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CONVERGENCE OF FUNCTIONS:
EQUI-SEMICONTINUITY

by

szymon dolecki, gabriella salinetti and roger j.-b. wets

Abstract. We study the relationship between various types of convergence for
extended real-valued functionals engendered by the associated convergence of their
epigraphs; pointwise convergence being treated as a special case. A condition of
equi-semicontinuity is introduced and shown to be necessary and sufficient to allow
the passage from one type of convergence to another. A number of compactness
criteria are obtained for families of semicontinuous functions; in the process we give
a new derivation of the Arzelá-Ascoli Theorem.

Given a space X, by Rx we denote the space of all functions defined on X and
with values in R, the extended reals. We are interested in the relationship between
various notions of convergence in Rx, in particular, but not exclusively, between
pointwise convergence and that induced by the convergence of the epigraphs. We
extend and refine the results of De Giorgi and Franzoni [1975] (collection of
"equi-Lipschitzian" functions with respect to pseudonorms) and of Salinetti and
Wets [1977] (sequences of convex functions on reflexive Banach spaces). The range
of applicability of the results is substantially enlarged, in particular the removal of
the convexity, reflexivity and the norm dependence assumptions is significant in
many applications; for illustrative purposes an example is worked out further on.
The work in this area was motivated by: the search for " valid" approximations to
extremal statistical problems, variational inequalities and difficult optimization
problems, cf. the above mentioned articles. Because we rely only on minimal
properties for the topology of the domain space and for the class of functions
involved, the derivation itself takes on an elementary and insightful character.

By their nature, the results are asymmetric; semicontinuity is a one-sided concept.
We have chosen to deal with lower semicontinuity and epigraphs rather than upper
semicontinuity and hypographs. Every assertion in one setting has its obvious
counterpart in the other. This choice however, does condition the addition rule for
the extended reals, viz. (+ oo) + a = + oo for all a E R and (-00) + a = -00 for all
a G [-00, + oo[. Also, note that we are working with the extended reals, thus every
collection of elements of R has lower and upper bounds in R; all limits involving
extended-real numbers must be interpreted in that sense.
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410 SZYMON DOLECKI, GABRIELLA SALINETTI AND ROGER J.-B. WETS

I. Limit functions. Let ( X, t) be a topological space and/a generic element of Rx.
The effective domain of /is

dom/= {x G X\f(x) < +00}

and its epigraph is

epi/= {(x,tj) E XX R\f(x)*zi)}.

The function/: X -* F is j-lower semicontinuous (t-I.sc.) at x, if there exists eA > 0
such that

(d0) to every e G ]0, ex[ there corresponds V E§T(x) such that

inf f(y) > min[/(x) - e, e~x]
yEV

where §r(x) is the family of (open) T-neighborhoods of x. The function/is r-lower
semicontinuous if the condition holds for every x G X, or equivalently if epi / is
closed in X X R with respect to the product topology of t and the natural topology
for R. If a D t, i.e. a is a topology on X finer than t, then / a-l.sc. implies that / is
T-l.SC.

To define limits of collection of functions, i.e., elements of Rx, we adopt the
following framework: A' is an index space and % is a filter on N. If t has a local
countable base at each point, it would be sufficient to consider limits in terms of
sequences; unfortunately many interesting functional spaces do not have this prop-
erty. The eT-limit inferior of a filtered collection of functions {/„, v E N} is denoted
by liT/„, and is defined by

(1.1) (hT/,)(x) =    sup     sup    inf   inf/„(>>)■
GegT(x)  He% "eH .veG

The eT-limit superior is denoted by \sTfv, and is defined similarly,

(1.2) (lsT/„)(x) =    sup      inf   sup   inf f„(y).
G£§T(x)   "el   i>eH y^G

In the literature on T-convergence, these two functions are known as the T~ (T)-limit
inferior and the T (T)-limit superior respectively, cf. De Giorgi and Franzoni
[1975].1

By % we denote the grill associated with the filter %, i.e. the family of subsets of
N that meet every set 2/ in %. Given any collection {a„ E R, v E N] it is easy to
verify the identity

(1.3) sup    inf a„ =   inf   supa„,
//'eft "£"' He% ^"

' When convergence in the T topology can be defined in terms of sequential convergence, the limit
functions can also be obtained as follows; let N = {1,2,...}, then

(liT/„)(*)=     inf      lim inf/,(* )

and (lsT/v)(x) = ini^x^xXUmrsupfp{xv), where in the first expression the infimum is over all subse-
quences of functions (f , \i E N) and all sequences{x^, ¡l G N} converging to x.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE OF FUNCTIONS 411

if we use the fact that % is the "grill" of %, i.e. the collection of subsets of N that
meet every set in %. From this it follows that

(1.4) (lsT/„)(x) =    sup     sup   inf   inf/„(j).
ce§T(x) HŒÎjc -eH ,ec

Since %C%, clearly

(1-5) Kr/r<lsr/,.

The collection {/„, v E N) admits an eT-limit, denoted by lmT/,, if

Kf = Kfv = ,mX
in which case the/, are said to epi-converge to lmT/„. This terminology comes from
the fact that epi lmT/„ is the limit of the epigraphs of the/,; this is made explicit
further on.

The limit inferior Li C„ and limit superior Ls Cv of a filtered collection {C„, v E N)
of subsets of a topological space are defined by

(1.6) LiCp

and

(1.7) LsCv

Since % C %,

LiCvELsCv.

The filtered collection [Cv, v E N} is said to have a limit, Lm C„, if the limits inferior
and superior coincide, i.e.,

(1.8) LsC„ = LmC„ = LiCv.
All these limit sets are closed as follows directly from the definitions.

Proposition 1.9 (Mosco [1969]). Suppose that {/,, v E N} C Rx is a filtered
collection of functions. Then

(1.10) epiUTX = L5epi/

and

(1.11) epilsT/, = L/epi/,

where limits in X X R are taken with respect to the product topology of t and the
natural topology for R.

