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CONVERGENCE OF INFINITE EXPONENTIALS

I. N. BAKER and P. J. RIPPON

1. Introduction and results

Suppose that a is a complex number and set b=e’, T(z)=e". Define the
sequence

(1) w,=T"(1)=ToTo oT(), n=1,2,..

where 7" denotes the n-th iterate of the map 7. If the sequence converges its
limit may be regarded as defining the infinite exponential

b
b
b

The long history of investigations of the convergence of (1) goes back at least to
Euler and is described with an extensive bibliography by R. A. Knoebel [6].

If w, converges with limit /. we have T(1)=e"*=1, so that 1#0 and we
may put l=¢, giving exp (ae)=¢, and among the possible choices of ¢ we take
the one which gives ae'=t. We also have T’(1)=ae*=al=t.

If w,=A for some n,, and so for all n=n,, we call the convergence terminat-
ing. This happens if and only if one of the equations T"*'(1)—T"(1)=0,n=0,1,2,...,
holds, that is ¢*—1=0, exp (ae®)—e*=0, ..., each equation expressing the vanishing
of an entire function of a. Thus terminating convergence occurs for at most a count-
able set of values a.

For non-terminating convergence the w,(=T(w,-;)) approach i=e' but
w,#4, while locally near 2 the map T(w) behaves like A+4-1(w—2)+o(jw—4)).
Thus convergence can occur only if |f|=1, that is for a which belong to the set

) K,={a; a =te™* for some [t| = 1}.
This was observed by A. Carlsson [2]. It remains an open problem to find whether

it is not only necessary but indeed sufficient that a belongs to K, for (1) to converge.
Positive results include the assertion that (1) converges if acK, and a is real
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(Euler, see e.g. [6]), or if acK| (Shell [9]) or a€K, (Thron [11]) where
K, =la; a=rte"t for 1] =log2},

Kr={a; lal =e1}.

i

The set K,nR is the segment —e=a=1/e.
By applying results of the Fatou—IJulia theory of iteration {3, 4, 5] one can
settle most cases.

Theorem 1. If a=te™, |lt|<1 or t a root of unity, then the sequence (1)
converges to €.
For almost all t such that |t|=1, the sequence diverges.

Thron considered also the composition of functions T(z)=e%" with differing
values ;. He proved

Theorem A [11]. If a€Ky, i=1,2, ..., then the sequence
(3) wn:TIOTZO"'OTn(l)a Ti(z):ea"z~

converges to a limit u such that [logu|=1.

This may be regarded as expressing stability of infinite exponentiation with
respect to changes of the exponents «; within the region K. A result of this type
remains true for other regions.

Theorem 2. If a€K,, so that a=te™" for some 1 with |t|<1, then for any
neighbourhood N of € there is a corresponding neighbourhood U of a such that
Jfor any sequence g; of points in U the sequence (3) converges fo a limit in N.

Returning to the case of equal a; we can show

Theorem 3. For each n=1,2, ... there is a countable set of values a such
that w,=T"(1) in (1) satisfies w,=w, ., k=1, while w, is different from w; for
i<n. One may find such that values a with arbitrarily large real part.

A value of a in Theorem 3 leads to a sequence (1) with terminating convergence
and there is a countable set of such values a which lie outside K,. However
a’s of this type obviously fail to have the stability property of Theorem 2.

2. Lemmas from iteration theory

If £ is an entire or rational function the n-th iterate /™ (where fl=f, f"+'= fof",
n=1,2,..)) is a function of the same type. Iteration of rational functions was
studied extensively by Fatou [3] and Julia [5] and the analogous theory for tran-
scendental entire functions more briefly by Fatou [4].
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Suppose that f is a non-linear entire function. In fact in our applications
f(z) will always have the form f(z)=e®, a constant. Denote by Z#(f) the set of
points of the complex plane in whose neighbourhood the sequence f", n=1, fails
to be a normal family. The complement of & will be denoted by %(f).

