
Convergence of Gradient Descent on Separable Data

Mor Shpigel Nacson1 Jason D. Lee2 Suriya Gunasekar3 Pedro H. P. Savarese3 Nathan Srebro3 Daniel Soudry1

1Technion, Israel, 2USC Los Angeles, USA, 3TTI Chicago, USA

Abstract

We provide a detailed study on the implicit bias

of gradient descent when optimizing loss func-

tions with strictly monotone tails, such as the lo-

gistic loss, over separable datasets. We look at

two basic questions: (a) what are the conditions

on the tail of the loss function under which gra-

dient descent converges in the direction of the

L2 maximum-margin separator? (b) how does

the rate of margin convergence depend on the

tail of the loss function and the choice of the

step size? We show that for a large family of

super-polynomial tailed losses, gradient descent

iterates on linear networks of any depth converge

in the direction of L2 maximum-margin solution,

while this does not hold for losses with heavier

tails. Within this family, for simple linear mod-

els we show that the optimal rates with fixed step

size is indeed obtained for the commonly used

exponentially tailed losses such as logistic loss.

However, with a fixed step size the optimal con-

vergence rate is extremely slow as 1/ log(t), as

also proved in Soudry et al. (2018a). For linear

models with exponential loss, we further prove

that the convergence rate could be improved to

log(t)/
√
t by using aggressive step sizes that

compensates for the rapidly vanishing gradients.

Numerical results suggest this method might be

useful for deep networks.

1 INTRODUCTION

In learning over-parameterized models, where the training

objective has multiple global optima, each optimization al-

gorithm can have a distinct implicit bias. Hence, different

algorithms learn different models with different general-

ization to the population loss. This effect of the implicit

Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

bias of the optimization algorithm on the learned model is

particularly prominent in deep learning, where the gener-

alization or the inductive bias is not sufficiently driven by

explicit regularization or restrictions on the model capacity

(Neyshabur et al., 2015; Zhang et al., 2017; Hoffer et al.,

2017). Thus, in order to understand what is the true in-

ductive bias in such high capacity models, it is important to

rigorously understand how optimization affects the implicit

bias.

Consider learning a homogeneous linear predictor x →
w

⊤
x using unregularized logistic regression over separa-

ble data. For this problem, Soudry et al. (2018a) showed

that the gradient descent iterates converge in direction to

the maximum-margin separator with unit L2 norm, and

this implicit bias holds independently of initialization and

step size (given the step size is small enough). This is ex-

actly the solution of the homogeneous hard margin support

vector machine (SVM) where the L2 norm constraint on

the parameters w is explicitly added. More surprisingly,

Soudry et al. (2018a) also showed that the rate of conver-

gence to the maximum-margin solution is O(1/ log (t)).
This is much slower compared to the rate of convergence of

the loss function itself, which is shown to be O(1/t). This

implies that the classification boundary of logistic regres-

sion, and hence the generalization of the classifier, contin-

ues to change long after the 0-1 error on training examples

has diminished to zero, or the logistic loss is very small.

In a follow up work, Gunasekar et al. (2018a) showed that

for exponential loss, gradient descent on fully connected

deep linear networks also has the same bias asymptotically.

However, the convergence rates were not analyzed in this

work on deep linear networks.

Despite this recent line of interesting results, the implicit

bias of gradient descent is not entirely understood even in

simple linear classification tasks. For example, the analy-

sis of Soudry et al. (2018a) and Gunasekar et al. (2018a)

crucially relied on strict monotonicity of the loss function

to get an initialization–independent characterization of the

bias of gradient descent. However, in these work the results

are derived specifically for tight exponential tailed losses

and exponential loss, respectively. While exponential tailed

losses such as logistic and cross entropy losses are indeed

the most widely used losses in training deep neural net-

Convergence of Gradient Descent on Separable Data

works, we do not yet know: Do such losses with tight ex-

ponential tail have a special significance? Can a similar

convergence to maximum-margin separator be achieved by

other strictly monotonic losses? How is the rate of con-

vergence to maximum-margin solution affected by the tail?

Are there other ways to accelerate the convergence?

Here we provide a detailed study of this problem, focusing

on the rate of convergence of the margin:

1. What are the conditions on the tail of the loss func-

tion under which gradient descent converges to the

L2 maximum-margin separator? We show that con-

vergence to the L2 maximum-margin solution can be

extended to losses with super polynomial tails, but not

to losses with (sub) polynomial tails.

2. Does a heavier or lighter tail gives a faster rate of

convergence? In our analysis, losses with exponential

tails, which include the commonly used logistic loss,

can indeed be shown to have the optimal rate of con-

vergence of the margin.

3. Extensions to deep linear networks. We show that

similar analysis and the same asymptotic rates hold

more generally for linear networks with fully con-

nected layers. Interestingly, the results suggest that

increasing the number of layers (depth) decreases the

convergence rate only marginally, even in the limit of

infinite depth.

4. For exponential loss, which obtains the optimal mar-

gin convergence rate, can we accelerate the conver-

gence to the maximum-margin by using variable step

sizes? The answer is yes, and we show that using nor-

malized gradient updates, i.e., step size proportional to

the inverse gradient, we can get a much faster rate of

O(log t/
√
t) instead of 1/ log t. Experimental results

suggests this improvement in rate over standard gra-

dient descent might also extend for non-linear neural

networks.