Proof. We first derive (1.10). From the definition (1.6) of Li epi /,, it follows that
(x, a) E Ls epi /„ if and only if

(x, a) G clí U epi /„)    for all 2/ G DC

= n d( u <;

= n ci( u c\
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412 SZYMON DOLECKI, GABRIELLA SALINETTI AND ROGER J.-B. WETS

or equivalently—because the sets involved are epigraphs—if and only if for all e > 0
and G E §T(x) such that

GX]-oo,« + e[ D Í U epi/) ¥= 0    for all 2/ G %

or still, if and only if for every 2/ G %, e > 0 and G E @T(x) there correspond v E H
and y E G such that a + e >f„(y). This holds, if and only if

a >    sup     sup   inf   inf f(y),
Ge§T(;c)  H£% "e// .fec

and, as follows from (1.1), if and only if a 3= (liT/„)(x) or equivalently, if and only if
(x, a) GepiliT/„.

In view of (1.4), the proof of (1.11) follows from exactly the same argument with
the grill % replacing %.    D

Corollary 1.12. Given any filtered collection of functions {/,, v G N) E Rx', the
functions liT/„, lsT/,, and lmT/, if it exists, are r-lower semicontinuous.

Proof. The lower semicontinuity follows directly from (1.10) and (1.11) since they
imply that the epigraphs are closed.    D

We shall be interested in the implications of a change in topology for X. In
particular, we have the following

Proposition 1.13. Suppose that a and t are two topologies defined on X such that
o D t. Then

(1-14) Kf,<Kf„
and

(1-15) isTx<is„y;.
Proof. This follows from the definitions (1.1) and (1.2) and the fact that a D t

implies that <3a(x) D §T(x).    D
In some applications, in particular those involving variational inequalities, it is

useful to use a stronger notion of limit function. Again, let a and t be two topologies
defined on X, the er „-limit of a collection of functions {fv,vEN} C Rx, denoted
by lmTO/, exists if

(1-16) XiJr = \mTJv = hJv.
The case of interest is a D t, this models the situation when A' is a normed linear
(functional) space, and a and t are respectively the strong and weak topologies; in
this setting this limit function is called the Mosco limit, cf. Mosco [1969] and
Attouch [1979a].

Proposition 1.17. Suppose that a and t are two topologies defined on X such that
a D t. Moreover, suppose that lmT afv exists. Then

lmo/ = lmT0/, = lmT/„.

Proof. This follows directly from Proposition 1.13, inequality (1.5) and the
definition (1.16) of lmTO/„.    □
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CONVERGENCE OF FUNCTIONS 413

II. r/a-equi-semlcontinuity. As already indicated in §1, we are interested in
exploring the relationship between the limit functions of a collection of functions
{fp,v E N} E Rx, when Xis equipped with different topologies, say a and t. Recall
that for variational problems epi-convergence essentially implies the convergence of
the solutions. It is thus useful to have conditions that allow us to pass from
epi-convergence in a given topology to epi-convergence in a finer topology because it
would yield stronger continuity properties for the solution of the limit problem,
consult Example 2.11 below; see also Attouch [1979b]. Finally, a special and extreme
case is when a = i, the discrete topology. The study of the connections between lmT
and lmt becomes that of the relationship between epi-convergence and pointwise-
convergence. This is particularly useful in the design of approximation schemes for
optimization problems. We deal with this special case of pointwise-convergence at
the end of this section.

We shall see that when a D t, the inequalities liT/„ < lia/„ (1.14) and lsT/„ < ls0/„
(1.15), relating the eT-limits inferior and superior, become equalities if the family of
functions {/,, v E N} is r/a-equi-lower semicontinuous. This property is not only
sufficient (Theorem 2.3) but also necessary (Theorem 2.9). It is a sort of "local"
compactness condition; this is clarified in §IV.2

Definition 2.1. A filtered collection offunctions {/,, v E N) E Rx is r/a-equi-lower
semicontinuous at x (T/a-equi-l.sc. at x) if there exists ex > 0 such that

(d) to every e E ]0, ex[ and every W E Qa(x) there correspond H E %and V E @T(x)
such that for all v E H

inf f(y) 5= min
yev

The collection is T/a-equi-l.sc. //(d) holds for every x E X.
If a C t, then (d) is trivially satisfied, simply take V — W and 2/ arbitrary, and

thus in this situation any collection of functions is T/a-equi-l.sc. The only case of
genuine interest in applications, as far as we can tell, is when t is coarser than a,
however the results derived here do not involve any such restrictions on the
topologies.

Proposition 2.2. Suppose that a2D a, and r2 C t,. Then for any collection of
functions, r2/o2-equi-lower semicontinuity implies Tx/ax-equi-lower semicontinuity.

Proof. Simply use Definition 2.1, the inclusions §ai(x) D §„t(x) and §T2(x) E

3rt(x).    D

Theorem 2.3. Suppose the filtered collection of functions {/„, v G N) E Rx is
T/a-equi-l.sc. Then

(2.4) Kf,<Kf„

2 A function / from X to R is t/o-1. sc. if (d) holds and /,, = / for all v e N. If t D o the concept is
essentially meaningless since then any function/ G Rx is then r/a-l.sc. If a D t, then/is t/o--1.sc. if and
only if T-cl(o-clepi /) = o-clepi /. In particular if a = t then t/i-1.sc. corresponds to the usual notion of
T-l.SC.

inf fXy) - C e_1 •
y£W
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414 SZYMON DOLECKI, GABRIELLA SALINETTI AND ROGER J.-B. WETS

and

(2.5) Is./, « lsT/,.

Proof. We start by showing that the r/a-equi-lower semicontinuity conditions
imply that

domliT/, Cdomli0/,.

Suppose x G domli0/,, i.e. li0/,(x) = oo. From the definition (1.1) of li0/„ it
follows that given any e > 0 sufficiently small, we can find Gc E @a(x) and He E %
such that for all v in 2/,

inf fv(y)>s-x
.veG,

which implies that for all v G 2/E,

mm inf fXy)~ £,£~
y eG.

Since {/„, v G N} is T/a-equi-l.sc, it follows that for e > 0 sufficiently small and
Ge E@a(x) there correspond V E §T(x) and H' E% such that for all v E H',

inf fv(y)> min inf /„(>») - e, e~'
y£G,

which combined with the preceding relation, yields

inf fp(y)>e-x
yev

for all v E 2/E n 2/' (G DC). We now simply use the definition (1.1) of liT/ to
conclude that (liT/,)(x) > e~'. Since this holds for arbitrarily small e > 0, it follows
that (liT/)(x) = oo, and thus x G domli,^.

