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ABSTRACT 

Let Q be the Q-matrixof an irreducible, positive recurrent Markov process on a countable state space. We show that, 
under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge 
in total variation to the stationary distribution of the process. Twoconditions guaranteeing such convergence include 
exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a 
stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone 
processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these 
results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method 
for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces 
from a finite amount of known information. 
 
Keywords: Invariant Measure; Truncation Approximation; Augmentation; Exponential Ergodicity; Stochastic 

Monotonicity; Markov Process 

1. Introduction 

Let   . , ,Q q i j i j S
atrix

  be the stable, conservative 

 of a continuous-time Markov process on a 
countable state space 

-Q m
 0,1,2, S  The  

satisfies 
-Q matrix

 
   
 

, 0, if ,

0 : , , if ,a

, 0 for all
j S

Q i j j i

q i Q i i j i

Q i j i S


 

     

 
nd  

In addition, we assume that Q is regular, which means 
there exists no non-trivial, non-negative solution  

  ,x x j j S 
 

to 

       , ;0
j S

Q i j x j kx i x i i S


   1, 



 

for some (and then all) . 0k 
Under these assumptions, the state transition prob-

abilities of the process are given by the unique Q-func- 
tion  which satisfies the 
Kol- mogorov backward equations,  

  , , , , 0tF F i j i j S t 

0d
, 0,

d
t t .F QF t F I

t
    The object F , which is also  

called a transition function, is a family of  matri- 
ces indexed over the reals which constitutes an analytic 

semi-group. an analytic semi-group is characterised by 
three properties: 

S S

0F  is the identity matrix, the row 
sums of tF  are less than or equal to unity and s tF 

 is 
equal to the matrix product s tF F  for all . This 
last property, known as the Chapman-Kolmogorov equa- 
tion, implies 

,s t  0

 1 ttF F

.

. Thus, even though Ft is gener- 
ally thought of as the matrix of state transition probabili- 
ties at time t, it serves as an analogue to the t-th power of 
the transition matrix of a discrete-time Markov chain on 
the state space  Consequently, using the superscript 
to denote as a function of t should not cause any confu- 
sion. While on the subject of notation, we should men- 
tion that we are using a standard notation common in the 
literature of continuous-time Markov processes on gen- 
eral state spaces. In the discrete state space setting, this 
notation causes matrices to look like functions of two 
variables (or kernels) while measures and vectores ap- 
pear to be functions over the state space. We have elected 
to follow this notation in an endeavour to reduce the 
number of subscripts and superscripts in the sequel. 

S
F

Q
Note that in the conservative setting posed here, regu- 

larity of  is equivalent to honesty and uniqueness of  

the transition function, that is,  , j 1t

j S

F i


  for all 

andi S 0.t   

The state space  is irreducible if S  ,F i j T 0  for 
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all . On such a state space, a Markov 
process is said to be positive recurrent or ergodic if 

, andi j S t



0

  , π 0F i j j t  for all  as t . For a 
positive recurrent process, it can be shown (for example, 
see Theorem 5.1.6 in [1]) that the 

,i j S 

 li , i S 



mπ πi



 
satisfies 

      ,t j π

, 0

j s

j S t



 



1 and  , πF i
j S

i i




π

j
 (1) 

More generally, any measure  satisfying (1) is called 
an invariant or stationary measure for the process. If, in 
addition, the measure has mass 1, it is referred to as a 
stationary or invariant distribution. Any measure satisfy-
ing (1) with “ ” replaced by “ ” is called a subinvari-
ant measure for F . Conversely, if F has a stationary 
distribution , then the process is positive recurrent and 

. 
π

   , aF i j j t 

n

   , , ,n nQ Q i j i j

st

 


In this paper, we are interested in approximating  

using the n  north-west corner truncations of . 
The analogous problem for discrete-time Markov chains 
has been studied in [2-7]. The final reference contains a 
review of the literature on the discrete-time version of the 
truncation problem. Some properties of truncation in 
continuous-time Markov processes were studied in [8,9]. 