2 SETUP AND REVIEW OF PREVIOUS

RESULTS

Consider a dataset {xn, yn}Nn=1, with features xn ∈ R
d

and binary labels yn ∈ {−1, 1}. All the results in the paper

are stated for data {xn, yn}Nn=1 which is strictly linearly

separable, i.e., there exists a separator w∗ such that ∀n :
ynw

⊤
∗ xn > 0.

We study learning homogenous linear predictors by mini-

mizing unregularized empirical losses of the form

L (w) =

N
∑

n=1

ℓ
(

ynw
⊤
xn

)

, (1)

where w ∈ R
d is the weight vector or the linear predic-

tor. To simplify notation, we assume that ∀n : yn = 1
— this is without loss of generality, since we can always

re-define ynxn as xn. We denote the data matrix by

X = [x1, . . . ,xN] ∈ R
d×N and ‖·‖ denotes the L2 norm.

The gradient descent (GD) updates for minimizing L(w)
in eq. (1) with step size sequence {ηt}∞t=0 is given by

w(t+ 1) = w(t)− ηt∇L(w(t))

= w(t)− ηt

N
∑

n=1

ℓ′(w(t)⊤xn)xn. (2)

We look at the iterates of GD on linearly separable datasets

with monotonic loss functions.

Definition 1. [Strict Monotone Loss] ℓ(u) is a differen-

tiable strictly monotonically decreasing function bounded

from below, i.e. ∀u, ℓ (u)′ < 0 and, without loss

of generality, ∀u, ℓ (u) > 0 and limu→∞ ℓ (u) =
limu→∞ ℓ′ (u) = 0. Also, lim supu→−∞ ℓ′ (u) 6= 0.

Examples of strict monotone losses include common clas-

sification losses such as logistic loss, exponential loss, and

probit loss. A key property of interest with such losses is

that the empirical risk in eq. (1) over separable data does

not have any finite global minimizers. Thus, whenever the

gradient descent updates in eq. (2) minimize the empirical

loss L(w), the iterates w(t) will necessarily diverge to in-

finity. Nevertheless, in this case, even though the norm of

the iterates ‖w(t)‖ diverge, the classification boundary is

entirely specified by the direction of w(t)/ ‖w(t)‖. Can

we say something interesting about which direction the it-

erates w(t) converge to?

For monotone losses with −ℓ′(u) satisfying the specific

tight exponential tail property (defined below), Soudry

et al. (2018a) characterized this direction to be the

maximum-margin separator,

Definition 2. [Tight Exponential Tail] A scalar function

h(u) has a tight exponential tail, if there exist positive con-

stants µ+, µ−, and ū such that ∀u > ū:

(1− exp(−µ−u))e
−u ≤ h(u) ≤ (1 + exp(−µ+u))e

−u.

Theorem 1 (Theorem 3 in Soudry et al. (2018a),

rephrased). For almost all linearly separable datasets

{xn, yn}Nn=1, and any β-smooth L with a strictly mono-

tone loss function ℓ (Definition 1), for which −ℓ′ has a tight

exponential tail (Definition 2), the gradient descent iterates

w(t) in eq. (2) with any fixed step size satisfying1 η < 2β−1

and any initialization w(0), will behave as:

w (t) = ŵ log t+ ρ (t) , (3)

1Note that for exponential loss ℓ(u) = exp(−u), L(w)
does not have a global smoothness parameter β. However, with
η < 1/L(w(0)) it is straightforward to show the gradient descent
iterates maintain bounded local smoothness β(t) ≤ L(w(t)) ≤

L(w(0)), so we will have η < β(t)−1 for all iterates, which suf-
fices for the result to extend to exponential loss.

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro H. P. Savarese, Nathan Srebro, Daniel Soudry

where the residual ρ (t) is bounded and ŵ is the following

L2 max margin separator:

ŵ = argmin
w∈Rd

‖w‖2 s.t. ynw
⊤
xn ≥ 1. (4)

In Theorem 1 and in the remainder of the paper, almost all

datasets refers to all datasets except a measure zero set of

{xn}n, e.g., with probability 1, any dataset sampled from

an absolutely continuous distribution.

Interestingly, and somewhat surprisingly, Theorem 1 im-

plies logarithmically slow convergence in direction to the

L2 max-margin separator. This slow convergence rate also

applies to the margin. This, in contrast, is much slower

compared to the rate of convergence of the loss L(w(t))
itself, which can be shown to decay as O(1/t) (see Lemma

1 in Soudry et al. (2018b)).

Multilayer linear networks. In a recent follow up work,

Gunasekar et al. (2018a) extend such results to fully con-

nected deep linear networks, where the objective is non-

convex. A multi-layer linear network consists of nodes ar-

ranged in L layers. We use the convention that for an L
layer network, the inputs features x form the source nodes

in the zeroth layer l = 0 and the output is sink node in

the final layer l = L. Let dl for l = 0, 1, . . . , L denote

the number of nodes in layer l. The network is parame-

terized by weight matrices W = {Wl ∈ R
dl−1×dl : l =

1, 2, . . . , L}. Every such network represents a linear map-

ping given as follows:

w = P(W) := W1 ·W2 · ... ·WL ∈ R
d.