Now suppose that x G domli0/,, again from the definition (1.1) of li./, it follows
that there exists G\ G §a(x) and HeE% such that for all y G 2/e,

(«„/,)(*) inf X(>-)
vec.

+ e.

In turn (d) guarantees the existence of V E §T(x) and FT E % such that for all
v EH',

inf f(y) < inf fv(y) + e,
veG, vec

and hence for all >- G 2/E n 2/' ( G % ), we have

(li0/J(x)<     inf       inff(y)+e.

But this implies that (li0/„)(x) < (liT/,)(x) + 2e, cf. (1.1). And since this holds for
every e > 0 sufficiently small, it follows that (li„/„)(x) < (liT/)(x) for every x G
domli0/. This combined with dorn liT/, C domli0/„ yields (2.4).

The proof of (2.5) follows the same lines, replacing li by ls, % by %, recalling that
% C % and relying on ( 1.4) rather than (1.1).    D
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Corollary 2.6. Convergence Theorem. Suppose a D t and that the filtered
collection of functions {/„, v G N} C Rx is T/a-equi-l.sc. Then

(2-7) li./r = KT/r,

ana1

(2-8) Is./, = lsT¿.

^/so, / = lm„/„ // a«a" only if f = lmT/„.

Proof. The identities (2.7) and (2.8) follow directly from the theorem and
Proposition 1.13. When combined with the definition of lm0 (or lmT) they yield the
remainder.    D

We next show that T/a-equi-semicontinuity is a minimal condition which allows
us to pass from the epi-convergence in one topology to the epi-convergence in
another topology.

Theorem 2.9. Suppose that {/„, v E N} E Rx is a filtered collection of functions
such that -oo < ls0/„ < liT/„. Then the collection {/„, v E N} is T/a-equi-l.sc. More-
over ifoDT, then also

(2.10) lm.¿ = lmT¿.

Proof. The equality (2.10) follows immediately from the hypotheses, (1.5) and
Proposition 1.13. We now establish the r/a-equi-lower semicontinuity. To say that
(d) fails at x, means that given any tx > 0, we can find e G ]0, ex[ and G E S.(x)
such that for any pair 2/ G % and V E §T(x), we have that

inf   inf f„(y) < min
pe// vEK

inf ¿O) "E, e"
yeG,

which implies that

liT/,00<e-'.
This means that if (d) fails it necessarily fails for some x E domliT/, in fact for
some x at which liT¿ is finite since by assumption -oo < liT/„.

Thus let us suppose that (d) fails at x with -oo < lsa/„(x) < liT/(x) < oo. It
means that for any ex > 0, there exists e > 0 and W E §a(x) such that for every
H E % and V G §r(x),

e+ inf fv(y)< inf f(y)
yev yew

for some v E H. In particular this must hold for some v' E H' with the pair (H1, Ve)
constructed as follows: from the definitions of liT (1.1) and ls0 (1.2), we get that

(i) there exists Vt E §T(x) and 2/e G % such that

liT/(x)-|< inf    inf ¿00;

(ii) to W E §a(x), there corresponds Hw E OCsuch that

ls0/„(x) +j> sup    inf fp(y).
4     v^uw y^w
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Now define 2/f D Hw = H' (E %). Because (d) fails for some v' E H', we have

e+  inf f.(y)< inf fv,(y),
y£Vt yew

and thus also

e+inf    inf/„(j)<sup    inf fv(y).
v<EH'   y£Vi peH>   yeW

Because liT/„ is finite, this yields

KT¿0) + T = £ + l[rfXx) ~i<£+  inf    inf fXy)

<e+  inf    inf fv(y) < sup    inf f„(y)
v(EH'   y(£Vt „e/r   yeW

< sup    inf fv(y) < ls0¿(x) + j < liT/,(x) +-,
veHw y^w 4 4

or in other words liT/„(x) + e/2 < liT/„(x), a clear contradiction. Thus (d) holds at
every x G X and hence the collection is T/a-equi-l.sc.    □

To illustrate the concept of T/a-equi-l.sc, and its use in the calculus of variations,
we include here an example provided by H. Attouch (Paris-Orsay).

Example 2.11. Let 'Sbe the following family of functions:

9= |/|/(«) = fj(x, Du(x)) dx, u E 2/'(ß)|,

where (x, z) \->j(x, z): SXÄ"-> [0, oo[ is such that

x\-*j(x,z)    is measurable,

z \->j( x, z )    is convex and continuous,

0<j(x,z) < A/(l + \z\2)

for some ( positive) constant M. Then 'S is E'(n)/£°0(ß)-eaM/-/oiver semicontinuous.
Proof. We have to prove that for any u G 2/'(fi), given any e > 0 and r/ > 0, we

can find p(r¡) such that for all/ G 'S,
f(v)>      inf      /(vv)-e

»ES„(«,I|)

for all v E Bx(u, p(t])), where Bp(a, a) is the closed ball of tp of center a and radius
a. There is no need to consider the term e"1 which appears in (d) because u E Hx
and^Xx, z) < M(\ + | z |2). For the sake of the argument assume that for some u the
collection 'Sis not equi-l.sc, i.e. there exist e > 0, tj > 0 such that for all p > 0, there
exist f E 'Sand vp E Bx(u, p) with

(2.12) /p(u„)<      inf      fp(w)-e.
*eB„(u,Ti)

As p goes to 0, the vp converge to u with respect to the E'-norm, hence also in
measure. Thus there exists a sequence of positive real numbers (ap)p>0 such that
<xp J,0 as p goes to 0 and

meas[x G fi 11 vp(x) — u(x) |> ap] < ap.
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For any a > 0, let us define Ta, the contraction map from R into R, by

a if I a |< a,
Ta{a) (sgna)a     otherwise.

Now let us consider the sequence up = u + Ta(vp — u). Note that \\up — u\\x =
II Ta^vP - ")H oo < "p - ° as P ~* °- 0n the other hand,

Dup = Du+ T'a(,vp- u){Dvp~ Du)

= [\-T^(vp-u)]Du+T^(vp~u)Dvp

and thus the convexity ofy'(x, • ) yields

fP(up)= f JP{x,Dup(x))dx•'Q

</Jl - r;(op - M)];p(x, Du(x)) dx + ¡T^vp - u)Jp{x, Dvp(x))dx.