π
Q

 

Truncations of Q are submatrices of Q defined by  

 nS  , where    ,n Q i j, :Q i j    

and  ,nS n
nn

 is an increasing sequence of subsets of  
S such that . S S

The truncation ( )n  is not conservative. By adding 
the discarded transition rates to , we may produce a  

Q

 n Q

conservative  -matrQ

h

ix n Q

nS

    ,n n i i 

 which generates a unique,  

honest, finite, continuous-time Markov process. For ex-
ample, we may choose to perform linear augmentation, 
where the aggregate of the transition rates outside of n  
is dispersed amongst the states in  according to some  

S

probability measure . Then, the    nS

-tn  order augmentation  n Q  is given by 

   
 

.
0, othe

n

Q i j
Q i j

 


 

rwise.
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nk S

j Q i


  , , , if , nSk i j ,
 

An important example of this is where we only aug- 
ment a single column, say , in which case  nh   is the 
Dirac measure at h and we obtain The  order aug- 
mentation  as 

-thn

 , i

( )n hQ

   .
0, ot

 

herwise

, ,

.
n

f , ,jh nk S
k S

Q i


n

Q i
Q i j

 


j  i j 
 

Here, jh  denotes the kronecker delta. 

Linear augmentation obtains exactly one irreducible, 
closed class n nA S  together with zero or more open 
classes from which An is accessible. Since nA  is closed,  

 n Q  is conservative on nA  and so the minimal 

   -functionn Q n F  is honest and positive recurrent on  

nA . Finiteness of n  ensures that the remaining open 
classes are transient. Hence, there exists a unique invari- 

S

ant measure for  n F . We shall be mainly concerned  

with  where either  or . The minimal   hn Q 0h  h n

  -functionn Q  will be denoted  n hF while  

      π π ,h hn n i i S  n  
will be its invariant probability  

measure. 
Two obvious questions now arise. Firstly, when does 

 π π as ?w
hn n             (2) 

Here, we use w  to denote convergence in total 
variation norm. Secondly, how quickly does this conver-
gence occur? This paper considers the first question. We 
shall present augmentation strategies for approximating 
invariant distributions for two classes of Markov proc- 
esses via  for n large. The classes are:  πhn

 Markov processes which satisfy 

     , π e , , , 0t atF i j j O i j S t ,     

for some 0  . Such processes are called exponen-
tially ergodic. 

 Stochastically monotone Markov processes, which 
have the property that 

  , ,t t

j n j n

F i j F k j
 

   

for all , , , and 0i k i k n S t   , and processes dom-
inated by stochastically monotone processes. 

Parallelling results for discrete-time chains in [7], we 
shall also show that Markov processes constructed from 
finite perturbations of stochastically monotone processes 
are always dominated by some other stochastically mo-
notone process. This extends the class of processes for 
which our results are applicable. 

In the next section, we begin by showing that the limit 
of the  πn

  is unique when it exists. Then, Section 3 
considers exponentially ergodic Markov processes while 
Section 4 studies stochastically monotone Markov proc-
esses and their above-mentioned variations. 

Finally, some concluding remarks are made in Section 
5. 

2. Preliminaries 

The problem of proving that  π
w

hn π  may be bro- 
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ken into two parts. Firstly we must show that    
converges weakly to some limit, say 

πhn

π , and secondly, 
that π π . We consider the latter in this section. 

Theorem 2.1 Consider a sequence of linearly aug- 

mented  derived from Q and let   -matrices hnQ Q

  hn F  be the minimal -function. Then   hn Q
t t

     , , as , ,hn .F i j F i j n i j S      (3) 

Proof: Let  n F  denote the minimal -function.   n Q

,tFirstly, observe that       ,t
hn nF i j F i j  for all  

,i j S  and . This can be seen inductively using 
the backward integral recurrences for  n

0t 
F  and   hn F . 

