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CONVERGENCE OF FOURIER SERIES IN DISCRETE

CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS

RICHARD MERCER

Abstract. The convergence of the generalized Fourier series Y.it(x(g))u(g) is

considered in the crossed product of a von Neumann algebra by a discrete group. An

example from classical theory shows that this series does not converge in any of the

usual topologies. It is proven that this series does converge in a topology introduced

by Bures which is well suited to a crossed product situation. As an elementary

application, we answer the question: In what topology is an infinite matrix (repre-

senting a bounded operator) the sum of its diagonals?

Let 31 be a von Neumann algebra on a Hilbert space §, G a countable discrete

group, and a an action of G on St (i.e. a is a homomorphism from G to the

automorphism group of 31). Then one can define the cross product 2JÎ = 7?(3i, G, a)

as the von Neumann algebra on Ü = l2(G; ¿5) generated by {ir(a): a g 21} and

{u(g): g g G}, where for| g ®,g, h g G, a g 31,

Ma)€)(g) = «;'(«){(«)       (u(g)è)(h) = t(g-lh).

To each x g W one can associate a function x(g): G -* 31 with the idea that x is

represented by T.Tr(x(g))u(g). It is well known that x(g) uniquely determines x,

and this is sufficient for many applications. One may also hope that the series

actually converges to x in some topology on W. The purpose of this note is to clarify

some of the recent confusion regarding this convergence. We will show that

convergence does not take place in any of the usual topologies on 2R, and then show

that convergence does occur using the 3t-topology of Bures.

As an application in a more elementary setting, we consider the question: In what

topology is a matrix the sum of its diagonals?

The following example is due to S. Kawamura.

Let 3Í = C, G = Z, and a the trivial action. Then 2Tc is the von Neumann algebra

on l2(Z) generated by the operators «(«), where u(n)£(m) = £(ra — «)for£ G /2(Z).

Let T be the unit circle with Lebesgue measure, and let F: L2(T) -* /2(Z) be the

Fourier transform, normalized to be unitary. Then for each «, F*u(n)F is multipli-

cation by e"" on L2(T) and so is in LX(T). F* ■ Fis a W""-isomorphism from 39? to

F*WF. It follows that F*WIF is generated by the multiplication operators e"",

hence F*WIF = LX(T).  It is easy to check that the series T.geC7r(x(g))u(g)
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becomes T.^=_00x(n)e'"' in this situation, where x(«) are the Fourier coefficients of

a function x g Lx(T). The question here is then: In what topology on L°°(T) does

the Fourier series for x converge to x? We will now show that convergence does not

even occur in the weak operator topology, and therefore not in any stronger

topology.

Proposition 1. There exists x g C(T) such that the Fourier series for x does not

converge to x in the weak operator topology on LX(T).

Proof. Let x^, = Y.%=_Nx(n)e'"' denote the A/th partial sum of the Fourier series

of x. Then each xN belongs to C(7*). Therefore |x^,(0)| < Hx^H^. By [5, p. 102] we

know that there is a dense Gs set in C(T) such that, for every x therein, sup|x^(0)|

= oo. If we consider {x^} to be a collection of linear functionals xN: Ll(T) -» C by

xN: g "-» fxNg, then by the Banach-Steinhaus theorem [5, p. 98] we conclude that

sup| jxNg\ = oo for all g in some dense Gs set in Ll(T). Since the weak operator

topology on U°(T) is identical to the weak* topology on Lœ(T) as a Banach space,

the desired conclusion follows immediately.   □

By reversing the spatial isomorphism of 2JÎ with L°°(T) induced by F, we conclude

that T,Tr(x(g))u(g) need not converge to x G 3JÎ in the weak operator topology.

Erroneous claims for the convergence of this series have been made in [8, p. 366, 4,

p. 284, and 3, p. 785]. We now turn to the problem of establishing convergence in

the proper topology.

The notation and calculations of [8] will be useful, so we review them here. For

g G G define P • ® -» £ by PÂ = i(g'1). Also define Qr = P*PQ. Then

Pgu(h) = Pgh,    u(h)*Pg* = Pgh,    u(h)*Qgu(h)=Qgh,

PgPg* = l,   PgPh* = 0       ith + g,

{Qg} is an orthogonal set of projections with   Y^ Qg = 1.
gee

ÎÏ may be written as © ® , where each § isa copy of $. Then P is a partial

isometry with support § -i and range $, and Qg is the projection from ¿p to §g-i.