Unlike logistic regression, where the parameters of the lin-

ear model w ∈ R
d are learned directly by minimizing

the training loss, in training linear networks, the objective

is instead minimized over the parameters of the network

W = {Wl ∈ R
dl−1×dl : l = 1, 2, . . . , L}. The empirical

loss is given by:

LP (W) = L (P (W)) =

N
∑

n=1

ℓ (yn 〈P (W) ,xn〉) . (5)

Gradient descent iterates W (t) = {Wl(t)}Ll=1 for the

above objective are given by:

∀l,Wl (t+ 1) = Wl (t)− ηt∇Wl
LP (W(t)) , (6)

and the corresponding sequence of linear predictors along

the gradient descent path is given by,

w(t) = P(W(t)) = W1(t) · ... ·WL(t) ∈ R
d. (7)

For the special case of exponential loss, Gunasekar et al.

(2018a) showed that the linear separator w(t) in eq. (6)

learned by gradient descent on fully connected network

(under additional conditions on convergence of the net pa-

rameters and gradients, and convergence of the loss) again

converges in the direction of the L2 maximum-margin sep-

arator (Theorem 1 in Gunasekar et al. (2018a)). This re-

sult, however, only applies to exponential loss and does not

specify how quickly the margin of w(t) converges to the

maximum-margin (in case of convergence).

3 MAIN RESULTS

In this section, we provide a detailed analysis of the im-

plicit bias in linear models focusing on convergence and

rate of convergence of margin under general tails and with

variable step sizes. We use the following standard nota-

tion on asymptotic behaviour: (a) f(u) = ω(g(u)) ⇔
lim
u→∞

∣

∣

∣

f(u)
g(u)

∣

∣

∣
= ∞, (b) f(u) = o(g(u)) ⇔ lim

u→∞
f(u)
g(u) =

0, (c) f(u) = O(g(u)) ⇔ lim sup
u→∞

|f(u)|
g(u) < ∞,

(d) f(u) = Ω(g(u)) ⇔ lim inf
u→∞

f(u)
g(u) > 0, and (e) f(u) =

Θ(g(u)) ⇔ Ω (g(u)) = f(u) = O (g(u)).

Previous results, summarized in Section 2, show that

when minimizing exponentially tailed losses on separable

datasets, gradient descent converges to the L2 max-margin

separator with a very slow rate of 1/ log(t). While com-

monly used classification losses such as logistic loss, cross

entropy loss, and exponential loss indeed have tight ex-

ponential tail, the significance of the exponential tail is

not fully understood. What are the general conditions

on the tail under which gradient descent converges to the

maximum-margin solution? Can the rate of convergence

be accelerated by choosing a heavier or lighter tail?

3.1 Linear networks with general tails

We first show that for a large family of strictly mono-

tone losses with super–polynomial tails specified (Assump-

tion 1 below), gradient descent iterates converge to the

maximum-margin solution. We will later also analyze the

rate of convergence for this family of loss functions.

Assumption 1. ℓ(u) is analytic and satisfies the following:

1. Strict monotonicity: ℓ satisfies Definition 1. Since,

∀u, ℓ′ (u) < 0, let ℓ′(u) = − exp(−f(u)).
2. Super-polynomial tail: ℓ(u) has a “super-polynomial

tail” if ∀M > 0, ∃u0 such that ∀u ≥ u0, −ℓ′(u) ≤
u−M . This is equivalent to f(u) = ω(log(u)).

3. Asymptotically convex: ∃u0 such that ∀u > u0,

ℓ′′(u) > 0. For strictly monotone decreasing losses,

this is equivalent to ∀u > u0, f
′(u) = ℓ′′(u)

−ℓ′(u) > 0.

4. Non-oscillatory tail: limu→∞ uf ′(u) exists. For

losses with super-polynomial tails where f(u) =
ω(log(u)), this condition implies f ′(u) = ω

(

u−1
)

.

Remark 1. Assumption 1 captures a large family strictly

monotone losses with super-polynomial tails that are rele-

vant for binary classification tasks, and the last condition is

rather technical to avoid undesirable oscillatory behaviour

Convergence of Gradient Descent on Separable Data

like f(u) = u + sin(u). In particular, the assumption in-

cludes the following special cases:

• Logistic loss ℓ(u) = log (1 + e−u), for which f(u) =
log(1 + eu) = ω(log(u)) and f ′(u) = eu

1+eu = ω
(

u−1
)

.

• Other losses with tight exponential tail (Definition 2),

like the exponential loss ℓ(u) = exp(−u).

• “Poly-exponential” tailed losses given by ℓ′(u) =
− exp(−uν) for degree ν > 0, e.g., the probit loss.

• Sub-exponential super-polynomial tails like ℓ′(u) =
−u− logµ(u) for µ > 0.

For depth–L linear networks, we first show that the im-

plicit bias of gradient descent for exponential loss from

Gunasekar et al. (2018a) can be extended more broadly to

super-polynomial tailed losses specified in Assumption 1.

Theorem 2. For any depth L, almost all linearly separa-

ble datasets, almost all initialization and any bounded se-

quence of step sizes {ηt}, consider the sequence W(t) =
{Wl(t)}Ll=1 of gradient descent updates in eq. (6) for

minimizing the empirical loss LP(W) (eq. (5)) with a

strictly monotone loss function ℓ satisfying Assumption 1,

i.e.: ℓ′(u) = − exp(−f(u)) < 0, where asymptotically

f ′(u) > 0 and f ′(u) = ω
(

u−1
)

.

