+1/2) < -Xx^\u"i+X - uj

and

(3.23b)      U(u^xx/2L) - U(ii) + 2kx(FnGJ+xl2 - F(ii)) < -A,±|«, - M;|3.

This shows again that no uniform quadratic estimate can be obtained in that
case, but only a cwèzc estimate.

Proof of Lemma 3.3. We give the proof of (3.21a).   By Lemma 3.1, the en-
tropy dissipation in that case is only due to the error in the L   projection
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n,L
¡+1/2.+step (see (3.6b), (3.6c)).   Setting a";x/2 + = max(0, a";x/2) and a";R2+ =

max(0, a"fR,2), we have

1       f**'1f'1 (X       n       n    \ n+l,R
J0 W(pUi>Ui+l)-Ut+l/2 dx

n,R

(3.24) ,      n,L       f  n        n+\,Rs2  ,   (1      ^A^CT- +1,2     )     „ «+1.Ä.2
= V/+l/2, + («/ - «¿+1/2  )   + -T"-(«/+! - M,+ l/2  )

1     M;lß< (X      n      n   \
+s¡/K,;,„r (P «<'»•«)-

n+l,R
i+1/2 ÚLX.

The first two terms of the right-hand side of (3.24), denoted by Rx, can be
estimated as follows. By (3.6b), we have

(3.25)

n+l,R       _.      n,L n       ,,       -,      n,R       .   n
M,+i/2  ^ 2/x(T,.+1/2i+M;. + (1 - 2Xxai+x/2+)ui+x

2    [h<+*2.+       (X       n       n    \    ,

Since iü(- ; m" , «",,) is a rarefaction wave, we have

f'x-l. p'/ «\   *'/ «(3.26) tn(i; u], «;+I) = (f)" (Í)   fori e [f«), f'«,)].

Hence, by a change of variables, we can get

t- / u; ( r ; ii. , ii. ,   dx = 2A   / uî (u) du,
hxJho^/2+   va      +^ y<+

where by convention we set

uj+ = max(u,, Uj), ;'e

ut being given by (3.2). Thus, we have after an easy computation

2     f^MP.*       rx       n       n    \    ,*;L-  ,b(ï:"""w)<'jc
*   Jnai+I/2,+

= 2^{M;+li/(ii"+lj+)-^>+f,(ii"i+)-f(M;+1)+)+f(ii;i+)})

that is

(3.27) x      "°i+l/2,+

= 2Mffi+I/2. + «/+l -(7«+l/2,+"i -f("/+l,+) + f("/,+)}'

Using (3.27) in (3.25), we find the formula

(3.28) «1+1/2    ="/+l-2^(f("I+l, + )-f("1, + ))>
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from which we deduce
n n+\,R

(3.29a) (u¡ - u¡;;¡2) = (u¡ -ui+x) + 2Xx(i(ui+x<+) - i(u"+))

and

(3.29b) n+l,R
(",+i - «1+1/2 ) = 2A*(f(«,+i,+) - t(ui+)).

Finally, with obvious notation, the first two terms in the right-hand side of
(3.24) become, because of (3.29),

n,R
D         ,      n,L       ,  n        n+l,Rs2   ,   (1      2Kai+l/2, + ),   n n+\,R.2
Rl = Vl+l/2, + («l - "i+1/2  )   + -2~^-(«Í+1 - ",+ 1/2  )

= K  f'(<+) V~1X f(«"+1,+)-f(<+)'

ui+x - «.

+2Xx(l-2X/(ui+,+))
f«i,+ -f(<+)

«L - ¡?
na

«i+i"«/)

But since
W+L+)-{K+)>s»,R  f«,)-fK)

u"   -u"ui+l      ui 'i+\/2 u"   -u""i+l      Ui

we obtain the estimate

(3.30)
Rl ^ K{SMI2aMI2^ - 2Ka1+m)2l/2"i+l/2V

n,R n,R «x2
+ 51+'i/22^(l -2Axtr/+'1/2)(ff,.+1/2) }(M/+i -«,.)

On the other hand, the last term, denoted by R2, of the right-hand side of
(3.24) is estimated as follows. Similarly as above, we can verify that

1     fh<m.+        ¡X       n       n    \ n+l,R 2    ,
^tL, W(h>Ui>Ui+l)-UM/2       dx

x 1+1/2,+

„ I" -".+ 1/2  I f   (V)dv-
i.+

Since u" + <u"+x    , we have

d   .    t,      fuM.+ n+l,R,2   , à^xfi   n n+l,Äx3     ,   « «+l,ÄN3n
R2>ÔXX \v-ui+x/2 I ^ = -fL{(«í+1) + -«/+1/2 ) -(",-,+-",+i/2 ) }.

■>u, . J

á being given by (3.1), so that

¿A„ ..   „ n+l,Ä,3
Ä2^-3i{("i+l,+ -«i+l/2  )   +(("/+!, + -««,+) -(«,+!,+ -",+1/2

Since for each zn > 0,

n+l,Äss3,

¿n(z3 + (zrz)3) = z¡/4,
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it is easy to deduce from the above inequality that

fo, if <<«£,<«.,
(3.31) R2>{ ^nl««+i-«J '   lf", <".<",+!.

,    s i   n n.3        -r. ~    n   ~    nAxnl",+i-«,-l >   if", <", <",+i-
The required inequality (3.21a) follows immediately from (3.24), (3.30), and
(3.31).   D

From the results of Lemmas 3.2 and 3.3, and Remarks 3.2 and 3.3, we can
make the following observation concerning the Godunov scheme. The entropy
dissipation of the Godunov scheme is composed of two terms. One is propor-
tional to the modulus of convexity of the function f and, roughly speaking,
corresponds to the dissipation of entropy inside a shock wave or inside a rar-
efaction wave. This term yields below a cubic uniform estimate. The second one
is generated (essentially) by the L projection error. It is proportional to the
speed of the waves (o"+xi2 or a"f;x,2, o"fx,2), which can vanish in the "neigh-
borhood" of the sonic point ut. This is the reason why a quadratic uniform
estimate of the local entropy dissipation does not hold true for the Godunov
scheme.

Hence, the "better" estimate of the entropy dissipation of the Godunov
scheme is given by the following theorem.

Theorem 3.1 (A sharp entropy inequality for the Godunov scheme). Under the
CFL condition (3.5), the Godunov scheme (3.6) satisfies for each integer n in N

(3.32) E^+l)hx-E^)K+K^E\um-<\\^°-
¡6Z i'ez ¿ex

Remarks 3.4. ( 1 ) Inequality (3.32) indeed yields a uniform estimate in L -norm
and a weak estimate of the space derivative of the form (2.15) (see §4; the initial
data will be assumed there to have compact support).

(2) Theorem 3.1 (and actually all the results of this section) could be gen-
eralized to arbitrary strictly convex entropies U ; the only modification is that
<5 should be replaced by ô min U" . But we emphasize that an inequality as-
sociated with an arbitrary entropy provides the same estimate for the space
derivatives as is provided by (3.32).

(3) If the flux function f is not assumed to be convex, the above derivation
cannot provide an estimate of the space derivatives. However, if f is a posi-
tive function (resp. a negative function), a uniform quadratic estimate is easily
deduced from results of Lemmas 3.2 and 3.3.

