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Convergence of Galerkin Approximations for the
Korteweg-de Vries Equation*

By Garth A. Baker, Vassilios A. Dougalis and Ohannes A. Karakashian

Abstract. Standard Galerkin approximations, using smooth splines on a uniform mesh, to
1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of
convergence estimates are obtained for both semidiscrete and second order in time fully
discrete schemes. At each time level, the resulting system of nonlinear equations can be solved
by Newton's method. It is shown that if a proper extrapolation is used as a starting value,
then only one step of the Newton iteration is required.

1. Introduction. This work is aimed at deriving rate of convergence estimates for
standard Galerkin approximations, using smooth splines on a uniform mesh, to
1-periodic solutions of the Korteweg-de Vries equation.

For 0 < T < oo, a function u: [0,1] X [0, T] — R is sought satisfying

í + "£ + S = °'  »"<»■') x(o.r],
<u) 1^(0,0 = 1^(1,,),    y = o,i,2:,e[o,r],

axJ axJ

u(x,0) = u°(x),       ï£[0,1],

where u°(x) is a given 1-periodic function.
It will be assumed that (1.1) has a unique solution, sufficiently smooth to

guarantee the convergence results below. Results on existence, uniqueness and
regularity of solutions of this problem have been obtained, e.g., in [3], [4], [7], [10].

A nonstandard dissipative Galerkin method yielding the optimal rate of conver-
gence for the semidiscrete approximation for (1.1) using arbitrary C2(0,1) periodic
piecewise polynomial functions has been analyzed by Wahlbin [14]. A nonstandard
Galerkin method, yielding optimal rate of convergence estimates for both semidis-
crete and second order accurate in time fully discrete schemes has been analyzed by
Winther[15].

For numerical work concerning the Korteweg-de Vries equation, cf. Alexander
and Morris [2] for dissipative and nondissipative Galerkin approximations to (1.1).
For finite difference schemes cf. e.g. [6], [13], [17]. For spectral methods cf. e.g. [1],
[5], the appendix of [7], [8], [9]. See also the references of [16].

It is stated in [14] that the semidiscrete approximation for the standard Galerkin
method using smooth periodic splines of order r > 4 gives the optimal convergence
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420 GARTH A. BAKER, VASSILIOS A. DOUGALIS AND OHANNES A. KARAKASHIAN

rate 0(hr) in L2(0,1). For the convenience of the reader we supply a proof of this
here. We use some key estimates of Thomée and Wendroff [12] for some associated
linearized problems. We then analyze a fully discrete Crank-Nicolson type ap-
proximation to u. Among the results obtained are the existence, uniqueness, stability
as well as the optimal convergence rate of the fully discrete approximation. At each
time level, the resulting system of nonlinear equations can be solved by Newton's
method. It is shown that if a proper extrapolation is used as a starting value, then
only one step of the Newton iteration is required to preserve the stability and
optimal rate of convergence of the scheme.

Some of the results above hold provided conditions relating the sizes of k and h,
the time and space discretization parameters, respectively, are satisfied. Specifically,
for the proof of uniqueness of the solution of the fully discrete Crank-Nicolson
scheme, a condition of the form kh~x/1 < c, with sufficiently small c independent of
k and h, must hold. Also, for the convergence of Newton's method, a condition of
the form kh~3/4 < c, c sufficiently small, is required. We point out that this is a very
weak limitation on the time step k and is certainly satisfied in practice. Note that
most finite-difference schemes, cf. e.g. [13], [17], require a severe restriction on k of
the form kh~3 < c. However Winther's [15] scheme is unconditionally stable.

An outline of the paper is as follows: Section 2 is devoted to establishing notation
and the statements, in the form of theorems, of the results obtained. In Section 3, the
proofs of those results are given.

2. Rate of Convergence Estimates. We next establish the notation to be used
throughout the paper and state the main results obtained; the proofs will be given in
Section 3.

For real s and 1 «£/> < oo, Wp(0,1) will denote the Sobolev space of real valued
functions on (0,1), the norm of which we denote by || ■ || ¡ymn- For convenience, for
p = 2 we shall write II • \\s = || • || w^0¡Xy The inner product and norm on W2(0,1) =
L2(0,1), we denote by ( •, • ) and II • II, respectively. For X a normed linear space with
norm || • || x, and u: [0, T] -* X measurable, we define

Í   [T p       } X/P
\\u\\l"(o,T;X)= \J   \\u(t)\\xdt\      , l=£/><00,

and
||m||l°°(o,7-;a-) = esssup||w(i )\\x.