If (a) W(t) minimizes the empirical loss, i.e. LP (W(t)) →
0, (b) W(t), and consequently w(t) = P (w(t)), con-

verge in direction to yield a separator with positive margin,

and (c) the gradients with respect to the linear predictors

∇wL (w(t)) converge in direction, then the limit direction

is given by,

w̄∞ = lim
t→∞

w(t)

‖w(t)‖ =
ŵ

‖ŵ‖ ,

where

ŵ = argmin
w∈Rd

‖w‖2 s.t. w⊤
xn ≥ 1. (8)

This theorem is proved in Appendix D, while the basic

ideas are sketched in Appendix C for L = 1.

Remark 2. Theorem 2 covers a large family of super-

polynomial tails specified under Assumption 1. Conversely,

for (sub) polynomial tails, we may not converge to the

maximum-margin separator. In Appendix H, we show that

we do not converge to the max margin if ℓ(u) has polyno-

mial tail. Additionally, with the hinge loss (which it is nei-

ther differentiable or strictly monotonic) we generally do

not converge to the maximum-margin without regulariza-

tion, as then GD typically converges to a finite minimizer

that depends on the initialization.

Remark 3. Rosset et al. (2004) also investigated the con-

nection between the loss function choice and the maximum-

margin solution. In this work, Rosset et al. (2004) consid-

ered linear models with monotone loss functions and ex-

plicit norm regularization. We discuss the connections be-

tween Rosset et al. (2004) results and ours in appendix A.

Remark 4. Gunasekar et al. (2018a) characterized the im-

plicit bias of gradient descent for fully connected linear

networks for the special case of exponential loss ℓ(u) =
exp(−u). Theorem 2 generalizes this characterization to

a larger family of losses, which in particular includes the

commonly used logistic loss. Logistic loss, despite having

the same exponential tail as the exponential loss, was not

explicitly analyzed in Gunasekar et al. (2018a).

We now continue to characterizing the convergence rates.

3.2 Rates of convergence

To calculate the convergence rates we will make an addi-

tional assumption.

Assumption 2. f(u) is real analytic on R++ and satisfies

∀k ∈ N :

∣

∣

∣

∣

f (k+1)(u)

f ′(u)

∣

∣

∣

∣

= O
(

u−k
)

.

While the above assumption is not required to show asymp-

totic convergence of gradient descent to the maximum-

margin separator (Theorem 2), we do require the addi-

tional assumption to calculate the rates. This assump-

tion implies that the loss tail does not decay too fast. In

particular, Assumption 2 is not satisfied by super-poly-

exponential tails like ℓ′(u) = exp (− exp(uν)) for ν > 0
or ℓ′(u) = exp (− exp (logµ(u))) for µ > 1, and addition-

ally avoids oscillatory functions like sin(u).

Nevertheless, a large class of interesting monotone func-

tions satisfy this assumption, including cases where f(u)
is polynomial and poly-logarithmic functions. Within this

family, we look at the margin rate of convergence of the

gradient descent iterates, for L = 1 in two regimes:

1. f ′(u) = ω(1), which implies −ℓ′(u) = ω(exp(−u)).
This case includes loss functions with tails lighter than

the exponential tail, for example poly-exponential tail

ℓ(u) = exp(−uν) with s strictly greater than one ex-

ponent, ν > 1.

2. f ′(u) = ω(u−1) and f ′(u) = o(1): or −ℓ′(u) =
o(exp(−u)). This case includes loss functions with

tails heavier than the exponential tail, such as ℓ(u) =
exp(−uν) for ν < 1 or ℓ(u) = exp(− logµ(u)) for

µ > 0.

We first look at the rates for the special case of L = 1
where the parameters w of the linear models are directly

learned using gradient descent. This is the setting analyzed

in Soudry et al. (2018a) with tight exponential tailed losses.

The following theorem is proved in Appendix F.

Theorem 3. For almost all linearly separable datasets,

almost all initialization, any bounded sequence of step

sizes {ηt} < 2β−1, and a single layer L = 1, con-

sider the sequence of gradient descent updates in eq. (2)

for minimizing the empirical loss L(w) (eq. (1)) with

a strictly monotone β-smooth loss function ℓ satisfying

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro H. P. Savarese, Nathan Srebro, Daniel Soudry

ℓ′(u) = − exp(−f(u)) < 0, where asymptotically

f ′(u) = Ω
(

1
u log1+ǫ(u)

)

for some ǫ > 0 and satisfies

Assumption 2.

If (a) w(t) converges in direction to yield a separator with

positive margin, and (b) the gradients with respect to the

linear predictors ∇wL (w(t)) converge in direction, then

the margin convergence of w(t) to the max margin γ =

maxw minn
w

⊤
xn

‖w‖ satisfies:

1. If f ′(u) = ω(1) (which implies f(t) = ω(t)), then

γ −min
n

x
⊤
nw(t)

‖w(t)‖ = O

(

1

f−1 (log(t))

)

.

2. If f ′(u) = o(1) and f is strictly concave, then

γ −min
n

x
⊤
nw(t)

‖w(t)‖ = Ω

(

1

log(t)

)

and the optimal rate is obtained for exponential loss.

From the proof of Theorem 3, we can also calculate

the rates of convergence for the normalized direction

w(t)/ ‖w(t)‖ to the maximum-margin separator ŵ/ ‖ŵ‖,

as well as the convergence of the angle between them.