Pgir(a)P* - ag(a),   tr(a) =  Y^ P*ag(a)Pg,       a g 3Í (a-weak convergence).
geC

Define E: 93(^) -> 3lby7i(x) = PexP*, and define x(g) = E(xu(g)*) for x g 3W,

g e G. (e is the identity element of G.) Then

E{u(g)xu(g)*) = ag(E(x)),        PgxP* = ag(x(g'lh))

ff:3I->7r(3l)c2Jcisa W*-isomorphism. Ê = tt ° E is a faithful normal conditional

expectation from 9Jc to w(3t). Using the formulas given above, one can show that,

for any>> G TI, E(y) = HgeGQgyQg, the sum converging a-weakly.

Note that although [8] assumed 31 to be abelian, this assumption was not

necessary for any of the above calculations.

Now consider the locally convex topology on 9JÍ defined by the pseudonorms

x —» « • 7i(x*x)1/2, w g j/*. This is essentially the 3(-topology of Bures [1, p. 48]. It

is the appropriate topology here because it works (Proposition 3) and it is based in a
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natural way on the crossed product construction. Because E is faithful, the 3f-topol-

ogy is Hausdorff. Recall that by "ZgeCw(x(g))i/(g) converges in topology T" we

mean that the net {T.geFir(x(g))u(g)}Fon the directed set of all finite subsets F of

G converges in the topology T.

Lemma 2. For any finite set F c G and x G 3Jc,

(i) E(x*FxF) = E(x*Fx) = E(x*xF) = F(x*(EgefÔg-)x),

(ii) E(xFx*F) = E(xFx*) = E(xxf) = E(x(LgeFQg)x*).

Proof. Let g, k g G. Then we have

Qkvix(g))u(g) = Qkir°E{xu(g)*)u(g)

S^FV-g/-

Qk[ E Q,xu(g)*Q\u(g) = Qkxu(g)*Qku(g) = QkxQkg.
Wee '

Taking adjoints we also have

W(x(g))u(g)]*Qk = Qkgx*Qk.

To check (i) calculate

xFxF=( E Hx(h))u(h)Y( I £,)( E »(*<*))«<*)

= E   E ô,,x*o,xô,g,
g./ieF AeG

*f* = ( E ^(x(«))M(«))*( E ôaU = E E ô****ô**.

x*xF = x«( E ß*)( E *(*(*))*(*)) =   E **ß**ß*r
VAeG       /Vgef '        tec

Therefore

£(X*XF) = P,XFXf7>e* =      E        E   PeQkHX*QkxQksP:
>*

■ig' e

g.h(=F AeC

= E Pex*Qg->xPe* = jB x*   E Ó*-*'
geF I        l«ef ;     /

where we have used

!!&.-{'•■ *-*■;• e^-fr *:•■•
lO,       A:*«"1, (0,        Ar^g"1.

The proofs that £(x*x) and £(x*xF) give the same result are similar. Likewise, the

same type of calculations can be used to show (ii).   D

Proposition 3. For any x g 9JÎ, xf converges to x and x* converges to x* in the

^{-topology on Tl.

Proof. By Lemma 2 we have £(xFxF) = E(x*(Y.geFQgi)x) and E(xFx*) =

E(x(LgeFQg)x*).
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Since the nets (LgeFQg-¡)Fand (£geFög)Fare monotone increasing and converge

to the identity a-weakly, E(x*xF) and F(xFx*) are monotone increasing and

converge a-weakly to £(x*x) and £(xx*) respectively. Also by Lemma 2 we have

E(xpx) = E(x*xF) = E(xFxF) and £(xFx*) = E(xxF) = £(xFxF). Therefore

£((x — xF)*(x — xF)) = F(x*x) — 7s(x*xF) and E((x — xF)(x — xF)*) =

£(xx*) — E(xFxF).