0«r=sr

For integer r > 4, S¡, will denote the space of 1-periodic smooth splines of degree
r — 1 on a uniform mesh of width h = N~x on [0,1]. 5Ar possesses the well-known
approximation properties:

If v is 1-periodic and v G W{(0,1) n W£(Q,1), then there exists a x G S¿ such
that

s-1
(2.1) 2 hj\\v-x\\j^chs\\v\\s,        Ki«r,

j=o
and

m-\

(2.2) 2  h'\° ~ xll^(o,i) < c/!m||u||(oo,i),        1 <«-!</-.
y=0
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GALERKIN APPROXIMATIONS FOR THE KdV EQUATION 421

Also, for all x G S&, the following "inverse assumptions" hold:

(2.3a) llxll/j < cA-<^-ö)||x||a,       0^a^ß<r-\,
(2.3b) llxlk¿(o.i)<cA-<f+1/2>||x||,       0«s<r-l.

c above is independent of h and throughout the paper will denote a generic
constant, not necessarily the same in any two places.

The following theorem defines the semidiscrete Galerkin approximation to u(x, t),
the solution of (1.1), and gives an error estimate which has optimal rate of
convergence. In what follows we let Pu° denote any conveniently chosen element of
S£ (e.g. L2-projection, interpolant, etc.) which satisfies, for sufficiently smooth u°,

(2.4) \\Pu°-u°\\<chr.

Theorem 2.1. There exists a unique mapping vh: [0, T] -* S¿ satisfying

,,.* ÍK + f*f», + t>*„„x) = 0,  vXES;,re(o,r],
i2-5j [vh{0) = Pu°.

Moreover, if u is sufficiently smooth, then for some constant c depending only on u and
T,

II" - üJz.«<o,r;z.2(o.i)) < chr.        D

For J a positive integer, let k be such that kJ = T. For v. [0,T]-> L2(0,1)
continuous, we define

v" = v(x,nk),       dvn = k-x(vn+x -v")

and v"+]/2 = {(vn+x + v"), for n = 0,1.....7 - 1. The Crank-Nicolson fully dis-
crete approximation is defined in the following way: seek a sequence {U"}J„=0 C S¡¡
satisfying

(2 6) \(w"+ un+x/2u;+x/2+ux"x+xx/2,x) = o, vxgs;,« = o,i,...,/-i,
{u° = Pu0.

We have the following

Theorem 2.2. There exists a sequence {U"}Jn=0 satisfying (2.6). Also, for k, h
sufficiently small and for some constant c = c(u, T)

max II«"- U"\\^c{hr + k2}.
0»Sn<y

In addition, there exists a positive constant y0 = y0(u, T) such that if kh~x/2 < y0,
then the sequence {U"}Jn=0 is unique.       D

We note that, by periodicity, {U"}Jn=0 can be equivalently defined by

\w, x) - h([U"+x/2]2, x J + to1/2, x) = o,
(2-6') vxes;,« = o,...,y-i,

U° = Pu°.

Whenever convenient, either form shall be used.
We propose to solve the nonlinear equations (2.6') using Newton's method. In

practical situations this process is terminated after a finite number of iterations.
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With this in mind, we define the following scheme: Let {j0, jx,... ,jj) be a collection
of integers with jn > 1, 0 < n < J (we can actually take jn= 1). Let Üj" be an
approximation to U", and let Ü"+x be the exact solution of the nonlinear system
(2.6') with U" replaced by £>, i.e., let Ü" + ' be given for 0 < n *£ / - 1 by

(2.7) (í7«+l - l>,x) -f ([Ü"+x + Ü"\\Xx)

+ |([í7"+i + í7/;]vvv,x) = o,  vxe^,

where we set

(2.8) 0° = U° = Puo

Since we cannot solve (2.7) exactly, we shall approximate its solution using
Newton's method. For this, let t/0"+1 be an initial approximation to Ü"+x obtained
in the following way: For n = 0, Ü0] is the solution of the linear system

(2.9)   (ü0x-u°,x) + i<(u0[ü0x]x,x) + k([ü0x]xxx,x) = o, vxa¡,
and for n > I

(2.9') t/0"+1 =2l>- Üj"-X.

Then Newton's method for obtaining U"+x, an approximation to U"+], is:

(2.10) (i?/+v+f[w+v]xxx.x)-'¡([or + ̂ :]^v,x,)

VXe5¿,0<;<yB+1-l.