Proof of Theorem 3.1. By (3.6a), we have for n in N and i in Z,

wT/   w+K     .   l/TT/   n+l,R,       WJ.   n+l,L.,
U(Mf.      ) < î(U("/-l/2 ) + U("1+l/2  )) -
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Using (3.13) and (3.21) and summing with respect to i, we obtain with obvious
notation

i+l\      tti   n,   .   .   , „n T^nE{U(«;+') - U(0 + K(FnG,i+H2 - C-l/2»
¿6Z

^-K       E       Si-U2yi\ui-Ui-x\
(t—1/2) shock

, v~* n,R    à   ,., n,L   ,,   n ,3        n,L   ,   n 1.3t
-K        E        ^_i/224{(l -^-i/2)lM¿ ""»I +Ä«-i/2l"/-«,-il }

(1 — 1/2) rarefaction

-K    E    (!- J/+i/2)i2 l«/+i-«.-1
(/+1/2) shock

i V~* /i n,L  , à   .  n,R  , n,3
-K E        i1"^+1/2)24^+1/21".-",'I

( 1+1/2) rarefaction
,   /. n,R  ,,   n n,3-,
+ (l-i,+1/2)l"I+i-M,l },

where we have only kept the cubic terms. So, we have

Eu(M;+1)-Eu(«")
¡ez ¡ez

.      XY t—\        .   n n,3

(3.33) (,+ 1/2) shock

-^24 E        U1"^+1/2)^+1/2(1«.-«/1 +l",+i-"J )}
(/+1/2) rarefaction

+ i(SM/2SM/2 + (l -Si+l/2)(l -S,+ l/2))l",+ l "«/I}-

We shall denote below by D"+l/2 the term within curled parentheses in the
second sum of the right-hand side of (3.33). When w(-; ui+x, u¡) for some i
in Z contains a rarefaction wave with a sonic point, that is, s"f_x,2 = 0 and

sj+i/2 = 1 ' we estimate D"+l/2 by
r.« 1 n,3   ,   ¡   n i3^i.n n.3A+l/2 = I". - «i I   +I«i+1-"J    Hl",+l-"il   .

since u" <um < u"+x. Thus, (3.33) is equivalent to

Eu(ur')-Eu(";)<-^ e k+.-";i3
I6Z /6Z (,+ 1/2) shock

.    O v-> .   « n,3
*% ¿^ l"/+l ""/I   '

(,+ 1/2) rarefaction

which gives the conclusion.   D

3.3. A quadratic estimate of the entropy dissipation in the modified Lax-Friedrichs
scheme. We turn to the derivation of the sharp entropy inequality satisfied by
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the modified Lax-Friedrichs scheme. By using the same techniques as before,
we get here a uniform quadratic estimate (instead of only a cubic one for the
Godunov scheme) of the rate of entropy dissipation in this scheme. The for-
mulae below are very close to, but actually different from, the ones derived in
§3.2. However, the proofs are similar and are therefore omitted. With the same
notation as before, the modified Lax-Friedrichs scheme admits the following
decomposition (Tadmor [45]):
It   -tc\ 1 + 1 1 /    "+1 "+1     \ _ *,t        • _ rn(3.35) iij    = î("/-i/2 + "/+i/2)>       «eN, /eZ,
where we set

rhJ2
nen, te(3.36) u"lxxl2 = — jx   w[pu¡, ui+x) dx,

This scheme can thus be viewed as a two-cell averaging of two (noninteracting)
Riemann problems. We assume here that the CFL stability condition (3.5) is
satisfied.

Let us define the numerical entropy flux of the modified Lax-Friedrichs
scheme, FM, associated with the pair (U, F), by

1
M(uL, uR) = ^(F(uL) + F(uR))Ft

(3.37)
-47-(U("h)-U(ml)),       uL,uRe

The following result gives an exact formula for the entropy dissipation generated
by the scheme.

Lemma 3.4 (Modified Lax-Friedrichs scheme). Under the CFL stability condi-
tion (3.5), the sequence (u")neîi i€Z constructed by the modified Lax-Friedrichs
scheme (3.35), (3.36) satisfies for n in N and i in Z

u(""++i/2) - j(U(«") + U(u"+X)) + Xx(F(u1+x) - F«))
(3.38) ,     rhi2

-1   l"- AxJi+\l2       JL
1      f *' (X       n       n    \ n+1 dx.

In (3.38), the term J"+x/2 equals zero except when w(-; u", u"+x) contains a
shock wave with speed o"+x,2 ;  in this latter case we have

(3.39) JnMj2 = F(unM) - F(u]) - olxl2(\J(uni+x) - \J(unt)).

Remark 3.5. The left-hand side of (3.38) can be expressed from the numerical
flux FM in two different manners:

U(k£i/2) - i(U(K?) + U«+1)) + Xx(F(u"M) - F(u1))

(3.40) = U«+;/2) - U«) + 2Xx(F"Mi+x/2 - F(i#)

= U«;,1^) - U(«"+1) + 2Xx(F(u"l+x) - F"MMXI2).
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In particular, (3.40) is helpful to verify from (3.38) that the modified Lax-
Friedrichs scheme satisfies the entropy inequality

(3.41)    V{uFl)-Vtf)+Xx{F¿íM/2-FZtt_l/2)<0,        neN,  ieZ.
Of course, as before, we want to derive from (3.38) a stronger inequality.

In order to derive a sharp entropy inequality satisfied by the modified Lax-
Friedrichs scheme, we first treat the case of a shock wave.

Lemma 3.5 (Entropy dissipation of a shock wave in the modified Lax-Friedrichs
scheme). Consider the modified Lax-Friedrichs scheme (3.35), (3.36) under the
CFL condition (3.5). Suppose that, for some n in N and i in Z, the Riemann
solution w(-; u", u"+l) consists of a shock wave with speed o"+x/2. Then we
have

U("/++i/2) - 2-(U("/) + U(""+i)) +^(F(""+i) -F("/))

< -^Tjk+l - ", I   - Y6(1 - A(-kxaMI2) )l",+ l - "/ I    < °-
Remark 3.6. Inequality (3.42) can be compared with (3.13). Here, the quadratic
term in the right-hand side of (3.42) never vanishes and indeed can be bounded
below uniformly provided that the CFL stability (3.5) is enforced, i.e.,

A,sup|f'(iO|<¿(l-0),
u

with some 6 e (0, 1).

Lemma 3.6 (Entropy dissipation of a rarefaction wave in the modified Lax-
Friedrichs scheme). Consider the modified Lax-Friedrichs scheme (3.35), (3.36)
under the CFL condition (3.5). Suppose that, for some n in N and i in Z, the
Riemann solution w(-; u" , u"+x) consists of a rarefaction wave. Then setting

(3.43)

we have

n,L        -i,   n, n '("/+l) _ *("/ ) n,R        .1,   n    ,
ff,+ l/2 = f ("« ) »      ff,+ l/2 =       Jn     _..n       -      °Mß = f («/+1) »

ui+\      "/

U(«;++,'/2) - j(U(«?) + U(u"l+X)) + Xx(F(u"l+x) - F(u"t))

.      .     O   1   n ii,3
(3.44) ^-^24l"/+i ""/I

-I36{(1+2AX'Í2)(1-2V,+i/2)2
+ (1 - 2V,+Í2)0 + 2A,<I/2)2}|<+1 - u"t\2 < 0.

Remark 3.7. Comparing (3.44) with (3.21), we notice again that the quadratic
term in the right-hand side of (3.44) does not vanish in the neighborhood of the
sonic point, provided that the enforced CFL condition of Remark 3.6 is met.

Finally, from Lemmas 3.5 and 3.6, we can deduce a sharp evaluation of the
entropy dissipation.
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Theorem 3.2 (A sharp entropy inequality for the modified Lax-Friedrichs
scheme). Let 6 belong to the interval [0,1) (6 can be equal to zero). Then,
under the CFL stability condition

(3.45) ^sup|f'(u)|< ±(1-0)
u

(the supremum being taken over all u under consideration), the sequence (u")ieZ
constructed by the modified Lax-Friedrichs scheme (3.35), (3.36) satisfies the
following entropy inequality for each integer n in N:

Eu(0*.-Eu(«?)a,
(3.46) 'eZ . ,6Z R

,    i     ö   V^ i   1 l|3, o   V* i   " i|2,      ^ n+ K 24 E K+i - "« I K + Y6 L l",+i - "/1 ̂  < ° •
/ez /ez

If 0 = 0 in Theorem 3.2, then (3.46) reduces to the sharp entropy inequality
found for the Godunov scheme. But here, in contrast with the result found
for the Godunov scheme, the modified Lax-Friedrichs scheme has a uniform
quadratic rate of entropy dissipation provided that the CFL condition is en-
forced by (3.45). Moreover, this quadratic term, fg H/gz l"/+i _ "/"I hx, l%
independent of both the function f and the mesh ratio Xx .

