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Summary. This paper is devoted to the study of the finite volume methods

used in the discretization of conservation laws defined on bounded domains.

General assumptions are made on the data: the initial condition and the

boundary condition are supposed to bemeasurable bounded functions.Using

a generalized notion of solution to the continuous problem (namely the

notion of entropy process solution, see [9]) and a uniqueness result on this

solution, we prove that the numerical solution converges to the entropyweak

solution of the continuous problem inLploc for every p ∈ [ 1,+∞). This also
yields a new proof of the existence of an entropy weak solution.

Mathematics Subject Classification (1991): 65M60

1 Introduction

1.1 The initial-boundary value problem

Let Ω be an open bounded polyhedral subset of Rd. Let us denote by Γ its

boundary, by n the unit normal to Γ outward to Ω, by γ the measure on Γ ,
by Q the set Q =] 0,+∞[×Ω and by Σ the set Σ =] 0,+∞[×Γ .

We consider the following scalar conservation law:

ut(t, x) + divx f(t, x, u(t, x)) = 0, (t, x) ∈ Q ,(1)

with the initial condition

u(0, x) = u0(x), x ∈ Ω ,(2)
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and the boundary condition

u(t, r) = ub(t, r), (t, r) ∈ Σ .(3)

The way the boundary condition is satisfied has to be precised. Indeed,

lest the problem (1)-(2)-(3) should be overdetermined, Equality (3) cannot

be required to be assumed pointwise, even if the solution to (1) is a regular

function (see [12] for a complete description of an intuitive approach to

the nature of the boundary condition). Supposing that u0 is BV and that

ub is C2-regular, Bardos, Le Roux and Nedelec [2] prove the existence and

uniqueness of a solution to (1)-(2)-(3), explaining the way the boundary

condition must be understood and detailing an inequality on the boundary

now known as the BLN condition (see Remark 3).

Following thework ofDiPerna [4], Szepessy defines a notion ofmeasure-

valued solution to (1) and, assuming the existence of aweak entropy solution

to the problem, proves the uniqueness of the measure-valued solution. The

existence of such a weak entropy solution is ensured by the work of Bardos,

Le Roux and Nedelec. Notice that the “BLN condition ” does make sense

only if the solution u of (1)-(2)-(3) admits a trace on Σ. When handling

the BLN condition we thus need the solution to be BV , which implies,

in general, that the initial condition u0 is BV and the minimum regularity

required on the data is of BV type.

At any rate, the existence of a measure-valued solution is obtained

through weak estimates on approximate solutions of the problem (1)-(2)-(3)

and, under the hypotheses u0 ∈ BV (Ω) and ub ∈ C2(Σ), this measure-

valued solution gives rise to a weak entropy solution; this allows several

authors to study the convergence of numerical schemes associated to the

continuous problem. In [15], Szepessy proves the convergence of a stream-

line diffusion finite elements method; in [8], Cockburn, Coquel and Lefloch

prove the convergence of the monotone finite volume method; in [3], Ben-

harbit, Chalabi and Vila prove the convergence of a class of E-schemes.

We will use here a generalized notion of solution, similar to the one of

measure-valued solution: the notion of entropy process solution introduced

byEymard,Gallouët andHerbin for theCauchyProblem in [9]. The aimhere

is to adapt the method of [9] in order to obtain the same results as Eymard,

Gallouët and Herbin in the case of the initial-boundary value problem. We

deduce from a theorem of uniqueness (Theorem 2 in this paper) that an

entropy process solution is actually aweak entropy solution. Let us highlight

a difference between the way measure-valued solution and entropy process

solution are handled: working in the framework of measure-valued solution,

it is necessary to suppose the existence of a weak entropy solution in order

to prove that any measure-valued solution is merely a weak entropy solution

(see [4]), while this hypothesis is no longer required to prove that an entropy
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process solution is an entropyweak solution. This iswhy, here, existence and

uniqueness of a solution is established for a flux function f ∈ C1 (or locally

Lipchitz continuous, under an additionnal hypothesis, see Remark 1).

Moreover, we intend to deal only with essentially bounded measurable

data. Consequently, a solution is sought in L∞(R+×Ω) and this function-
nal context does not allow the definition of such a notion as the trace of the

solution. In the L∞ framework a notion of weak entropy solution has been

given by F. Otto, who achieved this work in his PhD. Thesis so that little bib-

liography is available: a summary is presented in [13] and a more complete

exposition appears in [12]. In this last reference, the existence of an entropy

solution is established under the hypothesis f ∈ C2 and the uniqueness is

proved under the hypothesis f ∈ C1. The work of Otto relies on the use of

particular entropy-flux pairs, namely the boundary entropy-flux pairs. We

give a similar definition of solution of the problem (1)-(2)-(3), but merely

using the “semi Kruzkov entropies”, as they already appear in the work of

Carillo [5] and Serre [14] (see Sect. 2). These entropy functions admit very

simple algebraic definition, so that the study of the discrete entropy inequal-

ities satisfied by the numerical solution of the problem (1)-(2)-(3) defined

by a monotone finite volume scheme is quite straightforward.

The discrete (and local) entropy inequalities satisfied by the numerical

solution allows us to derive approximate continuous entropy inequalities.

Notice that, in the course of the proof of this result, a ”weak BV estimate”

[9] on the numerical solution is needed. This weak BV estimate cannot yield

any compactness property on a family of approximate numerical solution

but is one of the key point of the proof of Theorem 3.

Notice also that monotone finite volume schemes are widely used in

practical application. For example, in oil reservoir engineering, an IMPES

scheme can be implemented to study the behaviour of the fluid in a column

(see [1] or [10]) and, in this case, comes down to a monotone finite volume

scheme.

1.2 Hypotheses and notations

We make the following hypotheses on the data and on the flux:





(i) ub ∈ L∞(Σ) and u0 ∈ L∞(Ω) ,

(ii) f ∈ C1(R+ × Rd × R,Rd) and
∂f

∂u
is locally Lipschitz continuous ,

(iii) divx f(t, x, u) = 0 for a.e. (t, x, u) ∈ R+ × Rd × R,

(4)
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Remark 1 Assumption (iii) on f maybe relaxed, andwe can consider source

terms in (1)-(2)-(3) (see [7]). Assumption (ii) on f may also be weakened,

in particular it is enough to suppose that

(ii)a f ∈ Liploc(R+ × Rd × R,Rd) ;

(in which case
∂f

∂u
is defined a.e. on R+ × Rd × R) provided that, for

every compact Kt,x ⊂ R+ × R, for every compact Ku ⊂ R, there exists

VKt,x,Ku
≥ 0 such that

(ii)b

{
for a.e. v ∈ Ku , for a.e. (s, y) ∈ Kt,x , for a.e. (σ, z) ∈ Kt,x ,∣∣∣
∂f

∂u
(s, y, v)− ∂f

∂u
(σ, z, v)

∣∣∣ ≤ VKt,x,Ku
(|s− σ|+ |y − z|) .

Notice that conditions (ii)a and (ii)b are fulfilled if the function f can be

written as

f(t, x, u) = v(t, x) g(u)

with v ∈ Liploc(R+ × Rd ; Rd) and g ∈W 1,∞
loc (R).

Notations: We denote by B and A the quantities

B = max(ess sup
Ω

(u0) , ess sup
Σ

(ub)) ,(5)

and

A = min(ess inf
Ω

(u0) , ess inf
Σ

(ub)) .(6)

Thanks to assumption (4) on f , it is known that, for every T > 0, f is

Lipschitz continuous on [ 0, T ] × Ω × [A,B]. Our work requires f to be

Lipschitz continuous but, instead of fixing T > 0, then working on the set

[ 0, T ] × Ω × [A,B], and, at last, extending the solutions obtained (with

the help of a theorem of uniqueness), we already suppose f to be Lipschitz

continuous onR+×Ω× [A,B]. We setLip(f) to be its Lipschitz constant.

1.3 Main results

In Sect. 2, we emphasize the definition of weak entropy solution; the class

of entropy-flux pairs considered in the definition of weak entropy solution

can be reduced to the one of the so-called “semi Kruzkov” entropies. It is

one of the keys of the result of convergence of the scheme. As in [9] and

[6], a notion of entropy process solution is defined.

In Sect. 3,we develop the proof of a uniqueness result (that is Theorem2).

This theorem allows us to show that an entropy process solution of the

problem (1)-(2)-(3) is necessarily a weak entropy solution. It also ensures

the uniqueness of the weak entropy solution. Notice that, in the course of
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the proof of this theorem, it is not necessary to suppose the existence of a

weak entropy solution.

In Sect. 4, we define the finite volume scheme with monotone fluxes

associated to the problem (1)-(2)-(3) and the corresponding numerical so-

lution uT ,k. We prove that (uT ,k) converges towards an entropy process

solution of problem (1)-(2)-(3). This yields, thanks to Theorem 2, the result

of existence of a weak entropy solution of the problem (1)-(2)-(3). Then it is

proved that (uT ,k) converges to the weak entropy solution in L
p
loc(R+×Ω)

for every p ∈ [ 1,+∞[.