We have

Theorem 2.3. Suppose jn > 1, V« ü«úí h, k are sufficiently small. Then, there exists
a constant y, = Yi("> T) such that if kh~3/4 < yx, there exists a unique sequence
{Ü¡"Y„=o g'ven by (2.8), (2.9), (2.9') and (2.10). Moreover, there exists a constant c
independent ofh,k and the integers fn such that

max lit/" - <7"||<c{Âr2 + /i''}.        D
OSn«;" J""

Thus Theorems 2.2 and 2.3 show that max.0<i„<j\\un - Ü¿\\ = 0(k2 + hr).

3. Convergence Proofs. In [12], V. Thomée and B. Wendroff consider the follow-
ing initial value problem (D = 3/3x):

'  r)u
-5- = L(x,t,D)u=    2    Pa{x,t)Dau,       xER,t>0,

(3.1) dt 0<«<m

u(x,0) = u°(x).

m is a positive integer such that r > (m + 2)/2; the coefficients and the initial
value are real-valued sufficiently smooth 1-periodic functions in x. Moreover, the
operator L = L(x, t, D) is assumed to be semibounded, so that

(3.2) (Lu, u) <c0\\u\\2,       t>0.
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GALERKIN APPROXIMATIONS FOR THE KdV EQUATION 423

Writing the differential operator L in the form

L(x,t,D)u= 2 Da(PaßD^u),
a<r
ß<r

they introduce the bilinear form,

(3.3) B(v,W)=2{-\Y{PaßDVv,D«W),
a,ß

and consider the Galerkin problem of finding v(t) G S¡, such that

3ü
(3.4)

(-¿,x)=B{v,x),   VXGS¿,í>0,

ü(0) = u¡,

where u°h is the quasi-interpolant of u° (cf. [12, p. 1062]). They obtain the following
estimate for u sufficiently smooth:

(3.5) \\v(x,t)-u(x,t)\\<chr,       0^t<T,

where c depends only on u and T.
We consider the operator

where u is the solution of (1.1). Now for v G W{~x(0,1), 1-periodic,

1   ri      -,  ,     . 1.,  „2
'o

Thus we have

(3.7) (Lv,v) = - f uxv2dx^^\\ux\\L^0A)\\v\\ ,       t>0.

Lemma 3.1. Let u be the solution of (I.I), assumed to be sufficiently smooth; then
there exists a unique function w: [0, T] -> S¡, satisfying

\(Wt + uwx + Wxxx,x) = o, vxesi,/e(o,r],
(3-8) Ux,o) = ul
Moreover, there exists a constant c, independent of h, such that

(3.9) \\u — w||¿«(o,r;í.2(o,D) < chr.        O

Proof of Theorem 2.1. We first consider the existence of a solution vh to (2.5). Let
{</>,}£= i be a basis of Srh. We have

N
vh{x,t)= 2 yjUHM).

Using this, (2.5) is reduced to an initial value ODE problem

Yt=f(Y),        Y={yx,...,yN}T.
Using (2.3a) and (2.3b), it can be shown easily that / is continuous. Moreover, by

letting x = vh in (2.5), by periodicity we obtain

|lMOH2 = o,
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hence

(3.10) |M0|| = ||P"°||,     t>o.
Now from (2.3b)

K(0IIl-(p.i) < <*-/2k(0ll = ̂ -,/2||/>"°||;
hence a unique solution vh(t) exists for t > 0.

Now let w be defined by (3.8). Let e = vh — w and 0 = u — w. From (2.5) and
(3.8) we have

(3.11) (e, + exxx,x) = (uwx-vhvhx,x)

= {~wex + 0wx - eex - ewx, x),       Vx G S¿, t > 0.

Letting x = e, by periodicity we have

(3.12) I ft\\e(t)\\2 = -\(Wx(t), [e(t)]2) + (wx(t)0(t), e(t))

<4"5,(í)|L^M){||*(í)|a+le(/)|a},

where we have used the Schwarz and arithmetic-geometric mean inequalities. Now
from (2.3b) we have Vx G Srh,

(3.13) K(0||l»<o.i)<IMOI|í.-<o.i) +K(0 - XxlU-(0.i) +llx, - wx(/)||L-(0il)
<IMOIL«(o,o +||«,(0 - xjt-<p.i) + CÄ"3/2llx - w(0H
^IIMOIU-to.i) +ll"x(0 - Xjz.-(0,l)

+c/,-3/2{||„(o-x||+||"(0-^(OII}-
Now, from (2.1), (2.2) and using (3.9), we get

(3.14) ||w,(OlU-(o.i) ^¡"xiOIU-io.i) + cAr-,||«||^(0,i)
+ c/tr~3/2||M||^(o.i) + chr~3/2,       t > 0.