Since F^ = 1 on [-a, +a] and 0 outside, we get that

/p(«p)</p(%) + / jp(x,Du(x))dx.

Now recall that u is in 2/'(fi) and that the integrands jp are uniformly majorized and
thus

/pKH/p(%) + ( M(\ + \Du\2)dx.
J{\v„-u\>ap)

This with (2.12) yields

fP(uP)-Mf {l + \Du\2)dx<      inf      fp(w)-e.

As p |0, up tends to m in £°°. Thus for p sufficiently small

inf      /»</>„),
II w — u||0O<i)

and hence for p sufficiently small, from the two preceding inequalities we get

0<e<MÍ (l + \Du\2)dx.
J{\op-u\>ap)

Since (1 + \D(u)\2) E £'(fi) and meas{|t)p — u\> ap}lO, the above yields a con-
tradiction, which completes the proof.    D

The remainder of this section is devoted to the relationship between T-epi
convergence and pointwise convergence. The pointwise-limit functions of a filtered
collection of functions {/„, v G N} are denoted by li ¿ and ls /„ respectively and are
defined by
(2.13) li/(x)= sup    inf ¿(x)

»ex "e//
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and

(2.14) ls/„(x)=   inf   sup ¿(x) = sup    inf ¿(x).
"eOC ,e/7 „eî "e"

If i denotes the discrete topology on X, then §t(x) consists of all subsets of X
containing x. Whence

ü¿ = ü,¿    and    ls¿ = ls,¿,
from which it follows, via (1.14) and (1.15), that

(2-15) liT¿<li¿,

and

(2.16) lsT¿<ls¿.

Now, however, it is possible to simplify the definition of equi-lower semicontinuity.
Definition 2.17. A filtered collection of functions [fp,vEN}ERxis T-equi-lower

semicontinuous (T-equi-l.sc) at x if there exists ex > 0 such that
(d ) to every e G ]0, ex[ there correspond H G % and VE §T(x) such that for all

vEH

inf ¿(^)>min[¿(*)-e,e-'].
yev

The collection is said to be T-equi-l.sc z/(dp) is satisfied at every x E X.
Clearly (d) implies (dp) since {x} G §t(x). On the other hand, given e > 0 and

W E@^(x) (any set Wcontaining x), we always have that

inf ¿O0-e<¿(*)-«-
yew

If (dp) is satisfied there exist 2/ G % and V G @T(x) such that

¿(x)-e< inf ¿OO
yev

for all v E H. The two preceding inequalities yield (d).
In this setting Theorems 2.3 and 2.9 become

Theorem 2.18. Suppose {f„,v EN] E Rxis a filtered collection of functions,
(i) If the collection is T-equi-l. sc, then li T /„ = li /„ and lsT ¿ = ls ¿. A Iso / = lm /„ //

and only iff = lmT/„.
(ii) If -co </= lm /„ = lmT¿, then the collection is T-equi-l.sc.

By means of Proposition 2.2, and relying on the definition (1.16) of Mosco limit,
we can obtain a whole slough of convergence results. For example,

Corollary 2.19. Convergence Theorem. Suppose that a D t. ///= lm/„ and
the {/„, v G N] are T-equi-l.sc, then /=lmTO/„. Also, '//=lmOT/„ and the
collection is T-equi-l.sc, then f — lm ¿.

To verify T-equi-lower semicontinuity it is often convenient to decompose condi-
tion (d) into one that strictly requires equi-lower semicontinuity on some set D E X,
and in another condition on the set D itself that will imply uniform divergence on
the complement of D. This approach had been followed in an earlier version of this
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article. (Note that the same ideas can be used in the more general context of
r/a-equi-lower semicontinuity.)

Theorem 2.20. Suppose {/„, v E N] C Rx is a filtered collection of T-lower semi-
continuous functions. It is T-equi-lower semicontinuous if and only if there exists a set D
with dom liT/„ C D E X such that

(d'p) to every pair x E D, e > 0, there corresponds H E %, V E $T(x) such that for
all p EH, inf yeyfp(y)>fp(x)-e.

Proof. Since (dp) implies (d'p) on any set D which includes domliT/„, the "only
if' part is trivially satisfied. To obtain the converse simply note that if x G dom liT/„,
it means that given any e > 0, there exist 2/e G % and Vc E §T(x) such that for all
vEHt,

inf ¿0)>6-'.
y e K

Now recall that liT/,(x) < li /„(x) which implies that there exists H' E % such that
f„(x) - e> e~x for all v E H'. Hence we have that for all v G He D 2/' ( G %),

inf ¿(j)>min[¿(x)-e>£-'].
yev.

Thus (dp) holds for every x G domliT/„.
Since domliT/, c D, we know that (d'p) is satisfied for every x G domliT/„, i.e.

for all e > 0 there exist a pair Ht E % and Vt E §T(x) such that for all v E H,

inf ¿00>¿(*)-e.
yev.

On the other hand, x G domliT/„ implies that liT/„(x) < oo. Pick ex > 0 such that
e"1 > liT/(x). Then by the definition (1.1) of li,./, it follows that for every e G ]0, ej,
every 2/ G % and V E ST(x),

inf   inf ¿(y)<£"'•
xE/Y  yeV

This and the T-lower semicontinuity of the/„ at x implies that for all e G ]0, ex[,

¿(x)-e<e-1.

Thus also when x G domliT/„ with the 2/£ and Vc identified as above, we have that
for all v E Hc,

inf fp(y)>min[fp(x)-E,E-x]
yev,

for all e G ]0, ex[ for some ex > 0, i.e. (dp) also holds on dom li /.    D
The assertions of Theorem 2.18 remain valid with a weakened version of t-

equi-lower semicontinuity, when X is linear, t is locally convex and the {/, v E N}
are convex functions. This is the content of Theorem 2.24. To start off with we need
to establish the convexity of some limit functions which we obtain as a corollary of
the next lemma.

Lemma 2.21. Suppose (C„, v E N] is a filtered collection of convex subsets of a
locally convex linear space. Then Li Cp is convex.
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Proof. Clearly, Li C„ is trivially convex if Li C„ = 0. So let us assume that
Li Cp ¥= 0. From the definition (1.6) of Li Cp, it follows that x G Li C„ if and only if
to every neighborhoods V of x, there corresponds H E% such that for all v E H

(2.22) C,nV=£ 0.