Corollary 1. We examine super-polynomial tailed losses

satisfying the assumptions of the previous Theorem, when

the loss tail does not decay too fast, i.e.

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣
= O(u−1).

The optimal rate of convergence to the max margin of GD

with fixed step size is 1/ log(t). This optimal rate is at-

tained by exponentially tailed losses, where f(u) = Θ(u)
(or f ′(u) = Θ(1)). This includes the popular losses of

logistic loss and exponential loss.

Proof. For the case of f ′(u) = ω(1), f(t) = ω(t) ⇒
f−1(t) = o(t) and thus, the rate for this case

O
(

1
f−1(log(t))

)

is sub-optimal compared with the rate for

exponential loss which is 1/ log(t) (from Theorem 1). In

appendix sections H.3, H.4 we give a positive example that

demonstrates that this upper bound is tight, i.e., it is ob-

tained for some datasets, and a negative example which

shows a case in which the upper bound is not obtained.

In general as long as the loss tail does not decay too fast,

i.e.

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣
= O(u−1), the rate in this case is Ω

(

1
log(t)

)

(see appendix E.5). Secondly, for the case of f ′(u) = o(1)
the asymptotic rate is Ω(1/ log(t)), so the optimal rate we

can hope for with any tail is O(1/ log(t)). In appendix F

we show that the exponential tail obtains this optimal rate.

Additionally, in Appendix J, we show that for the special

case of poly-exponential losses ℓ′(u) = − exp(−uν) with

0.25 < ν ≤ 1, the rate is indeed O(1/ log(t)) and the con-

stants in the rates for ν < 1 are strictly worse than that of

exponential tail with ν = 1.

Remark 5. Note that for L = 1 the optimization objective

(eq. (5)) is convex in the optimization variables and hence,

by Lemma 1 in Soudry et al. (2018a), the assumption in

Theorem 2 that LP (W(t)) → 0 is satisfied for appropriate

choices of step size. Moreover for the special case of poly-

exponential tails with ℓ′(u) = − exp(−uν) for ν > 0.25,

the convergence to the maximum-margin separator and the

convergence rates can be obtained without the assumptions

that w(t) and ∇wL (w(t)) converge in direction (see Ap-

pendix J).

Now we state the results for the general case of L–layer

linear network.

Theorem 4. Under assumption 2 and the conditions and

notations of Theorem 2, if the SVM support vectors span

the data then for any depth L the network equivalent linear

predictor w(t) satisfies:

γ −min
n

x
⊤
nw(t)

‖w(t)‖ =

O
(

1
g(t)

)

, f ′(u) = ω(1)

Θ
(

1
g(t)f ′(g(t))

)

, otherwise

where g(t) is the asymptotic solution of

dg(t)

dt
= −ℓ′ (g (t)) (g(t))2(1−L−1) . (9)

Remark 6. Importantly, from Assumption 1, −ℓ′(u)
has super-polynomial tail, which suggests the factor

(g(t))
2(1−L−1) only negligibly affects the asymptotic so-

lution of eq. (9). This implies that ∀L > 1, and even

in the limit L → ∞, the rate predicted by this Theorem

4 will only be slightly smaller than the L = 1 case of

Theorem 3. This difference will become negligible in the

limit t → ∞. For example, for the case of exponential

loss, we prove in appendix E.4 that the ODE solution is

g(t) = log(t) + o (log(t)). Thus, in this case, the margin

converges as O(1/ log(t)) for any depth.

3.3 Faster rates using variable step sizes

Our analysis so far suggests that exponential tails have an

optimal convergence rate, and for exponential tail losses

with a bounded step size, we have an extremely slow rate

of convergence, O(1/ log t). Therefore, the question is can

we somehow accelerate this rate using variable unbounded

step sizes. Fortunately, at least for linear models trained

with exponential loss, the answer is yes and we can indeed

show faster rate of convergence by aggressively increas-

ing the step size to compensate for the vanishing gradient.

Specially, we examine the following normalized GD algo-

rithm:

wt+1 = wt − ηt
∇L(w(t))

‖∇L(w(t))‖ . (10)

Recall that γ = maxw:‖w‖≤1 minn w
⊤
xn is the

maximum-margin of the dataset with unit L2 norm separa-

tors, and without loss of generality assume ∀n : ‖xn‖ ≤ 1.

Convergence of Gradient Descent on Separable Data

By the triangle inequality, we have that ‖∇L(w(t))‖ =
∥

∥

∑

n exp(−w(t)⊤xn)xn

∥

∥ ≤ L(w(t)). We additionally

have the following inequality for all t,

‖∇L(w(t))‖ = max
w:‖w‖≤1

∑

n

exp(−w(t)⊤xn)w
⊤
xn

≥ γ
∑

n

exp(−w(t)⊤xn) = γL(w(t)) .

Thus, for all w, the two-sided bound

γL(w) ≤ ‖∇L(w)‖ ≤ L(w)

holds, and, up to a scaling of step–sizes, the normalized GD

in eq. (10) can be alternatively expressed as the following

wt+1 = wt − ηt
∇L(w(t))

L(w(t))
. (11)

We chose to state our results in terms of eq. (11) (normaliz-

ing GD by L(w(t))) so that the stepsize choice ηt does not

depend on the optimal margin γ which is unknown. The

following theorem proved in Appendix B.1 shows that us-

ing normalized GD can improve the rate of convergence

of the margin of the separator to log t/
√
t compared to

O(1/ log t) for fixed step sizes.