2 Weak entropy solution

It is well-known that the concept of weak solution is not accurate in the

study of hyperbolic problems, for uniqueness of such a solution may fail,

even if the data are regular functions. Thus, we turn to the notion of weak

entropy solution.

Notations: Let sgn+ denote the application R −→ R defined by

sgn+(s) =

{
1 if s > 0 ,
0 if s ≤ 0 ,

and sgn− the application s �−→ −sgn+(−s). As usual, we set s+ =
sgn+(s) s and s− = (−s)+.

Let κ ∈ [A,B]. The entropy-flux pair (η+
κ , Φ

+
κ ) (respectively (η−

κ , Φ
−
κ ))

is defined by
{
η+
κ (s) = (s− κ)+ ,
Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ)) ,

(7)

(8)(
respectively

{
η−
κ (s) = (s− κ)− ,
Φ−
κ (t, x, s) = sgn−(s− κ)(f(t, x, s)− f(t, x, κ))

)
.

Definition 1 Let u be in L∞(Q). The function u is said to be a weak en-

tropy solution of the problem (1)-(2)-(3) if it satisfies the following entropy

inequalities: for all κ ∈ [A,B], for all ϕ ∈ C∞
c (R+ × Rd, R+),

∫∫

Q

(
η+
κ (u)ϕt + Φ+

κ (t, x, u) · ∇ϕ
)
dxdt

+

∫

Ω
η+
κ (u0)ϕ(0, x) dx

+Lip(f)

∫∫

Σ
η+
κ (ub)ϕ(t, r) dγ(r)dt ≥ 0 ,(9)
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and ∫∫

Q

(
η−
κ (u)ϕt + Φ−

κ (t, x, u) · ∇ϕ
)
dxdt

+

∫

Ω
η−
κ (u0)ϕ(0, x) dx

+Lip(f)

∫∫

Σ
η−
κ (ub)ϕ(t, r) dγ(r)dt ≥ 0 .(10)

The semi Kruzkov entropies have rather simple algebraic expressions

that allows the study of the numerical problem associated to (1)-(2)-(3),

while, working with “boundary entropy-flux pairs”, this study may be much

more difficult. The boundary entropy-flux pairs are the entropy-flux pairs

used by Otto to define the notion of weak entropy solution. They are defined

in the following way:

Definition 2 Let (H,Q) be in C2(R2) × (C2(R+ × Rd × R2))d. The pair
(H,Q) is said to be a boundary entropy-flux pair (for the flux f ) if:

1. for all w ∈ R, s �→ H(s, w) is a convex function,

2. ∀w ∈ R , ∂sQ(t, x, s, w) = ∂sH(s, w)
∂f

∂s
(t, x, s),

3. ∀w ∈ R, H(w,w) = 0 , Q(., ., w, w) = 0 , ∂sH(w,w) = 0.

Thanks to the following lemma, Definition 1 of weak entropy solution

gives rise to exactly the same notion of solution as defined by Otto.

Lemma 1 Let η ∈ C1(R,R) be a convex function such that: there exists

w ∈ [A,B] with η(w) = 0 and η′(w) = 0. Then η can be uniformly

approximated on [A,B] by applications of the kind

s �−→
∑

1,p

αi(s− κi)
− +

∑

1,q

βj(s− κ̃j)
+

where αi ≥ 0, βj ≥ 0, κi ∈ [A,B] and κ̃j ∈ [A,B].

We conclude this section by making some comments on weak entropy

solution.

Remark 2 (see [12]) If u ∈ L∞(Q) is a weak entropy solution of the prob-
lem (1)-(2)-(3) then: for almost every (t, x) ∈ Q,

A ≤ u(t, x) ≤ B .

Remark 3 If u ∈ L∞(Q) is a weak entropy solution of the problem (1)-(2)-

(3) then u satisfies (see [12]): for all classical entropy-flux pair (η, Φ), for
all ϕ ∈ C∞

c ((0,+∞)×Ω, R+),
∫∫

Q
η(u)ϕt + Φ(t, x, u) · ∇ϕ ≥ 0(11)
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and

ess lim
t→0+

∫

Ω
|u(t)− u0| dx = 0;(12)

moreover, the boundary condition is fulfilled in the following way: for all

boundary entropy-flux pair (H,Q), for all β ∈ L1(Σ) such that β ≥
0 a.e.,

ess lim
s→0+

∫ T

0

∫

Γ
Q(t, r, u(t, r − sn(r)), ub(t, r))

·n(r)β(t, r) dγ(r)dt ≥ 0.(13)

Reciprocally, if u ∈ L∞(Q), with A ≤ u ≤ B a.e., and u satisfies (11),

(12), (13), then u is a weak entropy solution of the problem (1)-(2)-(3).

Besides, if u ∈ L∞(Q) is a weak entropy solution of the problem (1)-

(2)-(3) that admits a trace, meaning there exists uτ in L∞(Σ) such that

ess lim
s→0+

∫

Σ
|u(t, r − sn(r))− uτ (t, r)| dγ(r)dt = 0 ,

then (13) is equivalent to the equation

Q(uτ , ub) · n ≥ 0 a.e. on Σ .

Choosing Q(s, w) = Φ+(s,max(w, k)) + Φ−(s,min(w, k)) yields the

BLN condition ([2]), that is:

for a.e. (t, r) ∈ Σ, ∀k ∈ [uτ (t, r), ub(t, r)],

sgn(uτ (t, r)− ub(t, r)) (f(uτ (t, r)− f(k)) · n(r) ≥ 0 .

Notice that, in the case whereΩ = Rd, it is well-known that the class of

Kruzkov entropies is wide enough to ensure the uniqueness of the solution. It

is the same here, except that we have to consider the semi Kruzkov entropies

and that working with the mere Kruzkov entropies would not be sufficient,

for uniqueness would be lacking. Indeed, the classical Kruzkov entropy-flux

pairs are defined by:

ηκ(s) = |s− κ| ,
Φκ(t, x, s) = sgn(s− κ)(f(t, x, s)− f(t, x, κ)) .

(14)

Now, suppose that Ω =] 0,+∞[ and define the flux-function f : [ 0, 1] �−→
R by

f(u) = u(1− u) ;

then consider the solution u of the Riemann problem on R associated to the

equation ut +(f(u))x = 0 and to the datum (u−, u+). Let u0 = u+ and ub
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be constant. Then u ∈ L∞(Q) and satisfies: for all ϕ ∈ C∞
c (R+×R, R+),

for all κ ∈ [A,B],
∫∫

Q
(|u− κ|ϕt + sgn(u− κ)(f(u)− f(κ))ϕx) dxdt

+

∫

R+

|u0 − κ|ϕ(0, x) dx + Lip(f)

∫

R+

|ub − κ|ϕ(t, 0) dt ≥ 0 ,

if, and only if, for all κ ∈ [A,B], for all t > 0,

−sgn(u(t, 0+)− κ)(f(u(t, 0+)− f(κ)) + Lip(f) |ub − κ| ≥ 0 .(15)

Now, choosing u0 = u+ = 0 and ub = 1, the data u1
− = 1/4 and u2

− = 1/2
define, through the Riemann problem, two distinct measurable bounded

functions which both satisfy (15).

2.1 Entropy process solution

The proof of the existence of a weak entropy solution to the problem (1)-

(2)-(3) lies in the study of the numerical solution uT ,k defined by the finite

volume scheme associated to (1)-(2)-(3). Here T denotes the mesh, h its

“size” and k the time step (see Sect. 4). Theorem 3 states that the numerical

solution satisfies the following approximate entropy inequalities:




∀κ ∈ [A,B] , ∀ϕ ∈ C∞
c (R+ × Rd,R+) ,∫∫

Q

(
η+
κ (uT ,k)ϕt + Φ+

κ (t, x, uT ,k) · ∇ϕ
)
dx dt

+

∫

Ω
η+
κ (u0)ϕ(0)dx

+

∫

Σ
η+
κ (ub)ϕ(t, x)dγ(x) dt ≥ −εT ,k(ϕ) ,

(16)

where

∀ϕ ∈ C∞
c (R+ × Rd,R+) , εT ,k(ϕ) −→ 0 when h→ 0.

The same result holds when the entropy-flux pair (η−
κ , Φ

−
κ ) is considered.

The numerical approximate solution (uT ,k) is also known to be bounded
in L∞(Q) but it is not enough to pass to the limit in Inequation (16). Thus,

owing to the non-linearity of the equation and to the lack of estimate on

the approximate solution, we have to turn to the notion of measure-valued

solution (see DiPerna, [4], Szepessy, [15]) or, equivalently, to the notion of

entropy process solution defined by Eymard, Gallouët, Herbin in [9]. The

interest of this notion lies in the following result, which generalizes the

notion of weak-⋆ convergence in L∞ and free oneself from the problems of

non-linearity.