Take x°, x1 G Li C„ and for A G [0,1] define xx = (1 - X)x° + Ax1. We need to
show that if Vx is a neighborhood of x\ there exists 2/x G % such that C„ n Vx ¥= 0
for all v G Hx. In view of local convexity we only need to show this for convex
neighborhoods of xx and henceforth we take it for granted that Vx is convex. Define

K° = Vx + x° - xx    and    Vx = Kx + x1 - xx.

These are (convex) neighborhoods of x° and x1 and thus there exist 2/° and 2/' such
that (2.22) is satisfied. Let H° D Hx = H ( G OC) and since for all v E 2/\

Vo r\Cp¥= 0    and    Vx P\CP¥- 0,

it follows from the construction of Vo and Vx, and the convexity of the Cp and of Vx
that Fx n C„ ,*= 0 for all v E Hx.    □

Corollary 2.23. Suppose (/„, e G N) is a filtered collection of convex functions
defined on the locally convex linear space (X, t). Then lsT/„ is a convex function, and if
they exist so are lmT/„ and lm ¿.

Proof. Recall that a function is convex if and only if its epigraph is convex. Thus
the convexity of lsT/„ follows from (1.11) and Proposition 2.21 since by assumption
all the {epi /„, v E N] are convex. If lmT/„ exists, then lmT = ls„, and the convexity
of lmT follows from the above. The convexity of lm ¿ can be verified directly or
follows from the above since, if it exists, lm /„ = lm1 /„ = Is, ¿.    D

Note, however, that in general liT¿ is not convex, although the /„ are convex.
Consider, for example {¿, v = 1,2,...} such that for k = 1,2,...,

/2*(*)=l*-l|    and   f2k-x(x) =|x+ 1|.

Then clearly liT¿ is not convex, since

. J|x + 1|     ifx<0,
lTy""||x-l|       if X 3=0.

Theorem 2.24. Suppose {/„, v E N] E Rx is a filtered collection of T-lower semi-
continuous convex functions defined on a locally convex linear space X. Moreover,
suppose that either -oo < lmT¿ exists or -oo < lm ¿ exists and is t-I.sc Then the
collection {/„, v G N] is T-equi-l.sc if and only if there exists D E X such that
conditions (d'p) and (~ d'c) are satisfied, where

(~ d'c) to every pair x G cl D, a G R there corresponds 2/ G OC, V E§T(x) such
that for all v E H,

inf ¿O0>«-
yev

Proof. Since i D t, from Theorem 2.9 it follows that we may as well prove that
the conditions imply that lm / = lmT/„. The converse being trivially true, since
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T-equi-lower semicontinuity implies, via Theorem 2.20, that dom liT¿ C D and that
(dp) holds, and domliT/„ C D yields (~ d'c), in fact not just for every pair x G cl D,
a E R but for every pair x G D, a G R.

From the proof of Theorem 2.3, with a = t, we see that with D = domliT/„, (d'p)
implies that li/„ < liT/„ and Is/, *£ lsT/„ on D. Similarly (~d'c) yields the same
relations on X\c\ D. Combining this with (2.15) and (2.16), we have that (d'p) and
(~ d'c) yield on X\ Q, with Q = c\D\D,
(2.25) üT¿ = li¿   and   lsT¿ = k¿.

Moreover, lsT/„ is convex, and so are lmT/„ and lm ¿ if they exist, cf. Corollary 2.23.
If -oo <f'= lm /„ exists and is t-1.sc, it follows from the above that/ = lsT/„ =

liT/„ on X\ Q. Convexity also yields equality on Q as we now demonstrate. Suppose
that x1 G Q and take x° G dom f E D, and without loss of generality assume that
/(x°) = 0. Given any e > 0, G G ST(x'), and 2/ G OC, the definition of liT yields
vE E H and ye E G such that

a = liT¿0')>¿,Oe)-?-
For A G [0,1], define

xH,c = O - A)x° + \ye.
The convexity of the/, implies that

4<c) < O - *)¿j>°) + HÍ7.) < 0 - *)¿j>°) + M« + e).
Now note that for any fixed A G [0,1], xx = (1 — A)x° + Ax1 is a limit point of the
filtered collection {xxH G, (H, G) E filter generated by OC X i?T(x')}. Hence for every
A G [0,1[

/(xx) < liT/(xx) < (1 - A)/(x°) + A« = A«.

Let A|l. From the lower semicontinuity of/, we get that f(xx) < liT/„(x'). From
which it follows that/< liT/„ < lsT/„ on Q which implies that/= lmT¿ on X since
(2.16) holds universally.

Now consider the case when -oo </:= lmT/„ exists. From the observations at
the beginning of the proof, in particular (2.25), it follows that

/=li¿ = ls¿   onX\Q.
It suffices to show that/> ls /„ on Q since (2.15) and (1.5) imply that/< li /„ < ls ¿.
Again let x1 G Q and x° G dom / C D, and without loss of generality assume that
/(x°) = 0. Given any e > 0 and 2/ G OC, the definition (2.14) of ls yields vBE H
such that

lsfv(xl)>fvixl)-e.

Set xx = (1 — A)x° + Ax' for A G [0,1]. Now the convexity of the/ implies that for
all A G [0,1[,

¿f(xxH(l-A)¿f(x0)+AZt(x')

<(l-A)¿(x°) + \ls¿(x1) + Ae.
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Taking limits (with respect to OC) we get that

/(xxH(l-A)/(x°) + Als/(x') + Ae.

Let A î 1. From the lower semicontinuity of f — lmT/, (Corollary 1.12) and the fact
that £ is arbitrary it follows that/(x') < ls /„(x1), which completes the proof.    D

This last theorem allows us to relate the definition of T-equi-l.sc used here and the
original definition suggested by Salinetti and Wets [1977] for sequences of t-1.sc
(proper) convex functions defined on a reflexive Banach space. The sequence {/„,
v = 1,...} was said to be T-equi-l.sc with respect to a proper t-1.sc convex function
/if

(a) for all x G dom / and e > 0, there exist V E @r(x) and ve such that for all
v > vt,

inffr(y)>fXx)-e;
yev

(ß) for all x G dom /, there exists vx such that for all v s* vx, x E dom /;
(y) the/, converge uniformly to + oo on every compact subset of X\cl dom /.
If we choose /and D such that D = dom /then (d'p) is precisely (a). And clearly

(~ d'c) implies (y), but also the converse holds because the closed balls of a reflexive
Banach space are weakly compact. Condition (ß) is superfluous because it is
automatically satisfied if the functions / have / as a pointwise limit (Salinetti and
Wets [1977, Lemma 2.ii]) and it is implied by (a) if the sequence/,, epi-converges.
Thus Theorems 1, 2 and 3 of Salinetti and Wets [1977] are special cases of Theorem
2.24.