Theorem 5. For any separable data set and any ini-

tial point w(0), consider the normalized GD updates in

eq. (11) with a variable step size ηt =
1√
t+1

and exponen-

tial loss ℓ(u) = exp(−u).

Then the margin of the iterates w(t) converges to the max-

margin γ with rate t−1/2 log t:

w(t+ 1)Txn

‖w(t+ 1)‖ ≥ γ− 1 + log(t+ 1)

γ(4
√
t+ 2− 4)

− logL(w(0))

γ(2
√
t+ 2− 2)

.

In the appendix we prove a more general version of Theo-

rem 5, which obtains the same rate for any steepest descent

algorithm. Also, note that normalized GD as in eq. (10) was

analyzed before, but for other purposes. For example, Levy

(2016) showed a stochastic version of it can better escape

saddle points. Here we study the effect of normalization on

the implicit bias of the algorithm.

The observation that aggressive changes in the step size can

improve convergence rate is applied in the AdaBoost liter-

ature (Schapire and Freund, 2012), where exact line-search

is used. We use a slightly less aggressive strategy of decay-

ing step sizes with normalized gradient descent, attaining

a rate of log(t)/
√

(t). This rate almost matches 1/
√

(t),
which is the optimal rate in terms of margin suboptimality

for solving hard margin SVM. This rate is achieved by the

best known methods.2 This suggests that gradient descent

2The best known method in terms of margin suboptimality,
and using vector operations (operations on all training examples),

is the aggressive Perceptron, which achieves a rate of
√

N/t.
Clarkson et al. (2012) obtained an improved method which they
showed is optimal, that does not use vector operations. Clarkson

et al. (2012) method achieves a rate of
√

(N + d)/t, where now
t is the number of scalar operations.

with a more aggressive step size policy is quite efficient at

margin maximization.

We emphasize our goal here is not to develop a faster SVM

optimizer, but rather to understand and improve gradient

descent and local search in a way that might be applicable

also for deep neural networks, as indicated by the numeri-

cal results we present next.

4 EXPERIMENTS WITH NORMALIZED

GRADIENT DESCENT

In the following experiments, we implement the normal-

ized GD in eq. (10) with step sizes separately tuned for

each experiment.

4.1 Linear Networks on Synthetic Data

First, in Figure 1 we visualize the different rates for GD and

normalized GD when training a plain logistic regression

model on synthetic data. As expected from Theorem 5, we

find that normalized GD converges significantly faster than

unnormalized GD.

Additionally, we evaluate experimentally the convergence

rates of GD and normalized GD for multi-layer linear mod-

els. Networks with L ∈ {1, 2, 3} layers and 10 neurons

per hidden layer are trained with GD and normalized GD

on a synthetic binary classification dataset composed of

600 points, sampled from two normal distributions (one for

each class).

We use a fixed learning rate η = 5× 10−3 chosen through

grid-search, and train each network for 5× 104 total itera-

tions. Figure 2 shows the margin gaps during training, with

normalized GD providing faster convergence rates across

models. Appendix I.2 provides details on data generation

and training, along with results on ReLU networks.

4.2 Image Classification on MNIST

The MNIST dataset is composed of 70,000 grayscale im-

ages of 0-9 digits (10 classes total), each having 28 × 28
pixels. We use 10,000 images for testing and the rest for

training and validation. Unlike harder datasets such as

CIFAR-10 and CIFAR-100, MNIST provides a task where

simple models can successfully separate the training exam-

ples. Hence, we train a 2-layer feedforward network with

5,000 hidden neurons and ReLU activations (ReLU(x) =
max(0, x)) with full-batch GD and normalized GD using

the cross-entropy loss, for a total of 3,000 iterations. We

decay the learning rate by a factor of 5 at 50%, 75% and

87.25% of the total number of iterations.

We performed grid-search over initial learning rate values

{0.1, 0.3, 0.5, 1.0, 2.5, 5.0} using 5,000 images randomly

chosen from the training set as validation, and η = 1.0

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro H. P. Savarese, Nathan Srebro, Daniel Soudry

100 101 102 103 104 105

t

0

0.5

1

N
o

rm
al

iz
ed

 ||
w

(t
)|

|(B)

100 101 102 103 104 105

t

10-20

10-10

100

L
(w

(t
))

(C)

GD
GD Normalized

100 101 102 103 104 105

t

10-6
10-5
10-4
10-3
10-2
10-1

A
n

g
le

 g
ap

(D)

100 101 102 103 104 105

t

10-6
10-5
10-4
10-3
10-2

M
ar

g
in

 g
ap

(E)

-0.5 0 0.5

x
1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

(A)

Figure 1: Visualization of the convergence of GD in comparison to normalized GD in a synthetic logistic regression dataset

in which the L2 max margin vector ŵ is precisely known. (A) The dataset (positive and negatives samples (y = ±1) are

respectively denoted by ′+′ and ′◦′), max margin separating hyperplane (black line), and the solution of GD (dashed red)

and normalized GD (dashed blue) after 105 iterations. For both GD and Normalized GD, we show: (B) The norm of w (t),
normalized so it would equal to 1 at the last iteration, to facilitate comparison; (C) The training loss; and (D&E) the angle

and margin gap of w (t) from ŵ. As can be seen in panels (C-E), normalized GD converges to the max-margin separator

significantly faster, as expected from our results. More details are given in appendix I.1.