A fixed point a of f is a solution of f(x)=ua and f’(e) is called the multiplier
of a If |[f’(x)|=<1 the fixed point is called attractive and f*(z)—~o as n-oo,
aniformly in a neighbourhood of «, so that ac%(f). If if’()|=1 then a is
called repulsive and clearly a€ Z(f). If f’(x)=1 then a€F(f) since the expansion
near o of f gives

f@)=at+(z—0)+dp(Z—O)" T+ dp#0, M= 1
[H(2) = a+(z— o)+ Ny (Z—0)" T4

If «€%(f) then for any limit function ¢ of a subsequence /"= in the component
of @(f) which contains « we have @(x)=a so that ¢ is analytic and @™+ ()
is the limit of the (m+1)st derivative of the f"< at «, which leads to a contra-
diction.

We state some general properties of & and %.

L. 4(f) isopen. F(f) is perfect and non-empty [4].
In fact % is open by definition so # is at least closed. For f(z)=¢* all

large solutions of e**=z are repulsive fixed points so that in this case & is clearly
non-empty.

1. 4(f) and F(f) are completely invariant under f in the sense that if z€%¥
then f(2)€%, and if further f(w)=z then we% [4].

1. For any integer p=1, F(f)=F(f");[4].

1V. Ifin a component D of 6(f) the sequence f" converges to a finite limit function
then D is simply-connected.

(This follows from applying the maximum principle to f"—f™ on any closed
curve which lies in D.)

V. If « is an attractive fixed point of f then the component of %(f) which contains
x is simply connected and contains a singular point of f71;[3, 4].

If D is the component in question then f*-a in D, which is simply connected
by IV. If D contains no singularity of f~* then continuing the branch for which
fYa)=a yields a function g(=f"") which is analytic and univalent in D and
by Il maps D into D with g(a)=a. If 1 is the conformal map of the unit disc
A to D such that h(0)=« the application of Schwarz’s Lemma to h™'ogoh=k
shows that [k’(0)|=1, which yields |f"(2)|=1/]g’(®)|=1, a contradiction.
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VL. If « is a fixed point of f such that f'(«) is a root of unity, then EF(f) but
a lies on the boundary of one or more components D of G6(f) in which f"—a as
n--co, and at least one such D contains a singularity of f='. (Proved in [3] for
rational f.)

If o isa fixed point of f such that f’(x)=4 is a primitive p-th root of unity,
then f?(a)=o, (f7)()=2"=1 so that A F(fO)=F(f).

Let us simplify the notation by putting «=0. As shown in [I, Theorem 2]
the expansion of F=f? about 0 has the form

(4) F(Z) = Z+am+lzm+l+"‘9 am-&-i # 0’

where m=kp for some positive integer k. It sufficies to study the iteration of F
near O (since F(F)=%(f )) and this has been worked out e.g. in [3] and in some-
what greater detail in [1].

Near z=0 (see e.g. [1, Lemma 4]) the set ¥(F) contains a star of m equally
spaced domains G;, 1=j=m, where each G ; 1s bounded by a simple closed curve
which lies in the region «;<argz—<p ; and approaches z=0 in the directions
arg z=a;, B;, where

%) o; = —y+a/3m)—(2j—1n/m,
B; =—y—n/(3m)—(2j—3)n/m,
y = (n+arg am+1)/’n'

Thus B;—o;=(4n)/3m. Moreover we have F(G;)cG; and F"(z)—~0 uniformly
as n—oo for z€G;.

Now /" and the branches of f~! which vanish at zero permute the components
of % of which the G; form part. If /! has no singularity in any of these com-
ponents then /= (and so F~'=f~?) is univalent in each such component D and
F~! maps D intoitself. Here F~! is understood to be the analytic continuation of

6) Fi@)=z—a, 2"+ ..

throughout D. The iterates (F~')" are normal in the components D and in
particular in the star UG;.