The argument parallels the proof of Theorem 2.2.14 in [1] 
which states that 

     , , ast t
n F i j F i j n        (4) 

for all  , ,i j S t  0
Next, since   hn F

 
is honest and  n F  is dishonest, 

we see that 

             t, , ,t t t
hn n n nF i j F i j F i j   i

t

 (5) 

for , where , , 0,ni j S t n  1

n     : 1 , , , 0
n

t t
n n

k S

i F i k i S


       (6) 

Applying (4) to (6) together with monotone conver-
gence shows that  t

n i  monotonically decreases to 0 as 
. Taking limits in n on both sides of (5) then 

completes the proof. 
n 

Remark 2.2 Although we have only considered linear 
augmentations, the statement and proof of Theorem 2.1 
is in fact valid for any sequence of augmentations  

  t
n F . 

Since the transition function   hn F  is finite, it is posi- 
tive recurrent on some subset of . Hence it possesses 
a unique stationary distribution  and 

nS

 πhn

           π , π
n

t
h h hn n n

j S

i F i j j


      (7) 

for . Positive recurrence establishes anequi- 
valence between the stationary distributions for  

, 0nj S t 
t

hn F  
and invariant distributions for . An invariant dis- 
tribution for an arbitrary  is any probability  

  hn Q
atrix-mQ Q

measure  such that π    π ,
i S

i Q i j


 0  for all  

j S


. So,  uniquely satisfies   πhn

 i Q     ,
n h hn ni S

i j


 0  for all  nj S

Let us assume for the moment that  converges   πhn

weakly to some limit measure   ,i j  π π S . We  

require that π π . Weak convergence to π  implies 
that π  is a probability distribution. By taking the limit 

infimum on both sides of (7) and applying Fatou’s Lem-
ma, we have 

   

       

     

π ,

lim inf π ,

lim inf π π

t

j S

t
h hn nn j S

hnn

i F i j

i F i j

j j



 





 



  

for , 0j S t  . The measure π  is therefore a subin-
variant probability measure for . However, is posi-
tive recurrent and hence, by Theorem 4 in [10], 

F F
π  is 

both invariant and the unique probability measure satis-
fying (1). Hence, π π . 

3. Exponential Ergodicity 

Let Q be the  of a positive recurrent Markov 
process 

-matrixQ
  on . Consider an increasing sequence of  S

sets  ,nS n  such that  and nn
S S




 0 nS   

for all n. Let  n  be the truncation of  correspond- 
ing to . In this section, we shall consider augmenta- 
tions   0n  obtained by linearly augmenting  n  in 
column 0. We shall prove that exponential ergodicity of 
the Markov process is sufficient for  

Q Q

n

nS
Q Q

π πw  as 
 where  is taken to be   0n , the invariant 

distribution for   0n . In order to do this, we shall re- 
quire the notion of a -norm. Let

n   πn π


Q

V   ,iV V i S  be 
an arbitrary vector (function) such that  1 V i  

 
for 

all i S . In future, we abreviate this to . The V - 
norm of a signed measure n is then 

1V 

     
:

: sup
V

f f V j S

V v f v i
 

   V i  

If   , ,  A A i J i S J B S    is a matrix, then the 
-norm of V A  is 

 
 
,

: sup V

V
i S

A i
A

V i


  

Rather than working with the Q-matrix augmenta- 
tionsdirectly, we will use the  -resolvents associated 
with these. The  -resolvent of a continuoust-time 
Markov process is the stochastic matrix  

  , , ,R R i j i j S 

  , : e t tR i j F 

  given by, 


0

. d , , , 0i j t i j S   .    We note  

that R  satisfies the resolvent forms of both the back-
ward and forward equations which are 1R I QR   

 
and  respectively. 1R I R Q   

Q


Since  is regular, R  is the unique solution to the 
resolvent form of the backward equations. Let  n R  
and  n R ,h  denote the unique  -resolvents of  n F

 and   hn F  respectively. Here,  n F  is the minimal 
-funcction while  n Q   hn F  denotes the minimal -   hn Q

hfunction. Since  nnS is a fi ite set,   hn Q ,  n F  and 
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0
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vari drift to s int