Hence, since r ^ 4, we have

(3.15) lkllz.°°(o,7-;z.~(o,i)) *= c = c(u, T).
Returning to (3.12), we obtain

|lK0H2-c|K0ir<c||ff(0l|2.
The last inequality yields via Gronwall's Lemma that

(3.16) ||ei|L°W;L2(0.1)) < c(||ö||i.2(0.7-;£.2(0.1)) + ||<?(0)||),

where c depends only on u and T. The proof of the theorem now follows by the
triangle inequality, (2.4), (3.9), and [12, Lemma 2.4].       D

We now turn to the proofs of the error estimates for the fully discrete schemes. To
prove Theorems 2.2 and 2.3 we shall compare, for each n, e.g., U" with an
appropriate function uh(nk) in S¡,. It turns out that the solution vh of the semidiscre-
tization (2.5) may not be suitable as such a comparison function since various
necessary estimates of norms of some of its higher time derivatives seem hard to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GALERKIN APPROXIMATIONS FOR THE KdV EQUATION 425

obtain. We shall use instead uh, a suitable quasi-interpolant of u, defined for
(x, t) G [0,1] X [0, T] by

N
(3.17) uh(x,t)= 2 u(jh,t)*j(x),

7=1

where {$,-}jLi is a suitably chosen basis of S¡, constructed as follows (cf. e.g. [12]).
Let <f> = x*r (the /--fold convolution), where x is the characteristic function of

[—1,2] and let> for some nonnegative integer 5 and constants dj, <j>(x) =
2J=-Sdjtp(x -j). Then define for Kj<N <t>j(x) to be the restriction to [0,1] of
the function 2/6Zfy+w(x). It is then well known, cf. e.g. [12, Lemma 2.4], that if the
dj are suitably chosen, it follows that

(3.18) \\uh(t)-u(t)\\<ch'
3r« , ,

3^('} 0 < t < T,

holds. We collect all additional results concerning uh that will be needed in sequel in
the following

Lemma 3.2. Suppose u, the solution of (1.1), is sufficiently smooth. Then, for h
sufficiently small, there exists a constant c, independent ofh, such that

(3.19)     (uhl + uuhx + uhxxx,x) = (^(t),x), vxes;,o<i<r,
where

(3.20) U\\L™(0,T;L2(0,l))<chr.

Moreover we have the following bounds (with D't = 3'/3i'):

(3.21) \\P>IUh\\L^O,T;L\0,l))^C, i = 0,1,2,3,

(3-22)                                    \\D¡UJ¿=0(0,7-;lf>,l)) <c, / = 0,1.

Proof. If the "truncation error" xp(t) is defined by (3.19), then (3.20) follows from
Lemmas 2.2 and 4.2 of [12]. Since the quasi-interpolation operator commutes
with time differentiation, (3.21) and (3.22) follow from (3.18), (2.1), (2.2) and
(2.3a,b).       D

It can be seen that the exponent r in (3.20) may be raised to the (superconvergent)
value v = 2r — 2 with a special choice of the basis {4>-}jLi as is done in [12]. Here
we only need that \\x\i\\ be of 0(hr),\t is also not hard to see that an alternative
proof of Theorem 2.1 could have been given in which vh would have been compared
with uh instead of w, the solution of (3.8).

Proof of Theorem 2.2. We shall first establish the rate of convergence estimates; so
assume a sequence {U"}Jn=0 C S¿ satisfying (2.6) exists. Letting x = Un+X/2 in (2.6),
we have by periodicity

(3.23) -U||t/n+1||2-||i/1|2} = - (Un+x/2Uxn+x^2 + Uxnx+xx/2,Un+x/2)=0,

hence

(3.24) l|l/"ll = l|l/°ll,       n = 0,...,J.
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(3.25) l«r'/2+|k+i«L+, + «Kj + c'/2,x

Let uh be defined by (3.17). From (3.19), putting r/(/) = uh(t) — u(t), we have

1
2

r+W2 + \[<y + «z;v+I],x), vx e sj.o < « </ -1.
With f" = Í7" — '«£, n = 0,... ,J, a simple calculation using (3.25) and (2.6) gives,

for x g s;,
(3.26)     (3r + rx:xx/2, x) = (w + ux»xv/2, x) - (*< + <+;/2, x)