100 101 102 103 104

t

10−5

10−3

10−1

M
ar
g
in

g
a
p

GD

GD Normalized

100 101 102 103 104

t

10−5

10−3

10−1

M
ar
g
in

g
a
p

GD

GD Normalized

Figure 2: Margin convergence plots for 2 (top) and 3 (bot-

tom) layered linear networks on synthetic clustered data,

trained with GD and normalized GD — the latter provides

significantly faster convergence.

0 500 1000 1500 2000 2500 3000

t

10−14

10−11

10−8

10−5

10−2

101

T
ra
in
in
g
L
o
ss

0

2

4

6

8

10

T
es
t
E
rr
o
r

GD

GD Normalized

Figure 3: MNIST digit classification with a 2-layer feedfor-

ward neural network. Training loss (dashed lines) stagnates

with GD once gradients become small, while normalized

GD keeps making progress. Normalized GD also achieves

lower test error (solid lines).

0 1000 2000 3000 4000 5000 6000 7000

t

5

10

15

20

25

30

T
es
t
E
rr
o
r

GD

GD Normalized

Figure 4: Test performance of a Wide ResNet 28-4 on

CIFAR-10, with η = 2.0, where normalized GD outper-

forms GD by absolute 2.17%. We plot ’best yet’ test error:

the lowest error seen up to iteration t. Unlike curves re-

ported in Zagoruyko and Komodakis (2016), progress stops

early in training: there is no change in the ’best yet’ test er-

ror after t = 2350, even with the decays in learning rate.

This suggests that regularization and/or momentum might

be required to achieve better results.

yielded better results for both GD and normalized GD. We

use no regularization nor data augmentation, since our goal

is to observe the contrast between GD and normalized GD

as the training loss decreases and gradients become small.

Figure 3 shows the training loss and test error at each it-

eration t: while the training loss stagnates early for GD,

normalized GD keeps decreasing it. Normalized GD also

reaches lower test error: 1.4% compared to 1.91%.

4.3 Image Classification on CIFAR-10

The CIFAR-10 dataset (Krizhevsky, 2009) consists of

60,000 colored 32×32 images belonging to one of 10 pos-

sible classes, and is split into 50,000 training and 10,000

test points. The goal of this experiment is to evaluate

whether normalized GD can provide advantages for train-

Convergence of Gradient Descent on Separable Data

ing complex models on more realistic tasks, when using the

standard cross-entropy loss.

For that, we train a Wide ResNet 28-4 (Zagoruyko and Ko-

modakis, 2016), a 28-layer convolutional neural network

with residual connections and a total of 5.8M parameters.

This architecture is capable of reaching less than 4% test

error on CIFAR-10 given more features per convolutional

layer, making Wide ResNets a strong model baseline to

compare the benefits of normalized GD against GD. Fol-

lowing Zagoruyko and Komodakis (2016), we pre-process

the dataset by performing channel-wise normalization on

each image using statistics computed from the training set.

Horizontal flips and random crops are used during training

for data-augmentation. We also follow the same learning

rate schedule, decaying it by a factor of 5 at 30%, 60% and

80% of the total iterations.

To select a learning rate for each method, we train the net-

work for 3,000 iterations with η ∈ {1.0, 1.5, 2.0, 2.5, 3.0}.

Both methods performed better on a validation set of 5000

images with η = 2.0. Figure 4 shows the test performance

when training the model for 7,800 iterations with η = 2.0,

where normalized GD achieves 6.93% test error, while GD

yields 9.90%.

Note that, while normalized GD outperformed GD in this

full-batch setting, its performance is still subpar when

compared to the standard optimization for Wide ResNets,

which includes SGD with Nesterov momentum and weight

decay. To confirm whether momentum and weight decay

can have strong positive impacts in a model’s performance,

we also trained a Wide ResNet 28-4 using SGD, with and

without momentum/weight decay. We observed that re-

moving momentum and weight decay resulted in a test er-

ror increase from 4.45% to 7.75% (larger error than nor-

malized GD). This suggests an importance in reconciling

weight decay, momentum and gradient normalization.

5 DISCUSSION

In this work, we have examined the behavior of gradient

descent on separable data, in binary linear classification

tasks. First, in Theorem 2 we proved the linear classifier re-

sulting from a multilayer linear neural networks converges

in direction to the L2 max-margin on almost all linearly

separable data — for a wide family of monotone, convex

loss functions with super-exponential tails and some tech-

nical conditions (Assumption 1). In contrast, polynomially

tailed loss function do not lead to convergence to the max-

margin. Intuitvely, the reason behind this is that for super-

polynomial loss functions the datapoints with the largest

margin (i.e., the support vectors) become dominant in the

gradient, while for polynomial or heavier tails the contri-

bution of non-support vectors is never negligible.

Next, we examine the convergence rate for a linear clas-

sifier with loss within this wide family of loss functions.

We prove in Theorem 3 that the exponential tail has the

optimal rate. This offers a possible explanation to the em-

pirical preference of the exponentially-tailed loss functions

over other losses (e.g. the probit loss): that the exponential

loss leads to a faster convergence to the asymptotic (im-

plicitly biased) solution, as we showed here. This result is

somewhat surprising, and we do not have an intuitive ex-

planation why this should be true.