1] will play an important role in allowing us to pass 
between the continuous-time process and the discrete- 
time  -resolvent chain. The drift conditions require the 
notion of a petite set in both continuoustime processes 
and discrete-time chains. Let  S  denote the Borel 
 -algebra on S. Then, A set C S  is a petite set in 
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usly. According to Theorem 5.1 in [11], the following 

three drift conditions are equivalent, although the petite 
set C and function V may differ in each instance. 
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et  C S  and a function 1,V   

       , ,Cq i j V i b i i .
j S

j cV S


       

An irreducible continuous-time Markov process X is 

ke

V -uniformly ergodic if, for some invariant probability  

rnel π, π 0 astF t
V

   . In the special case  

where 1V  , the chain is said to be uniformly ergodic or  

strongly ergodic: For all 
1

, 0ti S F    as t     
 

tation, we use t ote thewhere, by an abuse of no o den  π  
πinvariant transition kervnel    π ,i j j  for all 

, .i j S  
follThe owing theorem collects together a number of 

re

le, aperiodic con-
tin

ift conditions 

sults on exponential and V -uniform ergodicity of 
Markov processes from the literature. 

Theorem 3.2 Let X be an irreducib
uous-time Markov process on S. The following condi-

tions are equivalent. 
i. One of the dr      , orT 

    
not necessarily



ho

-s leton chain is geometrically 
er

 all 

lds, in which case they all hold, but  
with the same petite set C ; 

ii. For all 0T  , the T ke
godic; 
iii. For 0  , the  -resolvent chain is geomet-

rically ergodic;
entially ergodic. 

r some 
odic,

 
iv. X is expon
v. X is V -uniformly ergodic fo 1V  . 
In particular, it is TV -uniformly erg  V -uni- 

formly ergodic and V - iformly ergodic where ,T Vun  V   
and V  satisfy      , andT 

     respectively. 
Proof: 
ii iii iv. This was proved in Theorem 5.3 of [11]. 
i iv. T eorem 5.1 of [11] shows that  h

     and
   satisfy a solidarity pr,T

either all of them h


operty in that 

old or none hold. Next, fix 1N   
and set 1, 2, ,C N  which is trivialy petite Si  

is finite.
 

nce it  

 In   , set c   and   1iV i cy  , where  

,N   and th ’s are  appea em 3 of e  those ring in Theor
 

iy
[12]. Finally, an appropriate relabelling of the states in 

S  reveals    to be equivalent to the necessary and  

su ndit

.2 in [11] says that any of  

fficient co ion for exponential ergodicity givenin 
Part (ii) of Theorem 3 in [12]. Consequently X is expo-
nentially ergodic if and only if    orany of the other 
drift criteria holds. 

i v. Theorem 5
     orT 

    is sufficient for X to be
ere V  is either ,TV V

,
fo  ergodic wh

rmly

 V -uni- 

  or  re-
spectively. 

v ii. If

V

 X is -uniformly ergodic for some 
th

ws tha

V
T

1V  , 
an apen  to is the - skeleton for any 0T   and -

plication of Theorem 16.0.1 in [13] sho t  
 so

Tn nF M  0,1
V

    for some M    and .  
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Geometric ergodici skeletoty of the T - n TnF  then fol
lows from the definition of -norm

o  is
3. exist constants 

   (9) 

Without loss of generality, we may take 

- 
the V . 

Next, suppose that the Mark v process X  exponent- 
tially ergodic. From Theorem 2, there 
0 ,c d    and a function 1V   such that 
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     0,0 : 0N R c d       for some  
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oof of Corollary 3.1, 
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0 nCNote that  for all  large enough. 