Convergence of finite volume monotone schemes 571

Theorem 1 Let O be a borelian subset of Rm, let R be positive and (un)
be a sequence ofL∞(O) such that, for all n ∈ N, ||un||L∞ ≤ R. Then there
exists a sub-sequence still denoted by (un) and µ ∈ L∞(O × (0, 1)) such
that:

∀g ∈ C(R) , g(un) −→
∫ 1

0
g(µ(., α)) dα in L∞(O) weak- ⋆ .

Now the notion of entropy process solution can be defined.

Definition 3 Let µ be in L∞(Q × ( 0, 1)). The function µ is said to be an

entropy process solution to (1)-(2)-(3) if:

1. for a.e. (t, x, α) ∈ Q× ( 0, 1), A ≤ µ(t, x, α) ≤ B,

2. for all κ ∈ [A,B], for all ϕ ∈ C∞
c (R+ × Rd) , ϕ ≥ 0,

∫∫

Q

∫ 1

0

[
η+
κ (µ(t, x, α))ϕt(t, x) + Φ+

κ (t, x, µ(t, x, α)) · ∇ϕ(t, x)
]

×dα dx dt+

∫

Ω
η+
κ (u0)ϕ(0, x) dx

+Lip(f)

∫∫

Σ
η+
κ (ub)ϕ(t, x) dγ(x) dt ≥ 0 ,(17)

3. the same entropy inequality holds when (η−
κ , Φ

−
κ ) is selected as an

entropy-flux pair.

Notice that if µ is an entropy process solution of the the problem (1)-(2)-

(3) and if µ does not depend on its last variable, that is to say: there exists

u ∈ L∞(Q) such that

for a.e. (t, x, α) ∈ Q× ( 0, 1) , µ(t, x, α) = u(t, x),

then u is a weak entropy solution to (1)-(2)-(3).

We will now prove that if µ ∈ L∞(Q × ( 0, 1)) is an entropy process

solution then, in fact, µ does not depend on its last variable and that the weak

entropy solution is unique.

3 Uniqueness of the entropy process solution

Theorem 2 (“uniqueness” of the entropy process solution) Let µ , ν ∈
L∞(Q × ( 0, 1)) be two entropy process solutions. Then there exists u ∈
L∞(Q) such that:

µ(t, x, α) = u(t, x) = ν(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2 .

Corollary 1 The problem (1)-(2)-(3) admits at most one weak entropy so-

lution.
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Let us first prove some lemmas that will entail Theorem (2). In order

to clarify certain forthcoming expressions, the following notations will be

used: for (t, x) ∈ Q, for s and κ ∈ R,





Φ(t, x, s, κ) = Φκ(t, x, s) = sgn(s− κ)(f(t, x, s)− f(t, x, κ) ,

Φ+(t, x, s, κ) = Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ) ,

Φ−(t, x, s, κ) = Φ−
κ (t, x, s) = sgn−(s− κ)(f(t, x, s)− f(t, x, κ) .

Notice that Φ = (Φ1, . . . , Φd) takes its values in Rd.

Lemma 2 Let µ , ν ∈ L∞(Q × ( 0, 1)) be two entropy process solutions.

Then:





∀ψ ∈ C∞
c (R+ × Rd

+) , ψ ≥ 0,

∫∫

Q

∫ 1

0

∫ 1

0

[
|µ(t, x, α)− ν(t, x, β)|ψt

+Φ(t, x, µ(t, x, α), ν(t, x, β)) · ∇ψ
]
dβ dα dx dt ≥ 0 .

(18)

The set Ω was supposed to be an open polyhedral subset of Rd. Notice

that the following proof would still be correct ifΩ were an open set with C1

boundary. Indeed, working locally (thanks to local maps covering Ω), we

can suppose Ω = Rd or Ω = Rd
+. What really requires care in the proof of

Lemma 2 is the study of the behaviour of an entropy process solution near

the boundary, so that we already suppose

Ω = Rd
+ = {x = (x, xd) ∈ Rd , xd > 0}

and detail the following lemmas.

Lemma 3 Let a⊤b denotes the maximum value between two reals a and b
and a⊥b denotes their minimum value. Let µ be an entropy process solution

to (1)-(2)-(3) and κ be in [A,B]. Then:

1. there exists θ+
µ,κ ∈ L∞(Σ) such that: for all β ∈ L1(Σ),

− ess lim
xd→0+

∫∫

Σ

∫ 1

0
Φ+
d (t, x, µ(t, x, α), ub(t, x)⊤κ)β(t, x) dα dx dt

=

∫∫

Σ
θ+
µ,κ(t, x)β(t, x) dx dt ,

and θ+
µ,κ ≥ 0 a.e.
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2. there exists θ−
µ,κ ∈ L∞(Σ) such that: for all β ∈ L1(Σ),

− ess lim
xd→0+

∫∫

Σ

∫ 1

0
Φ−
d (t, x, µ(t, x, α), ub(t, x)⊥κ)β(t, x) dα dx dt

=

∫∫

Σ
θ−
µ,κ(t, x)β(t, x) dx dt ,

and θ−
µ,κ ≥ 0 a.e.

3. there exists θµ ∈ L∞(Σ) such that: for all β ∈ L1(Σ),

− ess lim
xd→0+

∫∫

Σ

∫ 1

0
Φd(t, x, µ(t, x, α), ub(t, x))β(t, x) dα dx dt

=

∫∫

Σ
θµ(t, x)β(t, x) dx dt .

Lemma 4 Let µ be an entropy process solution to (1)-(2)-(3) and κ be in

[A,B]. Then the following inequality holds: for allϕ ∈ C∞
c (R+×Rd) , ϕ ≥

0,

∫∫

Q

∫ 1

0

[
|µ(t, x, α)− κ|ϕt(t, x) + Φ(t, x, µ(t, x, α), κ) · ∇ϕ(t, x)

]

×dα dx dt+

∫

Ω
|u0 − κ|ϕ(0, x) dx+

∫∫

Σ
θµ(t, x)ϕ(t, x, 0)

×dx dt+

∫∫

Σ
Φd(t, x, 0, u

b(t, x), κ)ϕ(t, x, 0) dx dt ≥ 0 .(19)

Proof of Lemma 3 (see [12]): Let β be a function of C∞
c (] 0,+∞[×Rd−1),

β ≥ 0, and define the functions g+
κ,w,β , h

+
κ,w,β (for w ∈ [A,B]) by:

g+
κ,w,β(xd) = −

∫∫

Σ

∫ 1

0
Φ+
d (t, x, µ(t, x, α), w⊤κ)β(t, x) dα dx dt ,

h+
κ,w,β(xd) =

∫∫

Σ

∫ 1

0
(µ(t, x, α)− κ⊤w)+ βt(t, x) dα dx dt+

∑

i=1,d−1

×
∫∫

Σ

∫ 1

0
Φ+
i (t, x, µ(t, x, α), κ⊤w)βxi

(t, x) dα dx dt .

Putting ϕ = βγ in Inequation (17) where κ has been replaced by κ⊤w and

γ ∈ C∞([ 0,+∞[ ,R+), we get, if γ ∈ C∞
c (0,+∞)

h+
κ,w,β − (g+

κ,w,β(xd))
′ ≥ 0 in D′

(]0,+∞[)(20)
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and, if γ(xd) = χ(0,ε)(xd)
(
1− xd

ε

)
,

1

ε

∫ ε

0
g+
κ,w,β(xd) dxd ≥ −Lip(f)

∫∫

Σ
(ub(t, x)− κ⊤w)+

×β dx dt +O(ε) .(21)

Considering that h+
κ,w,β ∈ L1(0,+∞), that g+

κ,w,β ∈ L∞(0,+∞) and

the inequality (20), we get g+
κ,w,β ∈ L∞ ∩ BV (0, 1). Thus, ess lim

xd→0+
g+
κ,w,β

(xd) exists and, by letting ε go to zero in the inequality (21), we get:

ess lim
xd→0+

g+
κ,w,β(xd) ≥ −Lip(f)

∫∫

Σ
(ub(t, x)− κ⊤w)+ β dx dt .(22)

Using the continuous dependency of g+
κ,w,β on β ∈ L1(Σ) and the

density of C∞
c (Σ) in L1(Σ), we deduce: for all β ∈ L1(Σ), β ≥ 0,

ess lim
xd→0+

g+
κ,w,β(xd) exists and (22) still holds. Then, approaching ub in

L∞(Σ) by simple functions ubε, each of them taking a finite number of

values wi in Q, say:

ubε =

p∑

i=1

wi χAi
, ((Ai)i pairwise disjoints)

and taking w = wi, χAi
β instead of β in (22), then summing with respect

to i ∈ {1, . . . , p} and, at last, letting ε go to zero yields the first point of

Lemma 3. The same lines would be followed to prove the second point, or

to prove the third point (by taking κ = w at the beginning and by using the

formula (s− w)+ + (s− w)− = |s− w|).
Proof of Lemma 4: for ε a positive number define the function ωε by

ωε(xd) =

{
xd/ε if 0 ≤ xd ≤ ε
1 if ε ≤ xd

.