By applying the theory described above to the local iteration of F—! (6) rather
than F (4) near O we see that there is a star of domains G, 1=7=m, of the same
form as G;, but rotated through an angle n/m (by (5)) such that F —I(G;)CG;
and the iterates (F~%)" converge uniformly to 0 in UG’. Together the G; and
G} form a region H which includes a punctured neighbourhood 0<lzi=p of 0.
In H the sequence (F~')" is normal, analytic and converges uniformly to 0.
Hence (F~')"—0 uniformly in the whole neighbourhood izl=o.

This is impossible by the same argument which was used to show that a fixed
point of multiplier 1 is a member of #. Thus one of the components D; of &
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which contains a G; will also contain a singularity of f'. In the components
D; we have F"=jf"-0 since this holds in each G;. The function f permutes
the D; cyclically and we have f¥(z)~0 as k—eo for z ineach D;.

The behaviour of iterates near a fixed point whose multiplier has the form
J—¢*® @ irrational, may be approached via the centrum problem (assume the

L)

fixed point is at the origin): Find if possible a local change of variable
N z=@()=t+byt?+...,t mear 0,

which reduces the transformation

(8) 2, = f(z) = Az+az 2+ ...

to the rotation f;=Ait.

Sucha ¢ mustsatisfy @(At)=f(¢(1)) and the coefficients b, of ¢ are uniquely
determined by recursions which involve division by "—4. Thus we have a small
divisor problem in which convergence of the series for ¢ depends on how well
A1 approximates 1 (or 0 is approximated by rationals). Siegel [10] has proved
the following result, which has been further refined by Riissmann [8].

VII. There is a subset E of the unit circumference which has Lebesgue measure
2n and is such that for any f which is analytic near 0 and has the form (8) with
JCE, the corresponding series (7) for @ has positive radius of convergence.

It follows that if f is entire then the fixed point O belongs to %(f) and that
there is a neighbourhood N of 0 such that for any non-zero z, in N the images
f™zo), n=1,2, ..., are dense in a simple closed curve which lies in N and has
positive distance from 0.

3. Proof of Theorem 1

Suppose that a=te™, with [t|=1, so that & is a fixed point of T(z)=e"
with multiplier . Since fe~" is univalent in jfl=1 there is only one such ¢ for
a given a and €' is the only possible limit for w, in (1).

Suppose first that |r|<1. By property V ¢ belongs to a component D of
%(T) which contains the only singular point of T~', namely the origin. But
T(D)cD by 11 so that 1€D and thus w,=T"(1) converges to e'. A similar
argument applies if ¢ is a root of unity, except that V is replaced by VL

If |t|=1 and ¢ belongs to the subset E of V1J, then the fixed point & belongs
to %(T) and there is a neighbourhood N of ¢ such that for any z, such that
zo#€, z,¢ N the images T"(zo) remain in N for n=1,2, ... but fail to converge
to ¢'. Thus the only way in which w,=T"(1) can converge to e is for w, to be
equal to ¢ for nzn,. Since this happens for at most a countable set of values
of a (and hence of t), removing such a countable set of values from E leaves
a set of measure 27 on |t|=1 for which (1) diverges.
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4. Terminating convergence

Consider first the case when w,=w,=w;=.... that is when e*=exp (ae"),
so that ae®=a+2nni for some integer n. Theorem 3 asserts that this last equation
has solutions of arbitrarily large real part. This is easy enough to prove directly
but it is convenient to quote the

Lemma 1 [Littlewood [7]). Suppose that J@)=aytaz+... is analytic in
D: [z|<1 and that u, is a sequence such that for some constant K>1 we have

® Ul = (thyia] = Klut), 1=m < oo,
(10 U, o as m —oo.
Thenif f(z)#u,, m=1,2, ..., in D we have

Max |[f()l = C;(1—n"% 0<r=<1,

where Cy depends on uy, ay and C, depends only on K.
From this follows

Lemma 2. If f is an entire function and Uy 1s a sequence which satisfies (9)
and (10), then if’ f omits the values Uy, m=1,2, ..., in a half-plane H it follows
that f has at most polynomial growth as z-o- in H.