, set 
n
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band C Cb b b
     e . It can b  

onditions of the theorem are satisfied and
some V

 in Th orem 6.1 of [14] e
seen that the c  
so there exists 1   such that 
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where and  
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  . Fur re, we 

          , ,mi m   ,0 0, πn n
V

R i MV    

where  is the unique invariant distribution for   0πn

, and   0n Q M    and 1   are completely deter- 
mined , ,c dby   and  . Note that this is true for 
every n N  so that the rate of convergence   is in- 
dependent of uncation size. In addition, by applying 
the precedin  argument directly to Q instead of  0Q , we  

also have 

 
g

the tr

n

     , πm m

V
R i MV i      for all m, since, 

by assumption, (9) holds and  0,0R   hus, 

 

 T
e 

0 .
V-uniform

 same converge
 and   ,0n R  

not only ar R ly ergodic, they 
are geometrically ergodic with the nce rate 
 . 

We can now prove the main result of this section. 
Theorem 3.3 Let X be an exponentially ergodic, con- 

tin ible 
st

uous-time Markov chain on a countable, irreduc
ate space S . Let π  and ( ) 0πn  be the invariant dis- 

tributions for Q  and   0n Q  respectively. Then,  

  0π πn 0   as n  . 

Proof: Cho e an ar ry number 2m  . From



os bitra  the 
triangle inequality, we have 

 

       

     

       

,0

,0

,0

0π πn
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, ,

2 , , .
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m m
n

m m m
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R i R i

R i R i
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  (13) 

As was pointed out in [7], if A  and are two sto- B  
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chastic matrices, then 

   
     

0 1,

, ,

, , ,

m m

S

s m w S

A i B i

A i w A w B w
   

  

 
 

, 

for . Applying this to the last term in (13), we 
obtain 
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Now, since  as  for   0n i  n  all j S , we 
can use domin ude ird 
term in (13) vanishes as n tends to infinity. Thus, 

ated convergence to concl that the th

   0lim π π 2 ,m
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MV i 


   

for  and since m was chosen arbitrar y, m , il
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Example 

Let , 0    and define Q  by 

 
 

, if 0, 1,

, , if 0,

, if 0,

0,otherwise,

i j i

Q i j j i

j i




 

   


  
   


 

, if 0 and 1,j i  

The process with this -matrix is essentially a re-
newal  with renewal time

Q

s of 

 
 process s marked by visits to 

state 0. Each renewal time consists of a geometric num- 
ber of exponential time mean 1   followed by an 
exponential time of mean 1  . At each jum , the proc- 
ess passes from state with probability 

p
i to state 1i 

       and with probability falls back to state 0 
1 
es

. the state spac ble and the proc- e is clearly irreduci
s has a geometric stationary distribution π , where 
   π 1 ii    . Existence of the stationary distribution 

ensures positive recurrence. 
Next, let the vector V  be given by    1

i
V i   , 

where  0,   . Also define b   and Set  

    : 1
i

C i S          , where c is a  

 positive number. Then, the drift condition 

C

small  D
 s for the specified , ,V C b  and c . The process is 

therefore exponentially ergodic by Theorem 3.2  Further, 
s of Theorem 3.3 are satisfied. Thus, we 

can construct augmentation

hold

.
all the condition

s  on corresponding 
se

  0n

ts 
Q

 0,1, ,nS n   an  use their inva -
tions   ximate π . 

d riant distribu

this by solvi
0πn  to appro

We can confirm ng 

       0 00
π , 0, 0,1, ,n ni

i Q i j j n


    with 

   00
π 1

n

ni
i



n

 . We ha       ve 0π 1 1i n
n i        

for 0,1, ,i n  , from which it is evident that 
(      0π πn i i  as n  . Convergence in total vari-
ation  same argument used later in the 
proof eorem 4.2. 

follows by the
of Th

In this section, we 
one Markov p

tic monoton
under arbit

ed in [6] TO study

4.

develop results for stochastically mo-
not sult says that sto-

 for (2) to 
d linear

ods  parallel those em- 
ploy  the sa  in discrete-time 

e greater care con- 

 Stochastic Monotonicity 

rocesses. Our

 

gene

 key re

rally
me problem

tak

chas icity of the process is sufficient
lho rary augmentation. The remain- 

ing results extend this to larger classes of Markov proc- 
esses. While our meth

Markov chains, itt is necessary to 
structing the augmentations in the continuous-time set- 
ting. 