= «'/2-3<,x)-(t/"+i/2i/r,/2.x)

+ i(»*+1«*íI+ «*«*,. X)-(«".X)

= (p" + 5"-e",x)

_(f»+l/2f»+l/2 + „»+l/2r»+l/2 + I<j,+ l/2f»+1/2fX)j

where we have set

p" = ulti/2 - 9«;,       e" = ^"+,/2 + K«LiJn + "¡£V+1)
and

Letting x — r,+1/2 in (3.26), we have by periodicity

(3.27) ||r+'||2 -llrf = Mp" + «" - e", T+1/2) - ¿(<1/2, [r+,/2]2)

<M^"+1ll2+iiH2+iipf+iiô"ii2+ii£i2}

+fl«L+,/2||t»(o,)(llr+,||2+iirii2}.
Now, using (3.20), (3.22) and (3.18) we conclude that

(3.28) max    ||e"|| < chr.
o«»«y-i

Using (3.38) and (3.22) in (3.27), we get for some constants c,, c2 independent of h
and k

(3.29) (l-cxk)\\r+x\\2-{l+cxk)U"\\2

^c2^{||p"||2+||Ô"||2 + /t2f),       0<n<J- 1,

from which it follows that

"-'  /  1   -L „  I, w

provided 0 < 1 — c,fc < 1.
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Now, since

1 +cxk\J     I 1 +cxk\"      ,„_1-x-\   <   --x-¡-\   <e2c'T,       0</<n-l,
I - cxk I       \ 1 - cxk j J

we have, using (3.18) and (2.4), that

2    .     I.^1/,,    ,2   .,.„*    ,(3.30) Un\\  <c\k 2 (IHI   +\M\)+h
[     7 = 0

From above,
pn = „„+1/2 _ dun

1      /•(n+l)^

'nk

Hence

~2kf"      ^" + l)k ~ s][nk ~ s]uhttt(x, s) ds.

1       /-(n+l)A:
P"^ikl„k     l[(»+0*-*][«*-*lltoJI ds

2k\30\     \Jnk
1   [A:5]1/2i /(«+!)*„       „2 J I1/2

II "a, „II  *!

Thus

,2     ,4 v' r(y+i)*„(3.31)     k 2 \\pJ\\  ^ck4 2  J/      lk,J *<cA:4||«ArJl2(0i7.;£2(0il)).
7=0 y=o V*

Also

8"4k+l-«î]k+,-d4
1   (  f(n+l)A:
4 /""       ha,(x, s)<fc \\["      uhtx(x,s)ds\.

Jnk I  \-Jnk I

sup   |5"|<    A: ||"/,,||í,»(o,r;£.oo(o,i))ll"/,íxllz.«(o.r;L,»(o,i))>       0<n<y— 1.

Now

0«jt<l

Thus
n-\

(3.32) A  2 llô7ll   <c^4||"Aíll/^(o,r,/.''(o,u,!l"/,íxll/.-(o,r;í.-(o,i))-
/=o

Using (3.31) and (3.32) in (3.30), it follows from (3.21) and (3.22), that, for some
constant c = c(u, T),

(3.33) ||r||<c{/c2 + /t'},        0<n<J.
Moreover, u" - U" = u" - unh + u"h - U" gives

max ||un- U"\\^c{hr + k2)
o«««y

for some constant c independent of h and k.
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We shall next prove the existence of a sequence {Un}Jn=0 satisfying (2.6). For this,
we shall use the following variant of the well-known fixed point theorem of Brouwer
(cf. [11, pp. 164-166]).

Lemma 3.3. Let H be a finite-dimensional Hilbert space with inner product (■, -)H,
and norm II • IIH. Let the map g: H -» H be continuous. Suppose there exists a > 0 such
that (g(Z), Z)H > Ofor allZ with \\Z\\H = a. Then there exists Z* G H, ||Z*\\ H < a
such that g(Z*) = 0.        D

The argument of existence of {U")Jn=0 proceeds in an inductive way. Obviously
U° exists. Moreover assume {UJ}J=0 exists.

For Z G S¿, define g: S¿ ̂  S£ by

(3.34) (g(Z),x) = {Z-2Un,x)+\{ZZx,x)+\{Zxxx,x),   VX G S'h.