Remarks 3.8. (1) Theorem 3.2 could be generalized to arbitrary strictly convex
entropies U (see Remark 3.4(2)).

(2) If the flux function f is not assumed to be convex, then it is clear from
Lemmas 3.4 to 3.6 and their proofs that (3.46) still holds true, but with <5 = 0.
In particular, under the CFL condition (3.45) with 6 ^ 0, a uniform estimate
of the space derivatives is obtained in that case.

3.4. Entropy dissipation in the ^-schemes. The previous results are now gen-
eralized to a general is-scheme. By definition, the numerical flux p of an
¿■-scheme satisfies the following inequality (Osher [35]):

( (vi - v0)(p(v_k+x ,...,v0,vx,...,vk)- t(w)) < 0
1 for all v_k+x, ... , vk in R and for every w between v0 and vx.

Let us also recall that an £-scheme admits the following viscous formulation
[17,21]:

1+1 1 x in    "     \       ei   n     w"/    ="/ -y(f(",+i)-f("/-i))
(3.47) 1 ,,-.« ,   n n,       nn ,   n «    m

+ 2-{ß£,/+i/2K+i - "/)- Ô£,,_,/2("/ - ",_i)}.
«€N, ieZ,

where the numerical viscosity coefficient is defined by

t*An r," :   f(«f+i)+f(«")-2g,+ i/2 ^^     _„
(3.48) Qe,MI2 = K-un     _un-~. " € N ,   l€Z.
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Under the CFL condition (3.5), one can prove that

(3-49) QnG,l+i/2<QnE,i+l/2<QnM,i+l¡2=2-> « € N,   I € Z,

where QG i+x/2 and Q"M j+x/2 denote the numerical viscosity coefficients of the
Godunov and modified Lax-Friedrichs schemes, respectively.

Following Tadmor [45], we rewrite (3.47) in the following form (n e N, i e

it  rr\\ 1+1 1/    1+1,« n+l,C    s
(3.50) ut     =i(uEti_x/2 + uEi+x/2),
with

(3.51) "jïti-î/2 = "" - Ax(f("") - f(""-l)) - Ô£,,-l/2("" - u"-\)
and

(3.52) w£¡;f/2 = u" - Xx(i(ui+X) - i(u")) + 0£,,+i/2("/+i - "") •
From Theorems 3.1 and 3.2, we can deduce an estimate of the amount of
entropy dissipation in an ¿-scheme.

Theorem 3.3 (A sharp entropy inequality for ¿-schemes). Under the CFL sta-
bility condition (3.5), the sequence (w");6Z constructed by the E-scheme (3.47),
(3.48) satisfies for each integer n in N the following entropy inequality:

(3.53)      Eu^^-E^X+^^EK+i-";^^0-
/ez /ez /ez

Proof. Because of inequalities (3.49), for each integer « in N and i in Z,
there exists x"+m in the interval [0, 1] suchthat

(3.54) ßf.,+ 1/2 = *,+ 1/20g,/+1/2 + (1 -#/+l/2)OAf,/+l/2-
On the other hand, we can introduce (neN,  ieZ)
,- ,., n+l        i ,   n+l,R n+l,L   ,
(3-55) "g,/ = 2(«G,/-I/2 + "g>/+1/2).
respectively
it e/r\ n+l i,   n+l,A n+l,L     N
(3-56) UM,i=l(UM,i-l/2 + UAt,i+l/2)>

where n£!lf/2 and «Jti+f/2 (resP- «2r,Vî/2 and Kfti+ip) are defined °y the
Godunov scheme (resp. modified Lax-Friedrichs scheme) similarly as in (3.6)
(resp. (3.36)). In fact, it is easy to verify from the decomposition (3.51), (3.52)
that, for instance,

n+l,Ä n       1   /*/   i\      n   n     \\       /-\n i   » "     \
«G./-1/2 = "/ -^(f("/) -f("/-l)) - ÔG,,-l/2("/ - ",-.)

and
"a/,,-1/2 = "/ -^(f("/)-f(",-l))-Ô^,,-l/2("/ ""/-i)'

so that by (3.54) we have
/- -7  n n+\,R      _    n n+\,R ,. n        .   n+l,Ä
(J.S/aj M£,,-l/2 _ #/-l/2«G,/-l/2 + v1 - Xi-i/2)UM,i-l/2-
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In the same fashion, we get

,-,_,. n+\,L     _    n n+l,L .. n       .   n+\,L
(,J.D/DJ "£,,+ 1/2 _ #/+l/2«G, 1+1/2 + v1 -^,+ 1/2^"m,,+ 1/2.

Then, (3.57) leads to the following equivalent form of the ¿-scheme (3.50)-
(3.52):

n+l _  1/   n n+\,R ,. n       »   n+l,R
,- s„, «i      _ 2W-l/2«G,i-l/2 + (* - %i-l/2>UM,i-l/2

.      n n+\,L .. n       .   n+\,L    ,
+ Xi+l/2UG,i+l/2 + V1 - Xi+l/2)UM,i+l/2> •

By the convexity of U(w) = w /2, (3.58) implies

U(Mf.      ) < K^/-l/2U("G,,-l/2) + (1 - ^/-1/2)U("a/,,-1/2)

+ /,+ 1/2U("g,,+ 1/2) + (1-^,+ 1/2)U("m,,+ 1/2)).

Summing with respect to i in Z and using Lemmas 3.2, 3.3, 3.5, and 3.6, we
obtain

Eu(M;+1)-Eu("")n+l,
*l     )

/ez /ez
.      , v~^ i i 0  .   n n    ,3

£"**      E      ^-i/2J/-i/2T2l"i-"/-il
(*-1/2) shock

i V~*        /i i        \ "  i   i i     |3-K    E   i1-*«-^)^!"«- -"«--iI
(1-1/2) shock

, v^ i n,R     ^   r/i n>¿   \i   n |3
A E */-l/2*/-l/2 ÖZ«1 -*<-l/2)l«/ ""J!24

(1—1/2) rarefaction

+ V1/2I"/ ""/-il  }
, V~* ,. n        .  ó  1   n n,3-**       E      ^-¿/-i^âgK+i-",!

(,-1/2) rarefaction

1 V~* 1        /1 1        \ "  1   1 i|3
"**        E        Z/+1/2(1-í/+1/2)T2K+1-«/I

(,+ 1/2) shock

, V-*        ,. n       .  O  .   n n,3
-**   E   t1 -^+1/2)24!«/+!-"/I

(1+1/2) shock

, v—^ n       ,, n,L  , O   ,  n,R  . n,3
-^        E        W(1-5<+i/2)24to+i/2l«.-"/l

(/+1/2) rarefaction

+ (1-S/+l/2)l",+ l-"/l   }
, \—' ,. n        .   à   .   n n,3

-^        E       (*-¿,+ 1/2)48K+1-", I '
(/+1/2) rarefaction

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE OF FINITE DIFFERENCE SCHEMES 191

the notation used here being that introduced previously. Thus, we have

/ez ¡ez
.     ,    O ^^        .   n ,   /. n       \w   n n,3

^-A*72~      E     (¿,+i/2 + (1-¿¡+i/2))l"/+i-"/l
(1+1/2) shock

-A*96 E        (¿1+1/2+ (1-W))l«"+i-"?|3
(/+1/2) rarefaction

.      ,    0   v—v i   « n,3^-^96El"«+i-"«l •
¡ez

This completes the proof of the theorem.   D

3.5. A generalization. We derive now a uniform quadratic estimate of the en-
tropy dissipation generated by the difference schemes whose viscosity coefficient
is bounded below by a positive constant. This result is motivated by Theo-
rem 3.2, which gives such a quadratic estimate for the modified Lax-Friedrichs
scheme, while, as we have shown in §3.2 (Theorem 3.1), only a cubic one is
possible for the Godunov scheme. This is precisely due to the fact that the nu-
merical viscosity coefficient of the modified Lax-Friedrichs scheme is constant
(equal to 1/2) while the one of the Godunov scheme can vanish near the sonic
point.