For any co G 31 „, u°E((x - xF)*(x - xF)) = w(F(x*x) - £(xFxF)) -* 0,

showing that xF converges to x in the 3l-topology. Likewise,

w°£((x - xF)(x* - x*.)) = u(E(xx*) - E(xFxF)) -+ 0,

showing that x* converges to x* in the 3í-topology.   D

The following result is well known [7, p. 119], but is easily proven in this setting.

Corollary 4. If 90? is finite then for x g TI, LgeCw(x(g))«(g) converges in

L2(Tl)tox.

Proof. Let t be a trace for T\. Then t ° £(x) = T(IgeC(2gx(2g) = T(LgeCQgx)

= t(x). Since tg9JÍ„, t»ïe1„ so t » tt » E((x — xF)*(x — xF)) converges to

zero. But this expression equals t ° E((x — xF)*(x — xF)) = t((x — xF)*(x — xF)),

showing that xF converges to x in L2( 9JÎ ).    □

Now that we know what it means for LgsGtT(x(g))u(g) to converge, the formulas

[8]

xy(g) =   E x(h)ah(y(h-lg))    and    x*(g) = ag{x(g-1)*)
AeG

have their intended meaning, representing the components of Fourier series converg-

ing to xy and x*, respectively.

For the reader's convenience we also mention the notion of " matrix convergence,"

which gives an alternative way in which {x(g)}g6C represents x.

If x g SOt and ^eg, then since LheCQh converges strongly to the identity,

x£ = Y.h<=GxQh£, the sum converging in ®, and likewise x| = LgheGQgxQh^. Using

the definition of Qg, we have x£ = Zg heCP*PgxP*Ph£, and hence (x£)(g_1) =

Zsec(PgxPD£(h% or (x£)(g) - ZheG(P*->xPh*->)è(h).

For each, g, « g G set x(g, «) = Pg-.xPA*-i = ag-l(x(gh~1)) g 31. Then (x£)(g) =

T,heGx(g, «)£(«), the sum converging in § for each g. This shows x to be

represented by an 3I-valued matrix indexed by G.

Since xyi(g) = E^x^g, k)£(k), and also xy^(g) = LkLhx(g, h)y(h, k)£(k), we

conclude that xy(g, k) = EAx(g, h)y(h, k), the sum converging strongly. Therefore

agl(xy(gk-')) = EvM^K-.M«*-1))
h

or

xy(gk-l) = Itx(gh-l)agh-iy(hkl)    or   xy(g) = Zx(h)ah{ y(h-lg)),
h h

showing that this formula converges strongly in 3t.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



258 RICHARD MERCER

As an application of the ideas presented thus far, consider the following question.

Let A be a bounded operator on a Hilbert space 77 represented as a matrix (A¡¡)

with respect to some orthonormal basis. For each integer Tí, define the matrix A(k)

by A(k)jJ = A,, if i = j + k, 0 otherwise. The matrices A(k) then represent the

different diagonals of the matrix A. In what topology does the sum T.kK'=_OBA(k)

converge to A! The example involving Fourier series given earlier, if interpreted as

an example regarding Laurent matrices on L2(Z), shows that convergence does not

necessarily occur in the weak operator topology.

Let {T5,} be the mutually orthogonal one-dimensional projections on the basis

vectors of 77. Then E(A) = EP.vfP, is a faithful normal conditional expectation from

B(H) to D, where D is the algebra of diagonal matrices. An elementary calculation

then shows that E(A(k)*A) = E(A*A(k)) = E(A(k)*A(k)), whereas

E(A(k)*A(l)) = 0 when k i= I. If Fis a finite set of integers, define AF = Y.k(EFA(k).

It then follows that E(AFA) = E(A*AF) = E(AFAF). Calculation also shows that

the z'th entry of the diagonal matrix E(A*A) is Hm\Ami\2, while the corresponding

entry of the diagonal matrix E(AFAF) is Y.m<=F+i\Ami\2, where F + i = [k + i:

k g F}. It is then clear that {E(A*AF)} is an increasing net converging to E(A*A)

in the strong topology.

We now are able to imitate the proof of Propositon 3 to show the following:

Proposition 5. The partial sums Y.keFA(k) converge to A in the locally convex

topology on B(H) defined by the pseudonorms A -» w • E(A*A)1/2, w g 7)* — ll.

The author would like to thank Victor Kaftal, Jon Kraus and Jun Tomiyama for

valuable suggestions.
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