Bernard-Mazure [1981] also suggests a definition of T-equi-l.sc In our framework,
her definition reads: A filtered collection {/, v E N} of extended real-valued
functions is T-equi-l.sc if for every x G dom li„/ and every e > 0 there exists 2/ G OC
and V E §a(x) such that for all v E H,

inf fXy)>fXx)-e.
yev

The difference with Definition 2.17 is that here the effective domain of li„/must be
calculated, a not necessarily easy task. Finally we note that Buttazzo [1977] in his
Proposition (2.1) introduces a sufficient condition to obtain the identities

li„¿ = li¿   and   ls.¿ = ls¿.
In order to verify his condition, the functions ¿ must be finite valued. His result
however can be viewed as a forerunner of Corollary 2.19.

III. The hyperspace of closed sets. Let (Y, tj) be a topological space. In this section
we have collected some facts about the (hyper)space of closed subsets of Y equipped
with the topology of set-convergence, as defined by (1.8). This turns out to be a
variant of the Vietoris finite topology, at least when (Y,-q) is separated (Hausdorff)
and locally compact. Most of the results found below can be extracted from articles
by Choquet [1947-1948], and by Michael [1951] and from the book by Kuratowski
[1950].
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By "¿Y, or simply iFif no confusion is possible, we denote the hyperspace of closed
subsets of Y. The topology 'S of 'Sis generated by the subbase of open sets:

{(SK,KE%}    and    {%,GeQ}

where % and § are the hyperspaces of compact and open subsets of Y respectively,
and for any Q E Y,

<5Q = {FE<S\FC\ Q = 0}    and    <&Q = {F G f \FD Q # 0}.

Proposition 3.1. Suppose that Y is separated and locally compact, [Cp,v E N) is a
filtered collection of subsets of Y, and CE Y is closed. Then

(i) C C Li Cp if and only if to every G E § such that C n G =£ 0, there corresponds
HG E % such that for every v G HG, CPC\ G ¥= 0 ;

(ii) C D LsCp if and only if to every K G OC such that C C\ K — 0, there corre-
sponds HK E % such that for every v G HK, Cp D K = 0.
Moreover, C — Lm Cp if and only if C = 'S — lim Cp.

Proof. It will be sufficient to prove (i) and (ii) since the last assertion follows
immediately from (i) and (ii) and the construction of S".

Suppose first that x G C, then C n G ¥= 0 for all G E g^x). The "if" part of (i),
implies that Cp H G ¥= 0 for all v E Hc with Hc E OC. Every H' in OC meets every
2/ G OC and hence

(Uc,|nc^0

for every 2/ G OC and G G §v(x). Thus for every 22 G ÖC, x G cl(U„EWC„) and
consequently by (1.6) x G Li Cp, i.e. C E Li Cp.

If C E LiCp, then C n G ¥= 0 implies that G n (f\„e%cl(UyeIÍCr)) ^ 0, i.e.,
for every 2/ G OC,

(UcJnG^0
»e;/

or equivalently there exists 2/c G OC such that for all v E HG, Cp n G ¥= 0, again
because OC consists of all the subsets of N that meet every set in OC. This completes
the proof of (i).

Suppose that x ELsCp, then for every 2/ G OC, x G cl(Up^HCp), cf. (1.7). If
x G C, by local compactness of Y, there is a compact neighborhood 2í of x such that
K n C = 0. The "if" part of (ii) then implies that K n ( U„e///r C„) = 0 for some
2/^ G OC, i.e., x G cl( U,ew C„) contradicting the assumption that x E LsCp.

Now suppose that C D LsCp, C D K = 0, but for every 2/ G OC we can find
p G 2/ such that C„ n K J= 0, i.e. there exists //' G ÓC such that Cp n K ¥= 0 for
every e G H'. Since 2í is compact, it follows that the {C„ D K, v G 2/'} admit at least
one cluster point x E K. Then for every 22 G OC,

xGcl( (J C,) H2C,
»e/y
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and consequently, x G Ls C„ n K. But this contradicts the assumption that C D
LsCp.    a

Thus S is indeed the topology of set-convergence as defined in §1. The next
proposition yields the properties of ('S, S ) that are needed in the sequel.

Proposition 3.2. Suppose that Y is separated (Hausdorff) and locally compact.
Then ('S,'S ) is regular and compact.

Proof. By construction the sets {'SK; K E OC} and {'S0; G E §} are the comple-
ments of open (base) sets, and thus are closed. In particular, this implies that
singletons are closed, since

f= ( n%,}) nffc,
' veF        '

G = Y \ F is open.
To see that ('S, 'S) is separated, let F, and F2 be two subsets of 'S such that

F, =£ F2. Then there is some>> that belongs to F, but not to F2 (or vice-versa). Since
Y is locally compact by assumption and F2 is closed, there exists K°, an open
precompact neighborhood of y, such that K = cl K ° is disjoint of F2. Hence

F, G <SKo   and    F2 G <SK.

The compactness of ( 'S, 'S ) follows from Alexander's characterization of compact-
ness in terms of the finite intersection property of a subbase of closed (hyper)sets.
Suppose that

(3.3) ( n sü n ( n 'sc>) = 0
,e/ * jej        '

where K¡ E OC, G¡ E 6 and / and J are arbitrary index sets. We must show that the
family of sets {K¿, i E I; G^j G /} contains a finite subfamily that has an empty
intersection. Let G = U &JG¡ and note that G G S. Now observe that (3.3) holds if
and only if

H (SrJf(nfc)= 0
;e/

or still, if and only if for some i0 E I,<SK n ííG = 0, or equivalently, if and only if
there exists j0 G 2 such that

But Kia is compact and thus the open cover [Gj, j E J) contains a finite subcover
{G ,..., G }. Hence (3.3) holds if and only if

/   " \<SK¡ n    Pi 'SG'.   = 0.
\ i=i       /

Since ('S, S ) is compact and separated, it is also regular.    D

IV. Compactness criteria for spaces of semicontinuous functions. The relationship
between pointwise- and eT-limits through equi-semicontinuity suggests a number of
compactness criteria for spaces of semicontinuous and continuous functions, the
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celebrated Arzela-Ascoli Theorem being a special case of these. Our approach in fact
provides an unconventional proof of this classical result.