We consider here 3-point difference schemes, characterized by their numerical
flux function /: R —► R, which admit the following incremental form (n e
N, ieZ)
It    CC\\ 1+1 1 /-." I      n 1        \      .      T\" I      1 1-\(3.59) u,    = u, - C,_1/2(k, - u,_x) + Di+x/2(ui+x -ii,),
with as usual

(3.60) C:_x/2 = C0Í,, «J),        DnMI2 = D(u1, u"i+x),
where the Lipschitz continuous functions C and Ö: R2 -» 1 are given by

C(u,v)=Xxí{v)-fiU>V),
(3.61) t/ / ,."     . u,veR.

D(u,v)=XxfM-f{u>V),
x       v - u

The numerical viscosity coefficient Q : R  —► R is defined from C and D by
(3.62) Q(u,v) = C(u,v) + D(u,v),       u,veR.
Then we prove:

Theorem 3.4 (A sharp entropy inequality for a class of difference schemes). Con-
sider the difference scheme in incremental form (3.59).

Let 6 be given in the interval (0, 1) and assume that
0<C(u,v),    0<D(u,v),        u,veR,
0<K0<Q(u,v)<[-(l-d),       u,veR,
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where K0 is a given positive constant.  Then the scheme satisfies the following
inequality (n e N) :

(3.64) E U«+l)hx - E Utf )K + § E K+i - <\\ < 0,
¡ez ¡ez ¡ez

where the constant K depends on K0, Xx, S, 6, and sup( n \u"\ and is given
explicitly by

(3.65) K = K0 - ^ sup(|/"(«>?|) - i(l - 6)2.
J   i , n ¿

Remarks 3.9. (1) Notice that, when K0 is different from ' (1 - 6), the constant
K is positive for Xx small enough.

(2) The convexity of the function / is not needed in Theorem 3.4.

Proof of Theorem 3.4. For n in N and i in Z, we can write
¥T/   n+K       TT/   n,       ,   n+1 n%   n   ,   i ,   n+1 n,2U(w,    ) = U(u, ) + (ii,    -ui)ui+\\ui    -u¡\

= U(ui)-Xx(fi+x/2-fi_x/2)ui + ¿C,_1/2(C,_1/2 + Z>,+1/2)|w, -Mf_J

+ P,+ l/2(C,-./2 +^,+ l/2)l"«+l - "il    - K-l^i+l^K+l - "i-ll   •
Thus, after summation with respect to i, we find

Eu(M;+I) = Eu(";)-^E(^./2-^i/2)"-
¡ez ¡ez ¡ez

,    1 V^//-l ,    r\n        \ rs*n        i   " 1     |2
+ 2 E(C/-l/2 +Di+l/2){Ci-l/l\Ui  - "/-I I

(3.66) «ez
,    rx" l    1 1|2-i

+ D,+ l/2l",+ l-",l  }
1 ^^ „n n"        I   " "     I2

_ 2¿^ C/-l/2/V/+l/2l",+ l       "i-ll    •
i'6Z

On the one hand, we notice that

runM

E^+i/2 - K-\ß)u1 = - E(""+i - «")^+i/2 = - E / „ -ZK. ulodv '
¡ez /ez ¡ez17";

thus,

(3-67) E(^+./2 - £-1/2)"/ = - E iy (/("/ » ""+1) - f(^)) ̂  •
/ez ¡ez-'"«

And with the help of the formula
rb rb
I   g(v)dv = (b-a)2-(g(a) + g(b)) + I   \(v - a)(v - b)g"(v)dv,

Ja Ja
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with a = u" , b = u"+x, and g(v) = /(«", u"+x) - f(v), (3.67) becomes

..i|2
1/2     Ji-\llP*i ~ 2—1 2^i+l/2 "r ^¡+1/2 "'

/ez ¡e
(3.68)

^ E^+l/2 - fUß)Ul  = E 2(C,+ l/2 + ß,+ l/2)l"/+l - ""!
¡ez

+ ^E/?+12(w-"/)(w-""+i)/'(^)^'
¡ez

Hence, using (3.63), we obtain from (3.68)

-K E(^+i/2 - /T-i/2)"/ ^ - -f E i"/+i - "/i2
(3.69) ,eZ .    'eZ

+ 1iii/'(")ii^Ei";+.-""i3-
¡ez

On the other hand, we write

2E(C/-l/2 + Z)l+l/2HC,-l/2l"/-«/-ll   +D,+ l/2l"/+1-"/l   }
(3.70) ,6Z

1 V^ ^-.1        r,n        i   i n     ,2 ^  1,.       /i\2 v-^ |   n n,2
- 2L,Ci-H2Di+\l2\Ui+\-Ui-\\   < 4(1-0)   El",+ l-"/l   •

¡ez ¡ez

Finally, combining (3.60), (3.70), and (3.66), we find

Eu(M;+1)-Eu(";)
¡ez /ez

^ V~* I f)   ,   'V 1 r" 1   i\i 1   1 "i   ,    I /1       m2 I 1   1 1,2
< E {"T + 12 *UnPl^( '}l |M,+1 "   fl     4(   "   } J |M,+1 " "'■' '

which completes the proof.   D

4. The corrected antidiffusive flux approach

4.1. Introduction. We now consider the class of high-order accurate explicit
finite difference schemes which are constructed from a given ^-scheme by the
corrected antidiffusive flux method. As is well known, an Zs-scheme is at most
first-order accurate (Osher [35]), and the antidiffusive flux is chosen in order to
ensure both the high-order accuracy and certain formal properties of stability
(e.g., Davis [10] and Sweby [42]). The results of convergence known for such
schemes only concern equations with one space variable (e.g., Cahouet and
Coquel [3], Leroux [30], Leroux and Quesseveur [32], Majda and Osher [33],
Tadmor [46], and Vila [50]). In this section, based on the results obtained in
§3, we prove the convergence of these schemes with corrected antidiffusive flux
applied to an equation with an arbitrary number of space variables (Theorem
4.3 below). Moreover, even for the case of one space variable, we emphasize
that our result of convergence improves the existing results in this domain (see
Theorems 4.1-4.3 and Corollaries 4.1-4.2).
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We use the notation introduced in §2. Let p (respectively q) be a numerical
E-flux consistent with the exact flux function f (resp. g). That is, p : R —>R
and q : R2  -> R are Lipschitz-continuous functions satisfying (Osher [35])

(4.1)

and

(4.2)

{
("i - v0){p(V-k+i ,---,v0,vx,...,vk)- î(w)) < 0
for ail v_k+x, ... , vk in R and for every it; between vQ and vx,

f (t>! - v0)(q(v_k+x ,...,vQ,vx,...,vk)- g(w)) < 0
\ for ail v_k+x, ... , vk in R and for every w between v0 and vv

We consider the conservative difference schemes (n e N)

(4.3) u"j = uitJ-Xx(f"+x/2J-f"_l/2J)-Xy(g"J+x/2-g"J_x/2),       i,je
where the numerical fluxes are given in the following form:

(4-4) /,+ l/2,;=P,+ l/2,; + 7-a"+l/2,;> ' • > G Z '

and

Ï a" =n" ..j.
X

I A    C\ 1 1 I     I » • •
(4-5) ^/,;+i/2 = «¡,7+i/2 + TbiJ+W'       '' J e

y

n n

In (4.4) and (4.5), we set

Pi+i/2,j=P^".k+lJ,     ,u';+kJ),       neN, i,je

and
<;+i/2 = l(u"j_k+x,..., u"J+k),       neN, i,jeZ.

It is known that the antidiffusive fluxes a"+x,2 ¡ and b" +1,2 can be chosen
in such a way that this scheme is high-order accurate in space in the zones of
smoothness of the solution (see an example in §4.2 constructed from the notion
of flux limiter). On the other hand, without loss of accuracy we can assume, as
is usual, that these antidiffusive fluxes vanish with the mesh size in the following
sense: there exist a and ß in the interval (0,1) and a constant C > 0 such
that

(4.6)        \a"MI2j\<Cha,    \b"J+x/2\<Chß,       neN, i,jeZ.