In Theorem 4, we extend these results to multilayer linear

neural networks, and show similar convergence rates, with

only a negligible decrease in the rate with the depth — even

when the number of layers is infinite. Note that in this The-

orem we already assume convergence of the loss to zero.

However, if we do converge, it is somewhat surprising that

this rate does not depend much on the depth, as one might

expect to have convergence rate issues due to exploding or

vanishing gradients.

In Theorem 5 we showed that the convergence of GD for an

exponential loss function could be significantly accelerated

by simply increasing the learning rate. In fact, GD can also

approximate the regularization path in the following sense.

Let R = ‖wt‖, and wR = argmin‖w‖≤R L(w). Then

L(w(t))− L(wR) ≤ L(w(0)) exp(−cγ2t) . (12)

As a simple implication of this, the normalized GD path

starting at w0 = 0 has L(w(0)) = n, so after t ≥
log(n/ǫ)/γ2 steps the loss achieved by wt is ǫ close to the

best predictor of the same norm. This shows that GD is

closely approximating the regularization path.

Finally, we show numerically that normalized GD can sig-

nificantly improve the convergence speed of GD on syn-

thetic datasets for linear predictors (Figure 1), linear multi-

layer networks (Figure 2), and even non-linear ReLU mul-

tilayer networks (Appendix I.2). Additionally, we show

normalized GD can improve the results of GD on standard

datasets such as MNIST (by 0.5%) and CIFAR-10 (by 3%).

However, a gap remains from achieving state of the art re-

sults. Our experiments indicate the origin of this gap is the

use of weight decay and momentum (which are outside the

scope of this paper). This suggests that reconciling regu-

larization, momentum and gradient normalization might be

of particular interest for future work, possibly reducing the

gap between mini-batch and full-batch training.

Recent work explore extensions of the implicit bias result

for linear models to non-strictly-separable datasets (Ji and

Telgarsky, 2018) and to stochastic gradient descent (Ji and

Telgarsky, 2018; Nacson et al., 2018; Xu et al., 2018). It

remains to be seen if the results of this work could be also

extended to such settings. Additionally, combining our re-

sults with the results of a parallel work, Ji and Telgarsky

(2019), might enable us to weaken some of the assumptions

in this paper. We discuss Ji and Telgarsky (2019) work in

appendix A.

Mor Shpigel Nacson, Jason D. Lee, Suriya Gunasekar, Pedro H. P. Savarese, Nathan Srebro, Daniel Soudry

Acknowledgements

The authors are grateful to C. Zeno, and N. Merlis for

helpful comments on the manuscript. This research was

supported by the Israel Science foundation (grant No.

31/1031), and by the Taub foundation. A Titan Xp used

for this research was donated by the NVIDIA Corporation.

PS, SG and NS were partially supported by NSF awards

IIS-1302662 and IIS-1764032.

References

Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff.

Sublinear optimization for machine learning. Journal of

the ACM (JACM), 59(5):23, 2012.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan

Srebro. Implicit bias of gradient descent on linear con-

volutional networks. arXiv preprint arXiv:1806.00468,

2018a.

Suriya Gunasekar, Jason D. Lee, Daniel Soudry, and

Nathan Srebro. Characterizing implicit bias in terms of

optimization geometry. arXiv preprint, 2018b.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer,

generalize better: closing the generalization gap in large

batch training of neural networks. In NIPS, 2017.

Ziwei Ji and Matus Telgarsky. Risk and parameter

convergence of logistic regression. arXiv preprint

arXiv:1803.07300, 2018.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the

layers of deep linear networks. In International Confer-

ence on Learning Representations, 2019.

Alex Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

Kfir Y. Levy. The Power of Normalization: Faster Evasion

of Saddle Points. arXiv, nov 2016.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry.

Stochastic gradient descent on separable data: Exact

convergence with a fixed learning rate. arXiv preprint

arXiv:1806.01796, 2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.

In search of the real inductive bias: On the role of im-

plicit regularization in deep learning. In International

Conference on Learning Representations, 2015.

Saharon Rosset, Ji Zhu, and Trevor J Hastie. Margin maxi-

mizing loss functions. In Advances in neural information

processing systems, pages 1237–1244, 2004.

Robert E. Schapire and Yoav Freund. Boosting: Founda-

tions and algorithms. MIT press, 2012.

Daniel Soudry, Elad Hoffer, , Mor Shpigel Nacson, and

Nathan Srebro. The implicit bias of gradient descent on

separable data. ICLR, 2018a.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya

Gunasekar, and Nathan Srebro. The implicit bias of gra-

dient descent on separable data (journal version). arXiv

preprint: 1710.10345v3, 2018b.

Matus Telgarsky. Margins, shrinkage and boosting. In Pro-

ceedings of the 30th International Conference on Inter-

national Conference on Machine Learning-Volume 28,

pages II–307. JMLR. org, 2013.

Willie Wong. Asymptotic solution for a first

order ode. MathOverflow, 2018. URL

https://mathoverflow.net/q/309520.

URL:https://mathoverflow.net/q/309520 (version:

2018-08-31).

Tengyu Xu, Yi Zhou, Kaiyi Ji, and Yingbin Liang. Conver-

gence of sgd in learning relu models with separable data.

arXiv preprint arXiv:1806.04339, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning

requires rethinking generalization. In International Con-

ference on Learning Representations, 2017.

https://mathoverflow.net/q/309520