Although a few of the (weaker) subsequent statements remain valid in a more
general setting, we shall assume henceforth that the domain-space ( X, t) is separated
and locally compact. Let SC(X) be the space of t-I.sc functions with range R and
domain X. The elements of SC(X) are in one-to-one correspondence with the
elements of S, the hyperspace of epigraphs, i.e. the closed subsets E of Y = X X R
such that (x, a) E E implies that (x, b) E E for all b > a. Note that {0 } G S and
corresponds to the (continuous) function /= +00. S is a subset of ®sY, the
hyperspace of closed subsets of Y = X X R.

Proposition 4.1. Suppose that (X,t) is separated and locally compact. Then
& E'Sy is compact with respect to the S topology. Moreover, the 'S-relative topology on
& can be generated by the subbase of open sets:

{&K-a; K G %x, a G R.)    and    {&Ca0; G E$x,a E R},

where for any Q C X and a E R,

&Qm = {E E S I E n (Qx]-oo, a])= 0}

and

Sß>0o= {E E&\E n (Qx]-oo,a[) ¥= 0}.

Proof. Suppose F G <Sy\5, then there exist x G X and a < b such that (x, a) E F
but (x, b) G F. The local compactness of X yields an open precompact set K° such
that

ßTXXffr)   n  sr
ä '  '   JK°X]a-i,a + c{,

with K = cl K° and 0 < e < b — a, is an open neighborhood of F that does not
contain any epigraphs. Thus $\ S is open or equivalently S is closed. Since 'S is
compact, so is S.

To see that the íT-relative topology on S can be generated by the subbase
described above, note that the topological properties of Y = X X R imply that the
sets of the type

{'SKxla<h];KE%x,a,bER}    and    {%XXaM; G E §x, a, b E R)

also are a subbase for 'S on 'Sy. The restriction of this subbase to S, yields

S**™ = 6*-   and   Scx)o,6[=Sc,ao.    D

Combining Propositions 3.2 and 4.1 we get

Corollary 4.2. The topological space (S, '5 ) is regular and compact.

From Propositions 1.9, 3.1 and 4.1, with eT the topology of epi-convergence on
SC(X), we also get

Corollary 4.3. The topological space (SC(X), eT) is regular and compact.
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The above implies that any closed subset of SC is compact. In particular, note
that for any a E R and D E X, the set

SC"(D) = {fESC\f< a on D) =  f)   {f E SC\f(x) < a)
xeD

is compact. To see this simply observe that {/G SC|/(x) < a} is closed since it
corresponds in & to the \T-closed set

{£ef.|£n({x} X]-oo,a]) ^0}.

Also, for any a E R and any open G E X, the set

SCU(G) = {fESC\f^aonG}

is closed since it corresponds in S to the l5-closed set

{FGÍÍ |Fn(GX]-oo,a[) = 0}.

We have just shown that

Corollary 4.4. Any bounded collection of t-I.sc functions is a compact subset of
(SC(X),er).

The topological space (SC, p) is the space of t-1.sc functions equipped with the
topology of pointwise convergence. We already know that neither pointwise nor
epigraph-convergence implies the other. However, in view of Theorem 2.15, these
topologies coincide on T-equi-l.sc subsets of SC.

Definition 4.5. A set S E SC(X) is T-equi-lower semicontinuous, or simply
equi-l.sc ;/ to every x E X and e > 0 sufficiently small there correspond V G §T(x)
such that for all f in 6E,

inf f(y) 7? min[f(x)-E,£-1].
yev

Theorem 4.6. Suppose that (X,t) is separated and locally compact. Then any
T-equi-l.sc family of t-I.sc functions contains a (filtered) subfamily converging
pointwise to a t-I.sc function. Moreover, if the family of functions is bounded, it
contains a subfamily converging pointwise to a bounded t-I.sc function.

Proof. As follows from Theorem 2.18, for T-equi-l.sc subsets of SC(X), the
p-closure or enclosure coincide. The first statement then follows from Corollary 4.3
and the second from Corollary 4.4.    D

Every property derived for (SC(X), eT) has its counterpart in (-SC(X), -er),
the space of T-upper semicontinuous functions (t-u.sc) with the topology -eT of
hypo(graph)-convergence. In particular, (-SC( X), -eT) is compact and any bounded
subfamily is precompact. And thus, any T-equi-u.sc family of (bounded) u.sc
functions contains a subfamily converging pointwise to a (bounded) t-u.sc function.

Given {/,, v E N) a filtered collection of functions, the -eT-limit inferior is
-(lsT — ¿) and the -eT-limit superior is -(liT — /„). The hypographs of these functions
being precisely Li hypo/ and Ls hypo/. We always have that

liT¿<li¿ = -(ls-¿)<-(lsT-¿)
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and

lsT¿<ls¿ = -(H-¿)«-(liT-¿).

In each one of the preceding expressions, the first (second resp.) inequality becomes
an equality if the collection is T-equi-l.sc (T-equi-u.sc resp.).

Let C(X) = SC(X) n -SC(X) be the space of continuous extended real-valued
functions, ±eT the join of the two topologies eT and -eT, and again p the topology of
pointwise convergence. In general, (C(X), ±eT) is not compact but as we shall see,
its equi-continuous subsets are precompact. A subset â C C( X) is equi-continuous if
it is both T-equi-l.sc and T-equi-u.sc

Proposition 4.7. Suppose that X is separated and locally compact. Then & C C(X)
is precompact (with respect to ±e7) if and only if it is equi-continuous.