For motivations and comments concerning these conditions, we refer to Lapidus
[24], Leroux [30], Majda and Osher [33], and Vila [50] (see also Tadmor [46]).
Condition (4.6) is active only in the neighborhood of the points of discontinuity
of the solution, and roughly speaking is expected to be sufficient to prevent the
appearance of large oscillations near the discontinuities. In all that follows,
the scheme is always assumed to be consistent with equation (1.1) and the
initial data to be a bounded function with compact support. The results of
convergence known for these schemes concern equations in one space variable
and are based on an estimate of the total variation of the approximate solutions.
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See for instance Harten [21] and Sweby [42] concerning the TVD (total variation
diminishing) schemes; and Cahouet and Coquel [3], Leroux [30], and Shu [39]
for the TVB (total variation bounded) approach. But as far as the authors
know, there is no result in the literature on the convergence of these high-order
schemes in the case of an equation with several space variables.

In this section, we prove convergence of the scheme with antidiffusion (4.3)-
(4.5) in the case of several space variables provided that the usual condition
(4.6) is satisfied. Our proof is completely different from the one known for an
equation in one space dimension: it is not based on the so-called BV-estimate,
but instead makes essential use of the theory of measure-valued solutions and
the uniqueness theorem due to Di Perna recalled in §2. Actually, the results of
this section are also based on the sharp discrete entropy inequality for an E-
scheme derived in the previous section. The L°° stability estimate is derived
in §4.3. A complete proof of convergence of the scheme (4.3)-(4.5) is given in
§4.4 in the particular case of an equation in one space dimension. Finally, §4.5
treats the general case.
4.2. An example: the flux limiter approach. Following an approach due to Sweby
[42] and Davis [10], we present in this subsection a particular class of antidiffu-
sive fluxes: these antidiffusive fluxes will be constructed from a given function
called a flux limiter. Define the local Courant numbers by (n e N,  i, j eZ)

_ .   /«!,,)-/(<;) j, . ,   *(«7,,+ i)-*(«",)
'i+i/2,j

n
Ti,j+1/2 - Áy

-*i+lj     "ij i,j+\        ij
and consider the ratios of two consecutive discrete gradients given by (n e
N, ijez)

H<j)-W-i.j)
r 1+1/2, j

f("i+i,,0
f("i+2,j) f("i+,,;)

and

5/,;+l/2
= <

f(""+l,,)-f("/j)    '

/   i    \ i   i        \
g(",,,)-g("/J-l)
g(<;+1)-g«;)'

g(<;+2)-g«, + 1)

tf<i/2J>o,

otherwise,

if<+1/2J>0,

otherwise.

the so-called flux limiter
i, i.y'ez)

g«;+1)-g(<;)
Let us fix two arbitrary functions <p and y/ : R —► R,
functions, and define the antidiffusive fluxes by (n e I

:i-|<T¡+l/2,;Dí!'(r¡+l/2,;""¡+l,;

,7+1/2 - 2IV/,J/+1/2IV1 _ lTf,j+l/2l)^(5i,7+l/2)(«iJ+l ~Ui,j)'
A number of choices of the functions tp and y/ have been proposed in the
literature. The choice

(4.7)
fl/+l/2J

11  i
2\ai+ll2,j\

bl ,.,,, = Í|t"/+1/2|(1
w,

<P = y/ = <PLW LW        ,
If/        = 1
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corresponds to the Lax-Wendroff scheme [29], which is second-order accurate
in space and time but produces spurious oscillations in the neighborhood of
points of discontinuity of the solution. On the other hand, a function like the
Van Leer flux limiter [49]

VL/ \       VL, ,.     M + r      .<p    (r) = y/   (r) = ^—-,    for r in R,

yields a scheme which roughly speaking does not produce oscillations but is
second-order accurate except at the local extrema of the solution where it is only
first-order accurate. In the case of an equation with only one space variable,
these schemes are convergent (e.g., Cahouet and Coquel [3]) to the entropy
weak solution of the problem (1.1), (1.2) for a large class of flux limiters, for
instance for Van Leer's one, provided that condition (4.6) is enforced by a slight
modification of (4.7) (see (4.8a) below). We refer to [3] and [42] for the precise
conditions on the flux limiter which ensure that the scheme is stable in the L°°-
and BV-norms (in one space dimension).

The general results of this section apply to these schemes with flux limiter and
show their convergence in the multidimensional case. For the sake of definite-
ness, let us now focus for instance on the example of the Van Leer flux limiter.
Following Shu [39] and Cahouet and Coquel [3], we can introduce an improved
version of the scheme which is second-order accurate at any point of regularity
of the solution (i.e., including the extrema). The idea consists of replacing the
Van Leer flux limiter by the Lax-Wendroff one in the neighborhood of the ex-
trema of the solution. To be precise, the uniformly accurate version of the Van
Leer scheme is defined as the scheme (4.3)-(4.5), where the antidiffusive fluxes
are given by the formulas

(4.8a)

and

(4.8b)

«1+1/2,; = Sgn(à"+l/2,,)min(lâ"+l/2,;l' Mxh°l),

Kj+l/2 = Sgn(*,",7+l/2)min(l^,;+l/2l' ^1^'),

~ n ■ ,,   LW ,n VL, n       ,    . , , a, ,   LW, n    , *
a,+i/2,; = minmod(a/+1/2ij,, aM/2J + M2h 2sgn(a,+1/2;)),

bl.j+l/2 = mmm0d(bi,j+l/2>bi,j+l/2 + N2h *W(l>i,7+1/2)) •

The constants Mi, N¿ and q( , ßi are fixed and satisfy the conditions

(4.8c) Mx,M2,Nx,N2>0,     ax,ßxe(0,l),     a2,ß2e[l,2].

In (4.8b), minmod(-, •) is the function defined for u and v in R by
sgn(v) • min(|u|, \w\),    if sgnv = sgnu;,

minmod(t>, w) = .
( 0, otherwise.

Moreover, aj^[;2 , and ¿,L^+w2 (respectively a¡+l\" ¡ and bt /+"x,2) denote the
antidiffusive fluxes defined by (4.7) with tp = y = tpLV/ (resp. tp = \p = tpVL).
One may show that this scheme is second-order accurate in any region, including
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the extrema, where the solution is smooth. Furthermore, in the case of only one
space variable, it is shown in [3] that the scheme is stable in BV-norm and
converges to the unique entropy weak solution of the problem provided that
the conditions a, e (0, 1) and a2 = 2 are fulfilled. But in the more general
case where a2 is any number in the interval [1,2), (4.8b) can be viewed as a
very slight correction of the Lax-Wendroff scheme and no BV-estimate is known
in that case, even for an equation with only one space variable.

Our results of convergence below establish the convergence of the scheme
with the antidiffusion (4.8) for an equation with an arbitrary number of space
variables provided that ax, ß{ e (\, 1) and a2, ß2 e [1, 2]. We point out
that for any a,, ßx < 1 and in a zone of smoothness of the solution we have

1*1+1/2 J ^ Mlh<Xi >      \h",j+l/2\<Nlhßl> "£N>   iJeZ,

provided that Mx and Nx are large enough, so that (4.8a) gives

a n ~n ,n
«1+1/2./.    ti,+U2 = b*Mll,       neN, i,je1+1/2,7 ~~ "i+1/2,7 ' '.7+1/2 _ "i,7+1/2 '

Thus, (4.8a) is active only in the neighborhood of discontinuity points of the
solution.

4.3. The uniform L°°-estimate. The following result gives a sufficient condition
to ensure that the scheme (4.3)-(4.5) is stable in L°°-norm.