Let ϕ ∈ C∞
c (R+ × Rd) , ϕ ≥ 0 and κ ∈ [A,B]. As the function µ is an

entropy process solution to (1)-(2)-(3), it can easily be shown that it satisfies

the inequality:

∫∫

Q

∫ 1

0

[
|µ(t, x, α)− κ|ωε(xd)ϕt(t, x) + Φ(t, x, µ(t, x, α), κ)

·∇ϕ(t, x)ωε(xd)
]
dα dx dt+

∫

Ω
|u0 − κ|ϕ(0, x)ωε(xd) dx

+
1

ε

∫ ε

0

∫∫

Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt dxd ≥ 0,
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and, by letting ε go to zero:
∫∫

Q

∫ 1

0

[
|µ(t, x, α)− κ|ϕt(t, x) + Φ(t, x, µ(t, x, α), κ) · ∇ϕ(t, x)

]

×dα dx dt+

∫

Ω
|u0 − κ|ϕ(0, x) dx+ lim ess sup

xd→0+

×
∫∫

Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt ≥ 0 .

Moreover, using the formula

Φ(t, x, s, κ) = 2
[
Φ+(t, x, s, κ⊤ub(t, x)) + Φ−(t, x, s, κ⊥ub(t, x))

]

+Φ(t, x, κ, ub(t, x))− Φ(t, x, s, ub(t, x)) ,

we deduce from Lemma 3:

lim ess sup
xd→0+

∫∫

Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt

≤
∫∫

Σ
θµ(t, x)ϕ(t, x, 0) dx dt

+

∫∫

Σ
Φd(t, x, 0, u

b(t, x), κ)ϕ(t, x, 0) dx dt ,

which proves the inequality (19).

3.1 Proof of Lemma 2

Working on the entropy inequality (19), the doubling variable technique

of Kruzkov (see [11]) is efficient. Let us detail it: let ρ be a function of

C∞
c (] − 1, 0[,R+) such that

∫ 0

−1
ρ(t) dt = 1 (notice that ρ has a compact

support located to the left of zero). Classically, a sequence of mollifiers (ρε)
on R can be defined by the formula

ρε(t) =
1

ε
ρ

(
t

ε

)
, ε > 0 ,

and a sequence of mollifiers (ρ̃ε) on Rq (q ≥ 1) can be defined by the

formula

ρ̃ε(x) = ρε(x1)× · · · × ρε(xq) , x ∈ Rq .

We also define Rε by:

Rε : t �−→
∫ −t

−∞
ρε(s) ds .
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Let ψ be in C∞
c (R+ × Rd), ψ ≥ 0 and define ϕ by

ϕ(t, x, s, y) = ψ(t, x)ρε(t− s)ρ̃ε(x− y) .

We apply inequality (19) with κ = ν(s, y, β), (t, x) �→ ϕ(t, x, s, y) as a

test function and integrate w.r.t. (s, y, β). On the other hand, the function ν
satisfies the inequation

∫∫

Q

∫ 1

0
|ν(s, y, β)− κ|ϕs(s, y) + Φ(s, y, ν(s, y, β), κ)

·∇ϕ(s, y) dβ dy ds+

∫

Ω
η+
κ (u0)ϕ(0, y) dx

+Lip(f)

∫∫

Σ
|ub − κ|ϕ(s, y, 0) dy ds ≥ 0 ;(23)

In (23), we setκ = µ(t, x, α), choose (s, y) �→ ϕ(t, x, s, y) as a test function
(notice that ϕ(t, x, 0, y) = ϕ(t, x, s, y, 0) = 0) and integrate w.r.t. (t, x, α).
Summing the two inequalities thus obtained yields the following result:

A(ψt) +A(ψx) +A(ρ̃x) +A0 +Ab1 +Ab2 ≥ 0,(24)

where:

A(ψt) =

∫∫

Q

∫ 1

0

∫∫

Q

∫ 1

0
|µ(t, x, α)− ν(s, y, β)|ψt(t, x)

×ρ̃ε(x− y) ρε(t− s) dβ dy ds dα dx dt,

A(ψx) =

∫∫

Q

∫ 1

0

∫∫

Q

∫ 1

0
Φ(t, x, µ(t, x, α), ν(s, y, β)) · ∇ψ(t, x)

×ρ̃ε(x− y) ρε(t− s) dβ dy ds dα dx dt,

A(ρ̃x) =

∫∫

Q

∫ 1

0

∫∫

Q

∫ 1

0
[Φ(t, x, µ(t, x, α), ν(s, y, β))

−Φ(s, y, µ(t, x, α), ν(s, y, β))] · ∇ρ̃ε(x− y)

×ψ(t, x) ρε(t− s) dβ dy ds dα dx dt,

A0 =

∫∫

Q

∫ 1

0

∫

Ω
|u0(x)− ν(s, y, β)|ψ(0, x)

×ρ̃ε(x− y) ρε(−s) dβ dy ds dx,

Ab1 =

∫∫

Q

∫ 1

0

∫∫

Σ
θµ(t, x)ψ(t, x, 0) ρ̃ε(x− y)

×ρε(−yd) ρε(t− s) dx dt dβ dy ds ,

Ab2 =

∫∫

Q

∫ 1

0

∫∫

Σ
Φd(t, x, 0, u

b(t, x), ν(s, y, β))ψ(t, x, 0)

×ρ̃ε(x− y) ρε(−yd) ρε(t− s) dx dt dy dβ ds .
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Now, we study the behaviour of each of those terms as ε goes to zero.

TermsA(ψt) andA(ψx). From the theoremof continuity inmeans is deduced

the convergence of (A(ψt) +A(ψx)) to the right-hand side of the inequality
(18) of Lemma 2, that is to say:

A(ψt) −→ A∞
(ψt)

and A(ψx) −→ A∞
(ψx) ,

where:





A∞
(ψt)

=

∫∫

Q

∫ 1

0

∫ 1

0
|µ(t, x, α)− ν(t, x, β)|ψt dβ dα dx dt ,

A∞
(ψx) =

∫∫

Q

∫ 1

0

∫ 1

0
Φ(t, x, µ(t, x, α), ν(t, x, β)) · ∇ψ dβ dα dx dt .

Term A(ρ̃x). Notice that, if f does not depend on (t, x), then A(ρ̃x) = 0.
Actually, using the fact that divxf(t, x, s) = 0 and the local Lipschitz

continuity of
∂f

∂s
, we prove (see [6])

lim supA(ρ̃x) ≤ 0 .

Term A0. Let us consider Inequality (23) where κ = u0(x) and (s, y) �→
ψ(0, x)Rε(s) ρ̃ε(x− y) has been selected as a test function. Integrating the
result w.r.t. x ∈ Ω yields an upper bound for A0:

−A0 +B(ρ̃x) +B0 ≥ 0 ,

where:

B(ρ̃x) = −
∫

Ω

∫∫

Q

∫ 1

0
Φ(s, y, ν(s, y, β), u0(x))

·∇ρ̃ε(x− y)ψ(0, x)Rε(s) dy ds dβ dx ,

B0 =

∫

Ω

∫

Ω
|u0(x)− u0(y)|ψ(0, x) ρ̃ε(x− y) dx dy .

The theorem of continuity in means allows us to prove B0 −→ 0. Let us
denote by C(ρ̃x) the term defined by the expression of B(ρ̃x) where u0(x)
has been replaced by u0(y). An integration by parts (w.r.t. the x variable)

shows that C(ρ̃x) −→ 0 and, from the theorem of continuity in means again

and the fact that ||Rε||L1 ≤ εwe deduce:C(ρ̃x)−B(ρ̃x) −→ 0when ε→ 0.

Eventually, we have: lim supA0 ≤ 0.
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Terms Ab1 and A
b
2. Without any calculation, we have:

Ab1 =

∫∫

Σ
θµ ψ|Σ .

Moreover, in view of Lemma 3 (applied to ν), the following convergence

holds:

Ab2 −→ −
∫∫

Σ
θν ψ|Σ .

Eventually, by letting ε go to zero, is deduced from the inequality (24)

the following inequation:

A∞
(ψt)

+A∞
(ψx) +

∫∫

Σ
θµ ψ|Σ −

∫∫

Σ
θν ψ|Σ ≥ 0 .

Changing the roles ofµ and ν andmaking the average of the two inequations

obtained this way yields Inequality (18) of Lemma 2.