To prove Lemma 2 it suffices to consider H as Imz=0. Then z=@(t)=
i(1+0)/(1—1), t=(z—i)/(z+i) maps D: lt]<1 onto H. Applying Lemma 1 to
F(o(t)) shows that

fle®) = C—ih~%, it <1.

1—[#]* = 4r sin 0/(r2+2r sin 0+1)

If z=re?® we have

whence
1— |t} = 2r sin 6/(r242r sin 6+ 1)
and
()] < C{(r+1)%/2r sin 0}¢: < K(r/sin 0)Ce,

if ¥=1 sin 8=0.

Applying Lemma 2 to f(z)=ze*—~z, and the sequence u, =2mmni in a half-
plane Re x> A proves the claim made at the beginning of §4.

To complete the proof of Theorem 3 we need to find a such that Wy 1 E W, =W, 1y
(for given n>1). We have w,=w,; if T,(I)=exp (aT,(1))=T,,,(1)=exp (aT (1)),
that is if oT,_,(1)=aT,(1)+2kni for some integer k=0 (k=0 is equivalent to
W,-1=w,). We have only to note that al,(1)—aT,_(1) is an entire function of
a which has very large growth on the positive real axis. The application of Lemma 2
to this function and to the sequence wu,=2mni shows that there are solutions
a of our problem in any region Re a> A.
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5. Proof of Theorem 2

Suppose that a=te™* where |t|<1. Given a neighbourhood N of €' and
o such that |t|<p=1 choose a disc 4={z:|z—¢'|<d, d=0} such that 4cN
and also |T.(2)|<¢ in 4, T, (A)c 4’ ={z: |z—¢'|<gd}, where T,(2)=e¢* (and
T.(e)=1).

Now 4 belongs to the component D of %(e”") which contains ¢ and in
which T7—~¢'. Thus there is a positive integer p such that TP7(1)€4’. By continuity

there is a neighbourhood U of a such that
Q) Uc K,

(i) for any a,,...,a, in U we have

a

T, 0T,0...0T, (1)€4,

(iii) for any b in U we have T,(4)C 4,
(iv) forall b in U we have [Ti(z)]<i=1/2(149)<1 for all z in 4.

Suppose that «; is any sequence of points in U and set T;=T,. For any
n we have T,,q0...0T,,(1)€4 by (i), and w,y,=T1~...0T,0T, 10...0T,4 (1€
T,o...0T,(4) which by (iv) has diameter at most 24°d. If n=Fk by (iii) both w,. ,,
Wesp are in Tyo..oT(4) so that w,,,—we.,l<24*d. Thus w, is a Cauchy
sequence which converges to a limit inside AcN. The proof is complete.

6. Periodic sequences of exponents

Suppose that for some natural number k£ and for all n we have a,,,=q,.
As in Theorems A and 2 set T;(z)=e"".

Theorem 4. If the sequence of exponents is periodic with period k and if
a, = tn eXp (“rtl-i-l)? fn—'rk =1, n= 1, 2, ey

where either |t t,...t,]<1 or 1,t,...1, is a root of unity, and w,=T;0T50...0T,(1),
then for at least one p with 0=p=k the sequence W,.; converges to e as

M — oo,

In the case k=1 this reduces to Theorem 1. For k=1 it has some similarity
to Theorem 2.

Put ¢;=T;oT;,:0...0T;15-1. Then if ¢, are as in Theorem 4 and ;=¢" we
have T,(2,.,)=4, so that /; is a fixed point of ¢; and further @{(A)=1,...1,.
Thus under the assumptions of the theorem 4; belongs to a domain D in which
the iterates @Y —), as N—oo. D contains at least one of the singularities of ¢; %,
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that is one of the k wvalues
0, T;(0)=1, ..., T;oT;  0...0T;,,_,0).

Thus for such a value f we have @(f)—0 as m—oco, that is ;0T 0...0
Tivmi—1+,0)~4; as m—oo for some O=p=k. Choosing i=1 gives the result

claimed.
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