Theorem 4.1 (Uniform L°°-estimate). Assume that the scheme (4.3)-(4.5) ad-
mits an incremental decomposition of the form

n+l n s-,n ,   n n        \,r-,n ,   n n   s
"/,/   = ",,7 - C/-l/2,7("/,7 - Ui-l,j) + Di+i/2,j(UM,j - Ui,j)

r-n i   n n        ,   ,   „n ,   n n   ,   ,   r.n
-£/,7-./2(",,7 - ",,7-l) +F,,7+1/2K,7+1 - Ui,j) + Ki,j>

neN, i, j eZ,

whose coefficients satisfy the conditions

C" > 0      D" > 0
(4.9a) C<;>/2,^°>    ZW,^°>       n£N    t jez

<;+1/2>0,    F?J+x/2>0,

the CFL-like stability condition

(4-9b)      Cl/2,7+^+1/2,7+^-1/2 + ^7+1/2^1' "eN'   <>>eZ'

and

(4.9c) \K"j\<Chy,       neN, i,j eZ, withy e[l,oo).

Then the scheme (4.3)-(4.5) is Loc'-stable, i.e., there exists a constant C > 0
independent of h,hx, and h   such that

(4.10) l<7-l<C,       «eN, ijez.
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Proof. The incremental decomposition of the scheme can be rewritten in the
form

,,"+1 _ ¡\ _ r" - n" - f" _ p"       \i,n
ui,j   -V1       S-1/2,7      Ui+l/2,j      ^Z,7-1/2      ri,j+l/2>Ui,j

¡-.n n j^n n „n n
+ Ci-1/2,7 ",-1,7 +1Ji+l/2,jUi+l,j + hi, 7-I/2"/, 7-1

,     E-1 1 ,     K'l
+ /,i, 7+I/2"/, 7 + 1 +Ä/,7'

so that, using (4.9a)-(4.9c), we get

i/jISvl       S-l/2      Ui+\¡2,j      ni,j-l/2      ri,j+l/2>
,    y^l I    1 ,     n» I     1 I
+ C/-l/2,7l"/-l,7l+ZW7lM/+l,;l

+ £,/,7-l/2l"/,7-ll +/,/,7+l/2l"/,7+ll + C^
Taking the supremum, we find

and by induction

1   n+11   ^ 1   1   1   .   rti ysup |w.    I < sup \u¡   I + Ch ,        n e
,',/ez     'J       1,7      '■/

■   /!+-11_ 1   0   1   ,   *-,   , y -Tsup |m. . I < sup \ui   I + Cnh ,       neN.
/,7"ez     '7       /,7'ez

Because of n • n < T and (4.9c), the result follows.   G

Theorem 4.1 yields the L°°-stability of the scheme (4.3)-(4.5) for the usual
choices of antidiffusive fluxes. For the sake of definiteness, we tacitly assume
from now on that the scheme under consideration admits an incremental decom-
position of the form indicated in Theorem 4.1 in such a way that the scheme is
stable in L°°-norm. In particular, in the case of the scheme with the flux limiter
(4.8), a direct application of Theorem 4.1 leads to the following result whose
proof is immediate. Actually, the same result of stability can be obtained for
the general flux limiter schemes. We omit the proof.

Corollary 4.1 (L°°-estimate for a scheme with flux limiter). The uniformly ac-
curate version of the Van Leer flux limiter (see (4.8)) for an equation with several
space variables is stable in Lf°-norm, provided that Xx and X satisfy the CFL
condition

(4.11) Axsup|f'(M)|<i,        Xy sup|g'(u)|<I,
u u

the supremum being taken over all u under consideration.

4.4. Convergence for an equation in one space dimension. In this subsection, we
consider the case of an equation with only one space variable. In fact, when
the initial data of problem (1.1), (1.2) does not depend on the variable y , then
both the exact solution u to problem (1.1), (1.2) and the approximate solution
u defined by (2.9) and (4.3)-(4.5) do not depend on y. As a consequence,
we can use exactly the same notation as above just omitting the index j. In
particular, (4.3) and (4.4) become

(4.12) ""+1 = "/ -^(^+1/2-^-1/2). «eN>   '"€Z,
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and

(4.13) /r+i/2=P,+i/2 + ¿«/+i/2.       neN, /ez.

The approximate solutions will be denoted interchangeably by {u } or (u, ).
To apply the general method of §2, we need to obtain the weak estimate of the
discrete space derivatives of the approximate solutions. For this purpose, fol-
lowing the ideas developed in §3, we begin with an evaluation of the amount of
entropy production generated by the scheme. The following lemma is a general-
ization of Theorem 3.3 to the high-order accurate schemes under consideration.
Recall again that for simplicity the initial data uQ is assumed to be a measurable
and bounded function with compact support.

Lemma 4.1 (A sharp approximate entropy inequality). Suppose that the CFL
condition

(4.14) ¿xsup|f'(w)|< ±
u

holds true (the supremum is taken over all u under consideration) and the an-
tidiffusive flux in (4.13) satisfies the condition

(4.15) \a"+x/2\ < Mha,       neN, ieZ, with M > 0 and a e (\, 1).

Then the scheme (4.12), (4.13) satisfies the following sharp entropy inequality
(neN with nh<T):

(4.16)  e M+l)X - E 2-(«/)\+*> E^i«/+. - <\\ * K2hia/2,
/ez /ez ¡ez

where the constants Kx and K2 are positive and independent of h,Xx, and u0
(but can depend on T and f ).

Remark 4.1. We notice that in fact no property of L°° uniform stability is used
to derive inequality (4.16).

Proof of Lemma 4.1. We introduce the notation

(4.17) u¡+l =u"-Xx(p"+x/2-p"_x/2),        neN,  ieZ,

and observe that (4.12) can be rewritten in the form

(4.18)     «r1»«?"'1-«1/2-«1-1/2).   «eN>/ez-

We thus get
i,   n+1,2       i ,_n+K2   ,    \,   n n        ,2
l(",     )    =\{Ul     )   +î(«,+ l/2-«/-l/2)

(4.19)

which leads us to set

u¡   K+1/2-a,-i/2)>      »eN, le

(4.20) ̂  = E3(<+i/2-<-i/2)\-E""+1K+i/2-û"-i/2)^'        "eN'
>_n+l/_n

/ez /ez
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so that we have

(4 21) ,ez ,ez

= E^+1)\-E^(«")\ + ̂ .        »6N.
¡ez /ez

By using Theorem 3.3 of §3, equality (4.21) implies

Ei<OVEi(«i)2*,
(4.22)

<-^E^i"/+i-";i\+^.   »€N.
¡ez

In order to estimate the term i?" , we recall that under the CFL restriction (4.14)
the ^-scheme (4.18) satisfies the TVD property

E._n+1      _n+l,  _, v~* i   n n, ..i",+i-"/ i^Ei".+i-"«i'    «eN-
¡ez ¡ez

From (4.20) we then deduce
|2    i   i        \2\,      .   V~* i   i        ii—1+'      —n+1i r>l|  x V^i /i   1        i2    i   n |2W      ,   V~* i   i        11—1+1       —i+lii\R | <E2max(|a;.+1/2| , |a._1/2| )hx + E K-1/2IK+1 - ",    \K

¡ez ¡ez
^ V~* i „      /i   i        |2    i   i        |2N, ,   n        | v—^ i   n n,,< E2max(|a;+1/2| , |fl,_1/2| )^ + max|a,_1/2| E l",+, - ",1«,

¡ez /ez
But using now the condition (4.15), and since the initial data has compact
support and the numerical flux is assumed to be consistent, we necessarily have
a,+i/2 = 0 f°r ' larSe enough. We thus find the estimate

(4.24) \Rn\<Ch2a + MhaY,\^i+x-ui\hx,        neN.
¡ez

Then (4.22) and (4.24) yield the following inequality (K > 0 is given by The-
orem 3.4 and M > 0 by (4.15)):

Y,M+X)X-22M)%
(4.25) i6Z i&

<-^E^i";+i-":i\+^aEK+»-";^+cn2a.
¡ez ¿ez

We finally remark that

Eis,a,   n n,,       . 2  IMh   \ K ^-^ .   n n,3,m l",+i - ", \K < 3 t^tt    + t E l",+i - "« I K.
/ez J \A      / ■> ,€Z

so that (4.25) gives

Ei("/+1)\-Ei(«/)\
(4.26) /6Z ,_,        ,eZ

¿A ^—v ,   .   n n,3,      ,    „, 3a/2<-3-EAxl"/+i-«/l ^ + CÄ    -
¡ez

This completes the proof of the lemma.   G
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From Lemma 4.1, we deduce:

Lemma 4.2 (Uniform estimate of the discrete space derivative). Under the CFL
stability condition (4.14) and the condition (4.15) on the antidiffusive flux, the
scheme (4.12), (4.13) satisfies the uniform estimate (Xx = h/hx kept constant)

(4.27) 2/3 EE
neN  ¡ez

nh<T

«Li - "/hh<C,

where C is a constant independent of h (but dependent in general on Xx, u0, T,
and f ).
Proof. By summation of (4.16), we have

EiiOVEitf)2*,
¡ez /ez

(4.28)
,   /-. V^ V* i    i   1 1|3;       .,-,,3a/2-l+ cEEA>«+i-«.-i K^ch

m=0 /ez

for every neN with n • h < T ; thus,

(4.29) E El«/+i-«/|3A<C.
n6N    ,'eZ

nh<T

If [r,s] denotes a set containing the support of the initial data (w°)/ez,
then, for each n, the support of the sequence (u"),€N is included in the set
[r-nhx, s+nhx]. Thus, using this remark and the Holder inequality, we deduce
from (4.29) that

( \

EEi""+i-""iM<(^)2/3

n€N   ,62
nh<T

E E l""+i-«"I Kh
neN ,ez

\nh<T

1/3

<Ch 1/3

where Lx denotes a bound independent of h of the length of the support of
u , hence

(4.30) hf e Ei":+i-">^c-
neN  /ez

nn<r

Since Ax is kept constant, (4.27) is a consequence of (4.30).   G

Using the uniform estimate given by Lemma 4.2, we now derive discrete
entropy inequalities satisfied by the scheme (for the notation below, see §2,
Theorem 2.3). The idea of the proof below is to get these entropy inequalities
by perturbation of the entropy inequality satisfied by the underlying ¿'-scheme.
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Condition (4.15) turns out to be essential here. This idea was already used in
another context by Leroux [30], Leroux and Quesseveur [32], and Vila [50]; but
let us recall that these authors needed a BV-estimate, which is not necessary in
the present approach.

Lemma 4.3 (Approximate entropy inequalities). Suppose that the conditions
(4.14) and (4.15) are satisfied. Let U: R -* R be a convex function of class
C , and F be a numerical entropy flux associated with the given numerical
E-flux p:R —> R. Assume moreover that the family of approximate solutions
remains uniformly bounded in L°°-norm (cf. Theorem 4.1). Then the scheme
satisfies an inequality of the form

(4.31)      -l(f7;+1_r7«) + ^(^+i/2_jF¡«_i/2)<jR»)     B6N, /€Z,

where the term R" tends to zero in the following sense:

(4.32) E Ep(í«'jci)'R?M->0'    when h ̂ 0,
neN   /ez

nh<T

for every Cx function tp: (0, T) x R —► R+ with compact support.
Proof. It is well known that an ¿-scheme satisfies an exact entropy inequality
in each cell (Osher [35]). So, using the notation introduced in the proof of
Lemma 4.1 (see (4.17) and (4.18)), we have

U(ü"¡+X)-U(u,;) + Xx(F?+x/2-F;_x/2)<0,        neN,  ieZ.

We thus obtain

U(u1+X)-U(u"i)+Xx(Flxl2-Flxl2)<U(u1+x)-U(TÍl+X),        neN, /eZ,
i.e., dividing by h ,

l-(url-U?) + j-(F?+x/2-F?_x/2)<R';,       neR, ieZ,

which is exactly (4.31) if we set

R" = l(U(u,;+x)-U(ü"+x)),       neN, /eZ.

Formula (4.18) and the convexity of the function U give

r>n   ^   1 tt'i   i+1\/   1+1       — i+l\ * ,,',   i+l\/   n n        ,Ri<jiU(ui    )(w,    -u,    ) = -j-U(u,   )K+1/2-a;_i/2).

Introducing a positive test function tp and setting tp" = <p(tn, x¡), we deduce
from the above inequality that

E E*XMs-r E E^^("/+,)(«,+./2-«r-./2)«-
n€N   /ez x   neN   /ez

nh<T nh<T
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We thus get

(4.33) E E^"M<C, + C2,
neN  ,ez

nh<T

where we have set

C¿h) = Y E E4i/2^<0*!W)A
x   neN  /ez

nh<T

and

x   neN  ¡ez
nn<T

To estimate the term Cx(h), we use the condition (4.15) on the antidiffusive
flux and the L°°-estimate and obtain

cx(h)<ch° e E^y.
neN   ¡ez x

nh<T

SO

(4.34) Cx(h)<C\\tpx\\Laoha^Q.

On the other hand, estimate (4.27) of Lemma 4.2 allows us to bound C2(h) as
follows:

c2(h)<cha\\cp\\L~\\u"(uh)\\L~ e EK++i1-«r1i«.
neN  /ez

nn<7"

thus,

(4.35) C2(n)<C||^||Loc/zQ-2/3^0,

since a > \ by (4.15). Finally, (4.32) follows from (4.33)-(4.35).   G

We can now apply the method of proof of §2. In view of the uniform L°°-
estimate (4.10) obtained in Theorem 4.1, we construct from the family {« }
a Young measure denoted by i/ : (0, T) x R -> Prob(R) which represents all
the weak limits of the composite functions of u . Since Lemma 4.2 yields
a uniform estimate of the space derivatives ((4.27) is of the form (2.15) with
ß = \), Theorem 2.2 applies and shows that v is a measure-valued solution
to the conservation law (1.1). Lemma 4.3 and Theorem 2.3 then prove that v
is an entropy measure-valued solution. Moroever, Theorem 2.4 applies easily
since Lemma 4.3 can be used with a given strictly convex function (for instance
U(u) = u ¡2 ; but we could also do for this point with Lemma 4.1); thus, the
Young measure v satisfies the initial data u0. Finally, Theorem 2.1 shows
that v reduces to a Dirac mass. The conclusion is summarized in the following
theorem.
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Theorem 4.2 (Convergence of the difference schemes with antidiffusive flux).
Consider the family of approximate solutions u constructed by the scheme with
antidiffusive flux (4.12), (4.13) (and (2.9), (2.10)) for a conservation law in one
space dimension. Assume that the family {u } is uniformly bounded in L°°-
norm (cf. Theorem 4.1). Then under the CFL stability condition (4.14) and the
condition (4.15) on the antidiffusive flux, the Young measure v associated with
the family {u } reduces to a Dirac mass, i.e.,

(4.36) t/t,x = s«(t,x)>    a.e. te(0,T), xeR,

holds true, where u is the unique entropy weak L°°-solution to problem (1.1),
(1.2) (in one space dimension). Hence, when h goes to zero, the sequence
{uh}h>0 converges in the Lx strong topology to the unique entropy solution u.

This result is essentially the same as the one obtained by the TVB approach.
But we emphasize that the proofs of this result are new and their interest lies in
the fact that they can be generalized to equations with several space variables.
Moreover, we point out that this result gives in particular the convergence of the
scheme with flux limiter (4.8) introduced in §4.2 under the condition a,, ßx e
(§, 1) and a2, ß2 e [1, 2] (instead of ax, ßx e (0, 1) and a2, ß2 = 2 by the
TVB approach). See Corollary 4.2 below for a precise statement of convergence.

4.5. Convergence for an equation with several space variables. The previous
analysis of convergence is now generalized to the case of an equation with several
space variables. The steps of the proof here are exactly the same as the ones of
§4.4 and are based on the general theorems of convergence recalled in §2 and
the sharp entropy inequality derived in §3.

The notation was introduced in (4.3)-(4.6) (see also (2.9), (2.10)). As in
Lemmas 4.1 and 4.2, the estimate of the discrete space derivatives of u is
derived via an evaluation of the total amount of entropy production of the
scheme.