3.2 Proof of Theorem 2

Recall that, in the course of the proof of Lemma 2, the set Ω has been

supposed to be the half-plane Rd
+ but that Inequality (18) still holds when

Ω is an open bounded polyhedral subset of Rd: the details of the opera-

tions of localization and of transport have been eluded, but, for example,

the dependance of the test-function ψ on the variable x has been carefully

maintained. Indeed, we come back now to the case where Ω is any open

bounded polyhedral subset of Rd and choose a test-function independant of

x in (18), which is the function ψ0 defined by:

ψ0(t, x) = (T − t)χ(0,T )(t) ,

where T > 0. This yields:
∫ T

0

∫

Ω

∫ 1

0

∫ 1

0
|µ(t, x, α)− ν(t, x, β)| dx dt dα dβ ≤ 0 .

As T is any positive real number, the following equality holds:

for a.e. (t, x, α, β) ∈ Q× ( 0, 1)× ( 0, 1) , µ(t, x, α) = ν(t, x, β) .

Now, define the function u by the formula

u(t, x) =

∫ 1

0
µ(t, x, α) dα .

Taking into account the product structure of the measurable space Q ×
( 0, 1)× ( 0, 1) we get:

µ(t, x, α) = u(t, x) = ν(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2.
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4 Convergence of the finite volumes scheme

4.1 Presentation of the scheme

Let T be a family of disjoint connected polygonal subsets of Ω (called

control volumes) such that Ω is the union of the closures of the elements

of this family and such that the common interface of two control volumes

is included in an hyperplane of Rd. Let h be the size of the mesh: h =
sup{diam(K), K ∈ T }. Notice that h < +∞ (for the set Ω is bounded)

and suppose: there exists α > 0 such that

{
αhd ≤ m(K),
m(∂K) ≤ 1

αh
d−1 , ∀K ∈ T ,(25)

where m(K) is the d-dimensionnal Lebesgue measure of K and m(∂K)
is the (d− 1)-dimensionnal Lebesgue measure of ∂K. IfK and L are two

control volumes having an edgeσ in commonwe say thatL is a neighbour of

K and denote L ∈ N (K). We sometimes denote byK|L the common edge

σ betweenK andL and by nK,σ the unit normal to σ, oriented fromK toL.
Moreover, E denotes the set of all edges and Eb the set of boundary edges,

that is: Eb = {σ ∈ E ,m(σ ∩ ∂Ω) > 0}. IfK ∈ T , EK is defined as the set

of the edges determined by ∂K, i.e.: EK = {σ ∈ E , m(σ ∩ ∂K) > 0}.

Remark 4 Assumption (25) yields the following estimate on the number of

control volumes:

|T | ≤ m(Ω)

α
h−d .(26)

Let k be the time step. The numerical fluxes Fn
K,σ (for K ∈ T and

σ ∈ EK) are functions in C(R2,R) satisfying the following hypotheses

of monotony, conservativity, regularity and consistency (recall that B =
max(ess sup

Ω
(u0) , ess sup

Σ
(ub)) and A = min(ess inf

Ω
(u0) , ess inf

Σ
(ub)) ) :





(i) on [A,B]2 , (a, b) �→ Fn
K,σ(a, b) is nondecreasing w.r.t. a

and nonincreasing w.r.t. b ,
(ii) for all σ = K|L ∈ E \ Eb , for all

a , b ∈ [A,B] , Fn
K,σ(a, b) = −Fn

L,σ(b, a) ,

(iii) on [A,B]2 , Fn
K,σ is Lipschitz continuous and admits

m(σ)Lip(f) as Lipschitz constant ,
(iv) for all s ∈ [A,B] ,

Fn
K,σ(s, s) =

1

k

∫ (n+1)k

nk

∫

σ
f(t, x, s) · nK,σ dγ(x) dt .

(27)

Notation: If σ = K|L ∈ E we will denote Fn
K,K|L by Fn

K,L.
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Notice that the property of consistency (iv) above gives, owing to

divxf = 0,

∀s ∈ [A,B] , ∀K ∈ T ,
∑

σ∈EK

Fn
K,σ(s, s) = 0 .(28)

The discrete unknowns unK (for n ∈ N and K ∈ T ) are defined by the

following set of equations:

u0
K =

1

m(K)

∫

K
u0(x) dx , ∀K ∈ T ,(29)

ub,nσ =
1

km(σ)

∫ (n+1)k

nk

∫

σ
ub(t, x) dγ(x) dt , ∀σ ∈ Eb , ∀n ∈ N ,(30)

m(K)
un+1
K − unK

k
+

∑

σ∈EK

Fn
K,σ(u

n
K , u

n
K,σ) = 0 ,

∀K ∈ T , ∀n ∈ N ,(31)

where

unK,σ =

{
unL if σ = K|L ,
ub,nσ if σ ∈ Eb .

The numerical solution is then defined by: for allK ∈ T , for all n ∈ N,

uT ,k(t, x) = unK for all (t, x) ∈ [nk, (n+ 1)k[×K.

Moreover, we will suppose that a CFL condition is fulfilled, that is to

say:

∃ ξ ∈ ] 0, 1[ such that k ≤ (1− ξ)
α2h

2Lip(f)
.(32)

Then, the monotony of the schemes is ensured. Indeed, we deduce from (31)

and (28)

m(K)
un+1
K − unK

k
+

∑

σ∈EK

(Fn
K,σ(u

n
K , u

n
K,σ)

−Fn
K,σ(u

n
K , u

n
K)) = 0 .(33)

Therefore

un+1
K =

(
1− k

m(K)

∑

σ∈EK

τnK,σ

)
unK +

k

m(K)

∑

σ∈EK

τnK,σ u
n
K,σ ,

where τnK,σ = (Fn
K,σ(u

n
K , u

n
K,σ) − Fn

K,σ(u
n
K , u

n
K))/(unK − unK,σ) if u

n
K �=

unK,σ, or τ
n
K,σ = 0 else. The monotony and the regularity of the fluxes (see

(iii) of (27)) and theCFL condition ensures k
m(K)

∑

σ∈EK

τnK,σ ∈ [ 0, 1]. Thus,

the following remark holds.
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Remark 5 For all K ∈ T , n ∈ N, (31) can be rewritten in the following

way:

un+1
K = Hn

K(unK , (u
n
K,σ)σ∈EK

)) ,

where the functionHn
K is nondecreasingwith respect to eachof its arguments

and satisfies

Hn
K(u, (u)σ∈EK

)) = u for all u ∈ R .

4.2 L∞-stability and weak BV estimate

The scheme defined by (29)-(30)-(31) isL∞-stable and aweakBV estimate

– that is a weak estimate on the time and space derivatives of uT ,k – holds.

Lemma 5 Assume that (27) and (32) hold. Then the approximate solution

uT ,k of (1)-(2)-(3) defined by (29), (30) and (31) satisfies:

A ≤ uT ,k(t, x) ≤ B for a.e. (t, x) ∈ Q .

Proof. We prove by induction on n ∈ N:

∀K ∈ T , A ≤ unK ≤ B .

It is true for n = 0 and the heredity of the proposition is a consequence of

the monotony of the scheme (see Remark 5).

Let us now detail the weak BV estimate.

Lemma 6 Assume that (25), (27) and (32) hold. LetuT ,k be the approximate

solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Let T be

positive and set N = max{n ∈ N , n < T/k} and Enint = {(K,L) ∈
T 2 , L ∈ N (K) and unK > unL}. Then there exists C ≥ 0 only depending

on Ω, u0, u
b, Lip(f), T , α and ξ such that, if k < T ,

N∑

n=0

k
∑

(K,L)∈En
int




max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))


 ≤ C√

h
,

(34)

and
N∑

n=0

∑

K∈T

m(K)|un+1
K − unK | ≤

C√
h
.(35)
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Proof. In the following, we denote byC various quantities that only depend

on Ω, u0, u
b, Lip(f), T , α and ξ.

Multiplying (33) by k unK , then summing overK ∈ T and n ∈ {0, · · · ,
N} yields the following equality:

B1 +B2 = 0,(36)

where

B1 =

N∑

n=0

∑

K∈T

m(K)(un+1
K − unK)unK ,

B2 =

N∑

n=0

k
∑

K∈T

∑

σ∈EK

unK(Fn
K,σ(u

n
K , u

n
K,σ)− Fn

K,σ(u
n
K , u

n
K)) .

The last two summations in the expression of B2 can be gathered by edges,

according to the following lemma:

Lemma 7 Let n ∈ N. Let ρ be an application T × E → R such that

ρnK,K|L = −ρnL,K|L if unK = unL. Then we have

∑

K∈T

∑

σ∈EK

ρnK,σ =
∑

(K,L)∈En
int

(ρnK,K|L + ρnL,K|L) +
∑

σ∈Eb

ρnK,σ .

(Notice that if σ ∈ Eb then there exists a unique K ∈ T such that σ =
∂K ∩ ∂Ω; therefore the ρnK,σ in the last sum are well defined.)

The proof of this lemma is left to the reader.