Such a map exists by the Riesz representation theorem; the fact that g is
continuous follows easily from (2.3a) and (2.3b). Furthermore, by periodicity, letting
x = z

(g(Z), Z) = (Z- 2U", Z) >\\Z\\{\\Z\\ - 2\\U"\\} >\\Z\\{\\Z\\ - 2||I/°||}
from (3.24). Letting a>2\\U°\\, we deduce the existence via Lemma 3.3 of a
Z* G S£ such that g(Z*) = 0. Letting Un+X = Z* - U", we get from (3.34) that

(U"+x - U", x) + k(U"+x'2Ux"+x/2 + L/¿+1/2, x) = 0,   VX G S¿,

proving the existence of Un+X.
For uniqueness, suppose that V"+x G S¡, satisfies

(3.35) (dv + y+v2Vn+v2 + v;x+y2, x) = 0,   VX G Srh.

Letting E' = U' - V, i = n, n + 1, from (2.6) and (3.35) we have for x G Sjf,

(3.36) (3£- + E^2, x)
_ l£n+\/2Rn + \/2 _  Tjn+l/2ßn+\/2 _  jjn + \/Zßn+ l/2j     \

Letting x = £:n+1/2 in (3.36),

||£"+1||2-||£l2= -k(Ux"+x/2,[En+x/2]2)

«=- 1.11/7"+1/211 ll/rn+l/2||2^^H^x ||/.«(0,1)II¿ II
A/I<2<«« hx        \\L"(0.l)

i   ||,.n+l/2_   jjn+\/2\\ \ [ II pn + 1II2    i   II p n\\2 \+ \\Uhx Ux |U«(0,1)]\II¿ II     +ll¿    Il   ]

< c{k + khr~3'2 + k3h~3/2]{\\E"+x\\   +\[E"\\ }

from (3.22), (3.33), and (2.3b).
Hence, for k, kh~x/2 sufficiently small, we get

(3.37) ||£"+i||^a||£"||,
where

(3 38) Í 1 + <* + c*3A-^" '
(3-38) X -     1 - ck - ck3h^2
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Now taking V" = U", we see that E"+x = 0, hence uniqueness follows. Obviously
the condition "kh~x/2 sufficiently small" may be replaced in the above proof by the
requirements that k be sufficiently small and kh~3/4 remain bounded as k, h -» 0.
□

Before proceeding with the proof of Theorem 2.3, we motivate the construction of
(2.10). For this, let G: S¿ - Srh be defined by

(<?(♦), x) = (<#> - ü¿, x) - f (<í>2 + 2<í4; +[¿>:]2, x,)

Such a map exists by the Riesz representation theorem and is continuous. For
z G Srh, the Gâteaux derivative of G in the direction <f> evaluated at z is given by

(%,(*), x) = (*, x) - \(**, Xx) - j(♦*$;, xj + f (*,„, x),  vx G srh.
Thus, given i/0',+', we define the sequence of Newton itérants {Û"+X)j^ by

[%[0rx(ü¡\+xx - ü;+x),x) = - (g(c/"+i),x),   VxGS;,0<;<y;,+l - 1,

which is equivalent to (2.10).
Proof of Theorem 2.3. We begin by making the following assumption: Let C*,,

C* 2 be nonnegative constants independent of A and &,
Induction Hypothesis \(onn).
(a) Üj' exists uniquely, 0 < ; < n,
(b) lit/'' - ÜJW < C,*{A:2 + /zr}, 0 <i < «,
(c) C* = C*'+ (1 + Ck)C*_x + CkC*^2, 0 « i « «,

where the constant C, to be suitably chosen later, is independent of n, h, k and the
integersy,, 0 < i < n. Note that, since we have taken c/° = U° = Pu°, (a)-(c) hold
for n = 0. Moreover, if (c) holds for 0 < i < n, then it is easily shown that the
constants (C*}"=0 are uniformly bounded by a constant C* independent of n, h, k
and the integers j¡.

We next show that f?"+1 defined by (2.7) exists uniquely. Its existence follows
from Lemma 3.3 (just replace U" by Ü" in (3.34)). To show that Ü"+x is unique,
note first that by letting V = Ü¿, Vn+X"= Ün+X in (3.35), we get from (3.37)

(3.39) \\U"+X - Ü"+X\\<\\\un - Ü/J,
provided kh~]/2 is sufficiently small. Now suppose there exists Vn+X G Srh satisfying

(3.40) (^+,-^,x)-f([^+1 + ^;]2>X,)

+ j([v"+x + ûj±xx,x) = o, vxgs;.