Lemma 4.4 (Uniform estimate of the discrete space derivative). Assume that
the CFL stability condition

(4.37) ^sup|f'(ii)|<i,        X ysup|g'(u)|<±
u u

(the supremum being taken over all u under consideration) and the following
condition on the antidiffusive fluxes,

l«/+i/2 i\<Cha,       neN, i,jeZ, with a e (I, 1),
(4 38)

\b",7+1/21 £ chß>        *eN>  »'.J6Z, withße(\,l),

are satisfied.     Then the scheme (4.3)-(4.5) satisfies the following entropy
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inequality :

,',7'ez ,',7'ez

(4.39) + Kl  E *x\uM,j-u*.j\ Kny
i, /ez

+ ̂ E^I<7+i-<;|3M,<C«3y/2,        neN,
¡jez

where y = min(a, ß) and Kx, K2 are two positive constants independent of
h, Xx and u0.
Proof. The proof is based on the following (convex) decomposition of the
scheme into two one-dimensional schemes:

u1j = H"/,/ - 2Xx(fili/2j - f"-\/2,j)}
+ i{<;-2Ay(<7+i/2-<7-./2)}>       neN, /,/eZ.

Since the function \u   is convex, we have

Mj)2*M.j- 2^(^./2,7 -fi-mJ}2
+ Mj-^y(g",j+i/2-g",j-i/2)}2>       neN, i,jez.

We thus get

(4.40) Wjf-M.fzAu + Kj,       neN, i,jeZ,
where we have set

<7 = 3(H<7 - 2^(^+i/2,7 - T-i/2,7»2 - M. A        neN, i, jeZ,
and

Kj = 5(H<7 - 2^«7+i/2 - <7->/2)}2 - K/>>       neN, i, jeZ.
Taking into account (4.37) and (4.38), a direct application of Lemma 4.1 leads
to the inequality

E H"/,7 - 2^(^+1/2,7 - fî-M2,j))\ - E i« A
(4 4D ,ez i6Z

+ C^2Xx\ullJ-ulJ\\<Chia/2
/ez

for each time n (n eN, n- h <T) and each y-index j eZ. But the support
of (u"  ) is included in a set of the form {(/, j)/\i\, \j\ < N+n} (if the support
of (u¡ A is included in the set {(/, j)/\i\, \j\ < N}). Moreover, A" is zero
for (/, j) outside this set, so that (4.41) implies, after multiplication by h and
summation with respect to j ,

i E <,V, + C2K E i«/+,,7 -</*A * c/¡3/2a'    »€ N-
,,7'ez ¡./ez
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We thus have

E <y*A+c E ^i":+.,7-</M,<^3a/2,
(4.42) ,',7'ez ¡,7'ez

neN, nh<T.

Similarly, for the B"    terms we obtain

„ ,„   E KfA+c E »,i<w - < A*, í c*3«',
(4.43) ¡,7'ez ¡,7'ez

neN, nh<T.

The inequality (4.39) follows immediately from (4.40), (4.42), and (4.43).   G

From Lemma 4.4 we deduce the estimate of the space derivatives. The proof
is similar to the one of Lemma 4.2, so we omit it.

Lemma 4.5 (Uniform estimate of the discrete space derivatives). Under the as-
sumptions of Lemma 4.4, we have the uniform estimate

,4.44)   k'"Y. e ('""'■;'"'"' + K»>-<nw<c.
neN  ¡,7'ez V x y f

nh<T

Finally, we derive approximate entropy inequalities satisfied by the scheme.

Lemma 4.6 (Approximate entropy inequalities). Suppose that the CFL stability
condition (4.37) and the condition (4.38) are satisfied. Let U: R -* R be a
convex function of class C and let (F, G) denote the numerical entropy flux
functions associated with p and q. Assume moreover that [u } remains uni-
formly bounded in L°°-norm. Then the scheme satisfies the entropy inequality
of the form (2.16), (2.17) (see Theorem 2.3).
Proof of Lemma 4.6. Let us introduce the notation

_n+l n        .   ,   n n ,
(445) uu  =uij-K(Pi+ii2,j-Pi-m,j)

-y<,+l/2-<7-l/2)' "€N>   ^>€Z-

so that with (4.3)-(4.5), we obtain
n+1       _n+l       /   n n ,       , ,n ,n N

(4.46) "ü     =U'J     -(aM/2J-ai-l/2j)-(biJ+l/2-bi,j-l/2)>
neN, i,jeZ.

Since an £-scheme in several space dimensions satisfies an exact cell entropy
inequality (Osher [35]), (4.45) gives

U(ü1¡X) - U(u"u)+XX(F?+Xl2] - Flll2J) + Xy(GniJ+xl2 - Glj_x/2) < 0,
neN, i, j e Z.
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Thus, subtracting U(u"jx) = U"+x and dividing by h , we get

l/rrn+l       TTn   s   ,     1   , r,n ,-,n ,
rfUiJ   -Utj) + -fl-{FM/Z.J-Fl-WJ)

(4.47)
+ F(G;j+1/2-g;,.7-i/2)<4'>       «eN, /,;eZ,

where we have set

(4.48) R"ij=ll(U(u1+X)-U(û"+X)),        neN,  i,jeZ.

Inequality (4.47) is exactly (2.16). It remains to prove that the R"j terms satisfy
(2.17). Since the function U is convex, it results from (4.46) that

R"j < -jlUl(u"¡x)((a"i+xl2j -a"_x/2J) + (b"J+x/2 - b"j_x/2)),

neN, i, jeZ.
Then, introducing a positive test function tp and using the estimate (4.44) to-
gether with the condition (4.38) on the antidiffusive fluxes, the same arguments
as in the proof of Lemma 4.3 show the inequality

(4.49) e E Mn . *,. yj)Rlhxhyh < a?-2'3,
n6N  ¡./ez

nh<T

with y = min(a, ß). That completes the proof.   G

Finally, as in §4.4, using the general convergence theorems (Theorems 2.2-
2.4) of §2 and the uniqueness theorem of Di Perna (Theorem 2.1), we deduce
from Lemmas 4.4-4.6 the following theorem, which is the main result of this
paper.

Theorem 4.3 (Convergence of the difference schemes with antidiffusive fluxes).
Consider the family of approximate solutions {u }h>0 constructed by a scheme
with antidiffusive fluxes, (4.3)-(4.5) and (2.9), (2.10), for a scalar conservation
law in several space dimensions. Assume that this family is uniformly bounded in
Vo-norm (cf. Theorem 4.1). Then under the CFL stability condition (4.37) and
the condition (4.38) on the antidiffusive fluxes, the Young measure v associated
with the family [u } reduces to a Dirac mass, i.e.,

"t,x,y=âu(,,x,y)>      a-e-  í>0>   (*,y)eR2,

where u denotes the unique entropy weak L°° solution to problem (1.1), (1.2).
Hence, when h goes to zero, the approximate solutions u converge to the unique
entropy weak solution u in the Lx strong topology.

We recall that the L°°-estimate assumed in Theorem 4.3 is actually ensured
by Theorem 4.1 for the main choices of antidiffusive fluxes introduced in the
literature. In particular, in the case of the scheme constructed in §4.2 from the
Van Leer flux limiter, we obtain the following convergence result (the proof is
omitted).
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Corollary 4.2 (Convergence of a scheme with flux limiter). Under the CFL sta-
bility condition (4.11) and the condition

(4.50) ax,ßxe(l,l),        a2,ß2e[l,2],
the uniformly accurate version of the Van Leer scheme introduced in §4.2 con-
verges in the L -norm strongly towards the unique entropy weak L°° solution of
the problem (1.1), (1.2).

Remark 4.2. A number of generalizations of Theorem 4.3 are possible. For
instance, if the ¿'-schemes are chosen to be the modified Lax-Friedrichs scheme
(see §3.3), then in view of Theorem 3.2 it is clear that Theorem 4.3 remains
valid if (4.38) is replaced by the weaker condition

\a"+l/2J\<Cha,       neN, i,jeZ, with a e (±, 1),

I*«", 7+1/2I ̂ chß>       neN, i, je Z, with ße(\,l).
In particular, Corollary 4.2 remains true if instead of (4.50) we assume that

ax,ßxe({,l),       a2,^2e[l,2].
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