From this result is deduced B2 = B3 + b2,3, where

B3 =

N∑

n=0

k
∑

(K,L)∈En
int



unK(Fn

K,L(unK , u
n
L)− Fn

K,L(unK , u
n
K))

−unL(Fn
K,L(unK , u

n
L)− Fn

K,L(unL, u
n
L))


 ,

b2,3 =

N∑

n=0

k
∑

σ∈Eb

unK(Fn
K,σ(u

n
K , u

b,n
σ )− Fn

K,σ(u
n
K , u

n
K)) .

An estimate on the quantity b2,3 of the kind:

|b2,3| ≤ C(37)

is available since:

|b2,3| ≤ 2NkLip(f) max(|A|, |B|)2
∑

σ∈Eb

m(σ)

= 2TLip(f) max(|A|, |B|)2m(∂Ω) .
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Now, define the function ΨnK,L, primitive of the function s �−→ s
d

ds
Fn
K,L(s, s), by

ΨnK,L(s) =

∫ s

A
τ
d

ds
Fn
K,L(τ, τ) dτ .

From an integration by parts is deduced the formula: ∀ (a, b) ∈ R2,

ΨnK,L(b)− ΨnK,L(a) =



b(Fn

K,L(b, b)− Fn
K,L(a, b))

−a(Fn
K,L(a, a)− Fn

K,L(a, b)




−
∫ b

a
(Fn

K,L(s, s)− Fn
K,L(a, b))ds ,

so that

B3 = B4 + b3,4 ,(38)

with

b3,4 = −
N∑

n=0

∑

(K,L)∈En
int

k(ΨnK,L(unK)− ΨnK,L(unL)) ,

B4 =

N∑

n=0

∑

(K,L)∈En
int

k

∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds .

The relation (28) ensures
∑

L∈N (K) Ψ
n
K,L = 0; from this and Lemma 7

(summation over the edges) it appears that b3,4 reduces to a sum over the

edges of the boundary and, as b2,3, satisfies

|b3,4| ≤ C .(39)

Now, fix a , b , c , d ∈ R s.t. a ≤ c ≤ d ≤ b. Taking into account the

monotony of Fn
K,L, the following inequality holds:

∫ b

a
(Fn

K,L(b, a)− Fn
K,L(s, s))ds ≥

∫ d

c
(Fn

K,L(d, c)− Fn
K,L(d, s))ds.

Moreover Fn
K,L(d, .) is Lipschitz continuous and nonincreasing so that (see

[9])

∫ d

c
(Fn

K,L(d, c)− Fn
K,L(d, s)) ds

≥ 1

2m(K|L)Lip(f)
(Fn

K,L(d, c)− Fn
K,L(d, d))2 .
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Therefore, we get:

∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds

≥ 1

2m(K|L)Lip(f)
max

un
L

≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(d, d))2 ,

and

∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds

≥ 1

2m(K|L)Lip(f)
max

un
L

≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(c, c))2 ,

so that

B4 ≥ B ,(40)

where B is defined by:

B =
1

4Lip(f)

N∑

n=0

k
∑

(K,L)∈En
int

×




1

m(K|L)
max

un
L

≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(d, d))2

+
1

m(K|L)
max

un
L

≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(c, c))2


 .(41)

Recalling the equalityB2 = B4 + b2,3 + b3,4 and the estimates on the terms

b2,3 and b3,4 described in (37) and (39), it appears that

B2 ≥ B − C .(42)

On the other hand, the quantity B1 reads:

B1 = −1

2

N∑

n=0

∑

K∈T

m(K)(un+1
K − unK)2 +

1

2

∑

K∈T

m(K)(uN+1
K )2

−1

2

∑

K∈T

m(K)(u0
K)2.

There exists C ≥ 0 such that −C is a lower bound for the last two terms of

the previous equality. Moreover, the Cauchy-Schwarz inequality and (31)
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lead to:

(un+1
K − unK)2 ≤ k2

m(K)2

( ∑

σ∈EK

m(σ)
)

×
( ∑

σ∈EK

1

m(σ)
(Fn

K,σ(u
n
K , u

n
K,σ)− Fn

K,σ(u
n
K , u

n
K))2

)
.

From this last inequality, from Lemma 7 (summation over the edges), from

the assumption (25) on the mesh and from the CFL condition (32) are de-

duced the following inequalities:

1

2

N∑

n=0

∑

K∈T

m(K)(un+1
K − unK)2 ≤ (1− ξ)B + C

and:

B1 ≥ −(1− ξ)B − C .(43)

Now, as the equalityB1+B2 = 0 holds and as (43) and (42) are satisfied,
we have ξB ≤ C, that is to say (recall that C may depend on ξ):

B ≤ C .(44)

Moreover, from the Cauchy-Schwarz inequality is deduced:

N∑

n=0

k
∑

(K,L)∈En
int




max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))




≤ C
( N∑

n=0

k
∑

(K,L)∈En
int

m(K|L)
)1/2

B1/2 ;(45)

and, taking into account the following estimate (deduced from (25) and (26))

N∑

n=0

k
∑

(K,L)∈En
int

m(K|L) ≤ C/h,

it appears that the weakBV estimate on space derivatives (34) holds. To get

the weakBV estimate on time derivatives (35), use (33) to get the following

estimate:

m(K)|un+1
K − unK | ≤ k

∑

σ∈EK

|Fn
K,σ(u

n
K , u

n
K,σ))− Fn

K,σ(u
n
K , u

n
K)| .

Summing the result overK ∈ T and n ∈ {0, · · · , N}, then using Lemma 7

and (34), yields Inequation (35).
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4.3 Entropy inequalities

We wish to prove that the approximate solution uT ,k satisfies approximate

entropy inequalities that have already been discussed in the introduction of

the entropy process solution (see Sect. 2, relation (16)). To this purpose, we

will work with the semi Kruzkov entropies; that is one of the keys of the

following results (the other key being the weak BV estimate).

We recall some notations about it.

Notations: η+
κ denotes the function from R to R defined by

η+
κ (s) = (s− κ)+ ,(46)

and Φ+
κ the associated flux-function from Q× R to R defined by

Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ)) .(47)

Notice that, if a⊤b = max(a, b) and a⊥b = min(a, b), then we have

η+
κ (s) = s⊤κ− κ ,

and

Φ+
κ (t, x, s) = f(t, x, s⊤κ)− f(t, x, κ) .

Therefore, the associated entropy numerical flux function is defined by the

formula

Φ+,n
K,σ,κ(a, b) = Fn

K,σ(a⊤κ, b⊤κ)− Fn
K,σ(κ, κ) .(48)

If σ = K|L, (K,L) ∈ T 2, then Φ+,n
K,K|L,κ is denoted by Φ+,n

K,L,κ.

4.3.1 Discrete entropy inequalities

Lemma 8 Assume that (25), (27) and (32) hold. LetuT ,k be the approximate

solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then, for

all κ ∈ [A,B], for allK ∈ T , n ∈ N, the following local discrete entropy

inequality holds:

η+
κ (un+1

K )− η+
κ (unK)

k

+
1

m(K)

∑

σ∈EK

(Φ+,n
K,σ,κ(u

n
K , u

n
K,σ)− Φ+,n

K,σ,κ(u
n
K , u

n
K)) ≤ 0.(49)

Proof. From the monotony of the scheme (Remark 5) is deduced the fact

that Hn
K(unK⊤κ, (unK,σ⊤κ)σ∈EK

) is an upper bound for un+1
K and κ, thus

for un+1
K ⊤κ too, that is to say:

un+1
K ⊤κ ≤ unK⊤κ−

k

m(K)

×
∑

σ∈EK

(Fn
K,σ(u

n
K⊤κ, unK,σ⊤κ)− Fn

K,σ(u
n
K⊤κ, unK⊤κ)) .(50)
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Substracting from this inequality the equality

κ = κ− k

m(K)

∑

σ∈EK

(Fn
K,σ(κ, κ)− Fn

K,σ(κ, κ)) ,

yields the result.

4.3.2 Continuous entropy inequality

Theorem 3 Assume that (25), (27) and (32) hold. Let uT ,k be the approxi-

mate solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then

the following approximate continuous entropy inequalities hold:




∀κ ∈ [A,B] , ∀ϕ ∈ C∞
c (R+ × Rd,R+) ,∫∫

Q

(
η+
κ (uT ,k)ϕt + Φ+

κ (t, x, uT ,k) · ∇ϕ
)
dx dt

+

∫

Ω
η+
κ (u0)ϕ(0)dx

+Lip(f)

∫

Σ
η+
κ (ub)ϕ(t, x)dγ(x) dt ≥ −εT ,k(ϕ) ,

(51)

where:

∀ϕ ∈ C∞
c (R+ × Rd,R+) , εT ,k(ϕ) −→ 0 when h→ 0 .

The same result holds when the negative semi-Kruzkov entropies are con-

sidered.