Proof. If â is equi-continuous, it is equi-l.sc and hence every subset of & contains
a filtered family {/, v G N] such that lmT/„ = lm/„, but by assumption the {/„,
v EN] are also equi-u.sc and thus contain a subfamily (a finer filter on N) such
that

lmT¿ = lm¿ = -(lmT-¿);

from it follows that & is precompact.
On the other hand, if & is not equi-continuous, then assume for example, that

T-equi-lower semicontinuity fails. This means that for some collection of functions
{/„, v E N] and some x, we have that

(lmT/J(x) < (li/J(x) = - (ls -¿)(x) < -(lsT -Z)(x).

Hence, there is obviously no subcollection of the {/} whose hypographs converge to
lmT/, since at x the -eT-limit inferior of the {/} is strictly larger than (lmT/)(x).
Thus 6? cannot be precompact.    D

Finally, we consider the space C(X) of continuous real-valued functions with the
topologies ±eT,p and II • II, the last one being the sup-norm topology induced by the
pseudo-norm defined by II / II = supx^x\ f(a) | . This pseudo-norm induces a topol-
ogy on C. The fundamental system of neighborhoods of an element / is defined by
the sets [g E C | II / — g II < a] with a > 0. Note that if X is compact, then || • II is a
norm on C(X) and the topology II ■ Il C ±er as can easily be verified. In general,
however, these two topologies are not comparable.

Theorem 4.8. Suppose that X is separated and locally compact and â C C(X) is
equi-continuous and bounded. Then & is ± er-precompact.

Proof. This follows from the fact that bounded subsets of SC(X) and — SC(X)
are eT and -eT-compact, respectively, cf. Corollary 4.4. As in Proposition 4.7
equi-continuity provides the link between the limit functions.    D

Corollary 4.9 (Arzelá-Ascoli). Suppose that X is separated and compact. Then
& E C(X) is precompact, with respect to the ±eT-topology, and consequently with
respect to the II • II topology, if and only if & is equi-continuous and bounded.
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Sufficiency follows from Theorem 4.8. The necessity of equi-continuity is argued
as in Proposition 4.7. Finally, if & is unbounded, there exist {/„, v E N] and {xp,
v E N] such that ¿(x„)J.-oo (or î + oo). The compactness of X implies that the
family {x„, v E N] admits an accumulation point, say x. Then (liT/„)(x) = -oo (or
-(li — f„)(x) = +oo) and hence the ±enclosure of & cannot be in C(X) if 6E is
unbounded.    D

Appendix. There is an intimate connection between the semicontinuity properties
of multifunctions and the convergence of (filtered) families of sets. The appendix is
devoted to clarifying these relations; part of this can be found in one form or
another in Choquet [1947-1948] or Kuratowski [1958].

A map T with domain Y and whose values are subsets of X (possibly the empty
set) is called a multifunction. The graph of Y is

grPhr= {(v,x)g yx*|xGrO)}.
We recall that the image of A C Y is TA = Uv6/) T(y) and the preimage of B C X
isr-'F= {yE Y\T(y)DB = 0).

A neighborhood base 'SHjo) of y0 G y is a filter base on Y. A multifunction T is
said to be upper semicontinuous (u.sc.) aty0 whenever

(LsT)(yQ) =      R      c\rWET(y0)
We9>(yo)

or equivalently if to each x° G T(y°) we can associate neighborhoods Q of x° and
W of y° such that TW n Q = 0. Note that T is u.sc. (at every y) if and only if
grph T is closed.

In the literature one can find a couple of closely connected definitions of upper
semicontinuity. A multifunction T is said to be K-u.sc aty°, if to each closed set F
disjoint of T(y0) there corresponds a neighborhood W ofy§ such that TW H F — 0,
or equivalently if to each open set G that includes T(y0) there corresponds a
neighborhood W of y0 such that TW C G. If X is regular, then T closed-valued and
2v-u.sc at y0 implies T-u.sc at y0. If X is compact and T is closed-valued at y0 then
both notions coincide.

A multifunction is said to be C-u.sc at y0, if to each compact set K disjoint of
T(y0) there corresponds V, a neighborhood of y0, such that TV n K = 0. Obviously
u.sc. implies C-u.sc. The converse can be obtained with any one of the following
assumptions:

(i) X is locally compact;
(ii) T"' is 2C-u.sc. at every x0 (for example, if / = Y -> X is a continuous function

and T = /"', then T ' is 2v-u.sc);
(iii) X is metrizable, y0 has a countable neighborhood base and ry0 is closed, cf.

Dolecki [1980].
The proof of the last assertion proceeds as follows: Suppose that T is not u.sc. at

y0. Then there exists x0 G Ty0 and neighborhood bases {Qp, v = 1,2,...} of x0 and
{W^, v — 1,2,...} of yQ such that for all v,

r>o n & * 0
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because r>0 is closed, and for all v
TWP n Q,¥= 0

because T is not u.sc. at y0. For every v, pick x„ G TWP D Qp. The set K =
{xx, x2,... ,x0} C X is compact (every subsequence converges to x0) and disjoint of
Ty0 but meets every TW. This contradicts the C-u.sc. of T at y0.

A multifunction is lower semicontinuous (l.sc) aty0 if

ro0)c(L/r)O0)=   n   c\tv
Ve<$,{y0)

where 9>(y0) is the grill associated to the filter base Çê>(y0), or equivalently if r~'G is
a neighborhood of y0 whenever G is an open set that meets r(>>0).

For a given set X, we denote by 'S'(X) the power set of X, i.e., the hyperspace
containing all subsets of X,by 'S(X) = *Sihe hyperspace of closed subsets of X, and
0$F= f\ {0 }. We now consider the multifunction A from 'S'(X) into X defined by
NQ = Q. We have that A~x& = {Q \ Q n 6B ¥= 0 } and (A~xâ)c = {F\ F E Sc].

We restrict A to 'S. The sets {A"'G, G open} form a subbase for a topology on 0<S
(but not for 'S). Similarly, the collection {( A"'2v )c, K compact} constitutes a subbase
for another topology on 'S. The supremum of these two topologies yields a topology
?Fon 'S. It is the coarsest topology for which A is both l.sc and C-u.sc. The topology
% the Vietoris topology, on 'Shas a subbase consisting of the collections {A~'G, G
open} and {(A"'F)C, F closed}. It is the coarsest topology for which the multifunc-
tion A: 'S-> X is l.sc. and 2C-u.sc
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