Letting f"+1 = Ün+X - V"+x, from (2.7) and (3.40) we get

(3.41) (r+1 + fi;;;,x) =f([¿"+1 + ùr\2,Xx) -|([^"+1 + üjj\\Xx)

--A[Ùn+X + Ù^x,xx)-~([În+X]2,Xx).
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Letting x = T'+ ' in (3.41), we get

Ilr+Iir=-|([(7"+1 + L>,l,[r+|]2).
Hence

<3-42) ll^'ll^-fll^' + ̂ llUol^O-
Now

tn+\]    II||[/7"+l  _|_  f/n] j£ll,y"+l  4- ,,"  II 4-llrr/"+l  —  TT"
\\lU ^ UjAX\\l°°(0.\)      »   hx Uhx\\l^(0,\) +||L^ U

+ \\\ [J"+l — ,j"+x]    | 4-liïr?" — II"]

+ I|[^"-«*"]Jl-(P.1).
It follows from (3.22), (3.33), (3.39), (2.3b), and part (b) of Hypothesis I that

(3.43)   k\\[Ü"+l + ÜjílJu.      <ck + ck3h~3/1 + ck(k2 + /2r)/r3/2(A + 1)C*.

Hence, e.g. for k and kh~1/2 sufficiently small, the coefficient of llf"+1 II2 in (3.42)
is positive, thus f"+1 = 0, proving uniqueness of Ü"+x.

Our next task is to show that the initial itérants í/0"+ ' given by (2.9) and (2.9') are
well defined and are good approximations to Un+X. We first deal with the case
n = 0. Note that by (2.7) and (2.8), Üx = Ux. Now <70' is given as the solution of a
linear system of equations, with associated bilinear form

«(*, x) = (* + kU\ + k4>xxx, x),      fxe S[.
Hence with <f> = x

â5(*,*)=W2-|(i/x°,^)>|H|2 1   _ —\\I¡0\\1      2 »   x II^ío.')

and by (2.4), (2.3b) Ü¿ exists uniquely (for k sufficiently small). Also, it is easy to
show (with methods of estimation similar to those used in the proof of Theorem 2.2)
that there exists a constant cx, independent of h and k, such that

(3-44) \\Ü¿ - ÜX\ = \Ü¿ - Ux\\<dx{k2 + hr}.
Also, for n > 1, we have

Tjn+l  _   T~jn+\  _   rjn+\  _ J2^ _   ¿£-l]

= [Ün+X - U"+x] +[[/"+1 -u"h+x] +[u"h + x -2u"h + u"h-1]

+2[u"h- U"] -[u"h~x - U"~x] +2[U" - Ü¿\ -[[/"-' - Ü¿~1].

Now since II unh + x - 2u"h + unh~x\\ < ck2 by (3.21), it foUows from (3.33), (3.39) and
part (b) of Hypothesis I that

(3.45) \\Ü"+X - ¿o"+1||< {c + (X + 2)Q + C^x}(k2 + hr).

We let
(3.46) c.+I = c + (X + 2)C? + qr_„       n>l.
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Note that, for kh~x/2 sufficiently small, cn+x is bounded above by a constant
independent of h, k, j¡, and n. Also note that the constant c in (3.46) does not
depend on C of Hypothesis I, part (c).

We next show that there exists a unique sequence {ty^'J/kV satisfying (2.10). For
this, we give the following "internal" inductive proof.

Induction Hypothesis II (onj).
(a) Ü£+x exists uniquely for 0 < m <j <jn+x — 1,
(b) ||c>+1 - u>+1H < cn+x(k + hr/2)2m+x for 0 < m <j <f„+x - 1.
It follows from (3.44) and (3.45) that Hypothesis II holds for y = 0. We now show

that it also holds for j + 1. Üjn+X ' is given as the solution of a linear system of
equations. The associated bilinear form is

»(♦, x) = (* + \ 4>xxx, x) - f ([¿T" + Ej:]*; x,),     fxe Si
Now

2  .   k(3.47) *{*.*) =M+j([Üj'+l+ %],*?)

^fpr' + ̂liu,,)]
From (3.43) and part (b) of Hypothesis II, we have

(3.48) Hlfên+1 + ̂ LIU,,,
<*||[c7/+l - ü"+x]x\\L^l) + k\\[ü"+x + #]J£<W)

< ckh~3/2cn+x(k + hr/2f+X +ck + ck3h~3^2

+ c(k3 + khr)h-3/2(\ + l)C*.