Proof. Let ϕ be in C∞
c (R+ × Rd,R+) and κ be in [A,B]. We fix T ≥ 0

such that ϕ ≡ 0 on [T,∞[×Ω and set N = [T/k + 1]. We also denote by

u0
T the application defined by u0

T (x) = u0
K for a.e. x ∈ K, and by ubT ,k the

application defined by ubT ,k(x) = ub,nσ for a.e. (t, x) ∈ [nk, (n+ 1)k[×σ.

Multiplying (49) by km(K)ϕnK =

∫ (n+1)k

nk

∫

K
ϕdx dt, and summing

overK ∈ T , n ∈ N, yields the inequality:

T1 + T2 ≤ 0 ,(52)

where

T1 =

N∑

n=0

∑

K∈T

m(K) (η(un+1
K )− η(unK))ϕnK ,(53)

and, by summing over the edges, T2 = T int
2 + T b2 , with

T int
2 =

N∑

n=0

k
∑

(K,L)∈En
int



ϕnK(Φ+,n

K,L,κ(u
n
K , u

n
L)− Φ+,n

K,L,κ(u
n
K , u

n
K))

−ϕnL(Φ+,n
K,L,κ(u

n
K , u

n
L)− Φ+,n

K,L,κ(u
n
L, u

n
L)

)


 ,

(54)
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T b2 =

N∑

n=0

k
∑

σ∈Eb

ϕnK(Φ+,n
K,σ,κ(u

n
K , u

n,b
σ )− Φ+,n

K,σ,κ(u
n
K , u

n
K)) .(55)

Proving the approximate continuous entropy inequalities comes back to

prove

T10 + T20 ≤ εT ,k(ϕ)(56)

where T10 and T20 are defined by

T10 = −
∫∫

Q
η+
κ (uT ,k)ϕt dx dt −

∫

Ω
η+
κ (u0)ϕ(0) dx ,

T20 = −
∫∫

Q
Φ+
κ (t, x, uT ,k) · ∇ϕdx dt

−Lip(f)

∫

Σ
η+
κ (ub)ϕ(t, x) dγ(x) dt .(57)

To this purpose, we compare T10 to T1 and T20 to T2.

1 Estimate on T10 − T1

Using the definitions of u0
T and uT ,k, the quantity T10 reads:

T10 =

N∑

n=0

∑

K∈T

η+
κ (un+1

K )− η+
κ (unK)

k

∫ (n+1)k

nk

∫

K
ϕ(x, (n+ 1)k) dx dt

+

∫

Ω
(η+
κ (u0

T )− η+
κ (u0))ϕ(0) dx .

From the fact that η+
κ is 1-Lipschitz continuous is deduced:

|T10 − T1| ≤ ε0T (ϕ) + ε1T ,k(ϕ) ,(58)

where




ε0T (ϕ) =

∫

Ω
|u0

T ,k − u0|ϕ(0) dx ,

ε1T ,k(ϕ) =

N∑

n=0

∑

K∈T

|un+1
K − unK |

k

×
∫ (n+1)k

nk

∫

K
|ϕ(x, (n+ 1)k)− ϕ(x, t)| dx dt .

(59)

Before giving precise estimates on these quantities, we study the difference

T20 − T2.



Convergence of finite volume monotone schemes 589

2 Comparison of T20 and T2 We divide the study into two steps. Indeed, we

have to take care to what happens inside and on the boundary of Ω. From

the definition of the function uT ,k, from the fact that divx f = 0 and from

Lemma 7 is deduced the equality:

T20 = T int
20 + T b20 ,

where

T int
20 = −

N∑

n=0

∑

(K,L)∈En
int

×




∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unK) · nK|L ϕdγ(x) dt

−
∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unL) · nK|L ϕdγ(x) dt


 ,

T b20 = −
N∑

n=0

∑

σ∈Eb

∫ (n+1)k

nk

∫

σ
Φ+
κ (t, x, unK) · nK,σϕdγ(x) dt

−Lip(f)

∫

Σ
η+
κ (ub)ϕdγ(x) dt .

2.1 Estimate on |T int
20

− T
int
2

|

In order to compare T int
20 to T int

2 , let us introduce the average value of ϕ on

an edge, defined by

ϕ̃nσ =
1

km(σ)

∫ (n+1)k

nk

∫

σ
ϕdγ(x) dt .

Notice that, ϕ being a regular function, its average values onK,L andK|L,
with (K,L) ∈ Enint are “close” each to other. That is why we rewrite:

T int
20 = −

N∑

n=0

k
∑

(K,L)∈En
int

[(1

k

∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unK)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
L)ϕ̃nK|L

)

−
(1

k

∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unL)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
L)ϕ̃nK|L

) ]
,
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then

T int
20 = −

N∑

n=0

k
∑

(K,L)∈En
int

[(1

k

∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unK)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
K)ϕ̃nK|L

)

+
(
Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
ϕ̃nK|L

−
(1

k

∫ (n+1)k

nk

∫

K|L
Φ+
κ (t, x, unL) · nK|L ϕdγ(x) dt

−Φ+,n
K,L,κ(u

n
l , u

n
L)ϕ̃nK|L

)

−
(
Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
ϕ̃nK|L

]
.

Now, let εc,intT ,k , εint,+T ,k , εint,−T ,k be defined by

(60)



εc,intT ,k (ϕ) =

N∑

n=0

k
∑

(K,L)∈En
int

∣∣∣
1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unK) · nK|L

− 1

m(K|L)
Φ+,n
K,L,κ(u

n
K , u

n
K)

)
ϕdγ(x) dt

−1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unL) · nK|L

− 1

m(K|L)
Φ+,n
K,L,κ(u

n
L, u

n
L)

)
ϕdγ(x) dt

∣∣∣ ,

εint,+T ,k (ϕ) =

N∑

n=0

k
∑

(K,L)∈En
int

∣∣∣
(
Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)

×
(
ϕnK − ϕ̃nK|L

)∣∣∣ ,

εint,−T ,k (ϕ) =

N∑

n=0

k
∑

(K,L)∈En
int

∣∣∣
(
Φ+,n
K,L,κ(u

n
L, u

n
L)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)

×
(
ϕnL − ϕ̃nK|L

)∣∣∣ .

The following estimate holds:

|T int
20 − T int

2 | ≤ εint,cT ,k (ϕ) + εint,+T ,k (ϕ) + εint,−T ,k (ϕ) .(61)

Notice that εc,intT ,k is a consistency error (it tends to zero with h thanks to

the property (iv) of assumption (27) satisfied by the numerical fluxes). The
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quantities εint,+T ,k and εint,−T ,k are those which measure the difference between

T int
20 and T int

2 . We will use the weak BV estimate (34) to prove that they

tend to zero as h does. But we first study the quantity T b2 − T b20.

2.2 Comparison of T
b
20

and T
b
2

Recall that the quantity T b20 is defined by:

T b20 = −
N∑

n=0

k
∑

σ∈Eb

1

k

∫ (n+1)k

nk

∫

σ
Φ+
κ (t, x, unK) · nK,σϕdγ(x) dt

−Lip(f)

N∑

n=0

∑

σ∈Eb

∫ (n+1)k

nk

∫

σ
η+
κ (ub)ϕdγ(x) dt .(62)

Now, let us denote by T̃ b20 the following quantity

T̃ b20 = −
N∑

n=0

k
∑

σ∈Eb

Φ+,n
K,σ,κ(u

n
K , u

n
K)ϕnK

−
N∑

n=0

k
∑

σ∈Eb

Lip(f)m(σ) η+
κ (ub,nσ )ϕnK .(63)

Then T b2 can be compared to T̃ b20:

T b2 − T̃ b20 =

N∑

n=0

k
∑

σ∈Eb

ϕnK(Φ+,n
K,σ,κ(u

n
K , u

b,n
σ ) + Lip(f)m(σ) η+

κ (ub,nσ )) ,

and this quantity is nonnegative:

T b2 − T̃ b20 ≥ 0 .(64)

Indeed, the following lemma holds:

Lemma 9 Assume that (27) holds. Let σ be in Eb and K be in T s.t. σ =
∂K ∩ ∂Ω. Then: ∀κ ∈ [A,B] , ∀a , b ∈ [A,B],

Fn
K,σ(a⊤κ, b⊤κ)− Fn

K,σ(κ, κ) + Lip(f)m(σ) (b− κ)+ ≥ 0 .

Proof. The numerical fluxes being non-decreasing functions with respect

to their first variables, the following inequality holds:

Fn
K,σ(a⊤κ, b⊤κ) ≥ Fn

K,σ(κ, b⊤κ) .
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Moreover, from the fact that Fn
K,σ is a m(σ)Lip(f)-Lipschitz continuous

function, is deduced the inequality

Fn
K,σ(κ, b⊤κ)− Fn

K,σ(κ, κ) + Lip(f)m(σ) (b− κ)+ ≥ 0 ,

which yields the result. ⊓⊔

Now, let us estimate the quantity T b20− T̃ b20. To compare the expressions

(62) and (63), we write

η+
κ (ub,nσ )ϕnK = η+

κ (ub,nσ )
(
ϕnK − 1

km(σ)

∫ (n+1)k

nk

∫

σ
ϕ
)

+
1

km(σ)

∫ (n+1)k

nk

∫

σ
(η+
κ (ubT ,k)− η+

κ (ub))ϕ

+
1

km(σ)

∫ (n+1)k

nk

∫

σ
η+
κ (ub)ϕ ,

and get

|T b20 − T̃ b20| ≤ εc,bT ,k(ϕ) + εbT ,k(ϕ) + ε̃c,bT ,k(ϕ) ,(65)

where





εc,bT ,k(ϕ) =

N∑

n=0

k
∑

σ∈Eb

∣∣∣
1

k

∫ (n+1)k

nk

∫

σ
Φ+
κ (t, x, unK)

·nK,σ ϕ− Φ+,n
K,σ,κ(u

n
K , u

n
K)ϕnK

∣∣∣ ,

εbT ,k(ϕ) = Lip(f)

∫

Σ
|ubT ,k − ub|ϕdγ(x) dt ,

ε̃c,bT ,k(ϕ) =

N∑

n=0

∑

σ∈Eb

Lip(f) km(σ) η+
κ (ub,nσ ) |ϕnK − ϕ̃nσ| .

(66)

Eventually, from (52), (58), (61), (64) and (65) is deduced the approximate

continuous entropy inequality (16) with

εT ,k = εcT ,k + ε0T + ε1T ,k + εint,+T ,k + εint,−T ,k + εbT ,k ,(67)

εcT ,k being a consistency error defined by

εcT ,k = εc,intT ,k + εc,bT ,k + ε̃c,bT ,k(68)

(see (60) and (66)).

Let us now turn to the study of εT ,k.



Convergence of finite volume monotone schemes 593

3 Estimate on εT ,k

Wefirst turn to the consistency errors, for example to εc,intT ,k which, we recall,

is defined by

εc,intT ,k (ϕ) =

∣∣∣∣∣

N∑

n=0

k
∑

(K,L)∈En
int

1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unK)

·nK|L −
1

m(K|L)
Φ+,n
K,L,κ(u

n
K , u

n
K)

)
ϕdγ(x) dt

−1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unL) · nK|L −

1

m(K|L)

×Φ+,n
K,L,κ(u

n
L, u

n
L)

)
ϕdγ(x) dt

∣∣∣∣∣ .

As the numerical fluxes, the numerical entropy fluxes are consistents: for all

s ∈ [A,B],

Φ+,n
K,σ,κ(s, s) =

1

k

∫ (n+1)k

nk

∫

σ
Φ+
κ (t, x, s) · nK,σ dγ(x) dt .

Therefore, the quantity εc,intT ,k (ϕ) can be rewritten as:

εc,intT ,k (ϕ) =

∣∣∣∣∣

N∑

n=0

k
∑

(K,L)∈En
int

1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unK) · nK|L

− 1

m(K|L)
Φ+,n
K,L,κ(u

n
K , u

n
K)

)
(ϕ− ϕ̃nK|L) dγ(x) dt

−1

k

∫ (n+1)k

nk

∫

K|L

(
Φ+
κ (t, x, unL) · nK|L

− 1

m(K|L)
Φ+,n
K,L,κ(u

n
L, u

n
L)

)
(ϕ− ϕ̃nK|L) dγ(x) dt

∣∣∣∣∣ .

Now, writing

ϕ(t, x)− ϕ̃nK|L =
1

km(K|L)

∫ (n+1)k

nk

∫

K|L

×(ϕ(t, x)− ϕ(s, y)) dγ(y) ds ,(69)

the following majoration holds: for all (t, s, x, y) ∈ [nk, (n + 1)k[2×
(K|L)2

|ϕ(t, x)− ϕ(s, y)| ≤ (k + h)
∣∣∣
∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣
∣∣∣
L∞

.(70)
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Besides, the function f is Lipschitz continuous so that there exists C ≥ 0,
only depending on Ω , f , A , B, such that for all s ∈ [A,B], for all
(K,L) ∈ Eint, for all t ∈ [nk, (n+ 1)k[ and all x ∈ K|L,

∣∣∣f(t, x, s) · nK|L −
1

m(K|L)
Fn
K,L(s, s)

∣∣∣ ≤ C(h+ k) .

Discussing the respective positions of unK , unL and κ, we deduce from this

result the following estimate

∣∣∣Φ+
κ (t, x, unK) · nK|L −

1

m(K|L)
Φ+,n
K,L,κ(u

n
K , u

n
K)

∣∣∣ ≤ 2C(h+ k) ,(71)

which is still true when unK is replaced by unL.
From (69), (70) and (71), is deduced the estimate

εc,intT ,k (ϕ) ≤ 2C
∣∣∣
∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣
∣∣∣
L∞

(h+ k)2
N∑

n=0

∑

(K,L)∈En
int

km(K|L)

≤ 2C
∣∣∣
∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣
∣∣∣
L∞

m(Ω)

α2
(T + 1) (h+ k)2h−1 ,

the second inequality being a consequence of assumption (25) on the mesh.

Eventually, the CFL condition (32) holding, we get

εc,intT ,k (ϕ)
h→0−→ 0 .

Wewould do the same to get an estimate on εb,cT ,k and ε̃
b,c
T ,k, in order to prove

that they are shrinking to zero when h does.

We now study the errors εint,+T ,k and εint,−T ,k defined by (60). Here, the weak

BV estimate on space derivatives (34) is required. Indeed, we have

∣∣∣∣Φ
+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

∣∣∣∣
≤ max

un
L

≤c≤d≤un
K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

and, thanks to the integral Taylor formula, we get an estimate on the differ-

ence between the average value of ϕ on a controle volume and on one of its

edge: there exists Cϕ, depending only upon ϕ, such that

∀(K,L) ∈ Enint , |ϕnK − ϕ̃nK|L| ≤ Cϕ (h+ k) .
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Therefore, the following estimate on εint,+T ,k (ϕ) holds

εint,+T ,k (ϕ) ≤ Cϕ (h+ k)

N∑

n=0

k
∑

(K,L)∈En
int

×




max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L
≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))




≤ CϕC
h+ k√

h
,

where the constantC is given by (34).Wewould follow the same lines to get

a similar estimate on εint,−T ,k (ϕ). Moreover, the continuity of the translations

in L1
loc ensures that the quantities ε

0
T (ϕ) and εbT ,k(ϕ) tend to zero when h

does.

Convergence of the scheme

We come back to the discussion preceding the introduction of the entropy

process solution (see Sect. 2): we know that uT ,k is bounded inL
∞ (Lemma

5); the compacity result given in Theorem 1 proves that there exists µ ∈
L∞(Q× (0, 1)) such that, up to a subsequence, for all g ∈ C(R),

g(uT ,k) −→
∫ 1

0
g(µ(., α)) dα in L∞(Q) weak− ⋆ when h→ 0 .

Then, taking Theorem 3 into account, it is clear that µ is an entropy process

solution to problem (1)-(2)-(3). Thus, the function µ does not depend on its

third variable (Theorem 2): there exists u ∈ L∞(Q) such that µ(t, x, α) =
u(t, x) for a.e. (t, x, α) ∈ Q × ( 0, 1). Consequently, the function u is a

weak entropy solution to problem (1)-(2)-(3) and the whole sequence (uT ,k)

converges to u in Lploc(Q) for every p ∈ [ 1,∞[, as proved by the following
lemma.

Lemma 10 Let O be a bounded borelian subset of Rm and let (vn) be a

bounded sequence of L∞(O) such that there exists v ∈ L∞(O) satisfying:
for all g ∈ C(R),

g(vn) −→ g(v) in L∞(O) weak− ⋆ .

Then, for all p such that 1 ≤ p < +∞, vn −→ v in Lp(O).
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Proof. The space L∞(O) is continuously imbedded in the space L2(O);
taking g(x) = x we therefore have: vn −→ v in L2(O) weak-⋆. Taking
g(x) = x2, we also prove ||vn||L2(O) → ||v||L2(O) and the Hilbert structure

of the space L2(O) allows us to get the result when p = 2, then, using the

fact that (vn) is bounded in L∞(O), for every p.

Eventually, we have proven the following results.

Theorem 4 There exists a unique weak entropy solution to problem (1)-(2)-

(3).

Theorem 5 Let α ∈ R+ and ξ ∈ ( 0, 1) be fixed. Assume that assumptions
(25), (27) and (32) hold. Let uT ,k be the numerical approximate solution

of the problem (1)-(2)-(3) defined by (29), (30), (31). Then, for every p
in [ 1,+∞[, uT ,k converges to the weak entropy solution to (1)-(2)-(3) in

Lploc(Q).
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