Now since y 3* 0, it follows from (3.48) and (3.46) that, for k, kh~x/2 sufficiently
small, the coefficient of II <¡> II2 in (3.47) is positive; hence Ü}"+x ' exists uniquely.

Subtracting (2.7) from the left-hand side of (2.10), we get

(3.49) ([i//+V - Ü"+x] + § [Üjtf - i/"+,]_,x)

-í(fó"+,'+^:]K:v-^"+,].x,)
|([^-+I-£?-+,]2,Xx),   VXGS¿.

Letting x = C/+V - l7"+1 in (3.49), we get
n2 . ku/W - ù"+x\\ +|([c//+1 + ü¿]x,[üj"+V - ù"+x]2)

= -l([ürx-ü"-x]2,[ü;+V-ü^}x).
Hence

í3 50Ï \\Ú"+] - Ün+]\\ll - —\\\Ü"+X + Ü"~\ \

^ cfc/r3/21|£//,+ 1 - Ün+X(.
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It follows from (3.48), (3.50) and part (b) of Hypothesis II that for k, kh~x/1
sufficiently small

(3.51) ||c/+V - Ü"+x\\<ckh-3/2\\Üj"+x - Ü"+Xf

<(c^-3/2f+'",||L70',+ 1- Ü"+Xf+'

^[ccn+xkh-^2(k + h^)]2i+l-lcn+x(k + h^f+,+l.

Now, for k, kh~3/4 sufficiently small, ccn+x(k2h~3/2 + kh(r~3)/2) =£ 1. Hence

(3.52) \\Ü¿V-U»+x\\^cn+x(k + h^2)2J+> + x,
completing the induction argument II.

It remains to complete the induction argument I. We distinguish two cases. First
assume that hr/1 < k. Then from (3.39), (3.45), (3.52) we obtain, since jn+x > 1,

(3.53) \\un+x - Ün+x\<\Un+x - Ün+x\\ + \\Ün+x - Ün+X\\
V ' Il Jn+\     Il " " II 7/1+1     II

<\c:(k2 + h') + cn+x(k + h'/2)2J^+x

< {(X + 4kX + %k)C* + 4ck + 4kC*_x)(k2 + hr),
where the c occurring in the right-hand side of the above is independent of C of part
(c) of the Induction Hypothesis I. Now, it can be arranged a priori, in view of (3.38),
that k and kh~3/4 be taken sufficiently small so that for some c independent of C we
have
(3.54) X<1 +ck.
Hence (3.53) becomes

(3.55) \\U"+X - Üj"n + X\\^[ck + (1 + ck)C* + 4kC*_x](k2 + hr),

which, with the choice C = max(c,4) defines C„*+1 satisfying part (c) of the Induc-
tion Hypothesis I and completes the inductive step.

If now it is the case that k < hr/1, we obtain, by (3.51) for 0 <j <fn+x, that

(3.56) ||i//+l - «J"+,||< cn+xk2'~x(k + /r/2)2'+1[2cc„+,*<r~3)/2r~'.

Since r > 4, 2cc„+l/i<r~3>/2 can be made less than or equal to 1 by choosing
eventually h sufficiently small. So we either revert to the previous case hr/2 < k or
we obtain, for 0 «sj' <fn+x, that

(3.57) ¡ll,"*1 - Ü"+x\\< cn+xk2J-x(k + hr'2)2J+].

Hence, by similar estimates to those used in the derivation of (3.53) we see, since
yn+l 2*1, that

(3.58) ¡Un+X - Ür^\\^XC:(k2 + hr) + k2J'l+'-xcn+x(k + A'/2)2y"+,+I

^(XCn* + 2kcn+i)(k2 + hr)

<[(X + 2A:A + 4k)C* + 2ck + 2kC*_x](k2 + hr).
Since (3.54) may have been arranged a priori to hold by taking k and kh~3/4
sufficiently small, we are led again to a choice of C and the completion of the
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inductive step. (Note that a hypothesis of the form k > hr/2,for all k, h sufficiently
small, is not restrictive and certainly gives a nonempty interval of time steps k that
also satisfy k < ah3/4 for any a > 0. Hence.if the "boundedness below" assumption
kh~r/2 s* 1 is also imposed in the statement of the theorem,the inductive step is
completed just by (3.53)-(3.55).)       D
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