Let   and   be two non-trivial measures. Then,    
stochastically dominates   if    k n k n

k k 
 

    
for all n , in which case we write   . If F  
and F  are two transition functions, we say that F  
stochastically dominates F  (written F F ) if, for all 

0,t      , ,t tF i F i 
 

for all .i S  A more strict clas-
sification is stochastic comparability. The transition 
functions F  and F are stochastically comparable if  

   , ,t tF i F m    for all 0t   and ,i m S  wi  th
.i m  We use the notati n o F F that F   to mean 

and F are stochastically comp   arable. A stica
monotone Markov process is one whose transition func-
tion is stochastically comparable to itself. Thus, if 

stocha lly

F  is 
stochastically dominated by a transition function F  
which itself is stochastically monotone, then F  and F  
are stochasticallly comparable. Clearly, F F  implies 

.F F  
eorem is th y to obtaining suffi- 

cien onditions for (2) to hold in continuous time. It 
characterises stochastic comparability and monotonicity 
in terms of Q -matrix structure and is a special case of a 
more general result which was proved in [15] (also see 
Theorem 7.3.4 in [1] for an account). The reader is d -
rected to the last two citations for the proof. 

Theorem 4.1 ([15] and [1, Chapter 7.3

The following th
t c



e ke

i

]) 

Th
i. Let Q  and Q  be two conservative Q -matrices. 
eir corresponding minimal transition functions F  
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and F  are stochastically comparable iff, whenever 
,i m  and k is such that either k i  or ,k m  then 

   , , .
j k j k

Q i j Q m j
 

            (16) 

ii. Let Q  be a conservative Q -matrix. Its minimal 
Q ff, -function F is stochastically monotone i Whe

peak

This ab

never 
k is such 

7

lt, we shall s -
onotone Q-matri of 

g stochastically comp use of 
y s

i

A

as bei
ter

m  and that either k i  or ,k m  then 

   , , .
j k j k

Q i j Q m j
 

           (1 ) 

 consequence of this resu  of sto

 

s a
chastically m

n
ces and 
arable, etc. 

two Q-matrices 

minolog hould not cause any confusion. 
If F  is an irreducible, positive recurrent transition 

n and it stochastically do reduci- 
function ,

functio
ble transition 

minates another ir
F  then F  

π  de
is also ive re-posit

current. Furthe
ibu

rmore, if and no
tions of F an

π  
d 

te the stationary 
distr F  respectively, then π π,  
which can be seen by letting t   in 

   , , , , .t t

j k j k

F i j F i j i k S
 

      

In t, we may say something stronger than this. If 
F  is reducible and contains a collection of closed ire- 
ducible classes   ,iC  each Ci is positive recurrent with 
invariant probability measure π Since F is dominated 
by 

fac

.i  
F  on ,iC  it follows that π π.i   Now, a - 

variant measure on S  for Q w r 
ny in
 linea  

ination of the ’s; th
 can be 
at is, 

ritten as a
comb πi  π π

i
a i

 , 2, .
π . 

curren
y constr
s of Q

i  for  

 probability measure  There- 
for all invariant 

ve re t,
F. B

som
fore,

no

e
 

 a a i
distributions 

ocess 

, 1i 
π π  

Throughout the rest of this section, we shall use the 
rth-west corner truncations of ,Q  that is, truncations 

of the form 2, ,nS n   for 0,1, 2,n    

4.1. Stochastically Monotone Processes 

0,1,

Let Q  be the Q -matrix of a positi  sto-
ov prchastically monotone Mark uction, 

the n n  north-west corner truncation  aug-
mente he nth column are stochastica y md in t ll onotone. 
Since   nn Q

 
is conservative on a finite set ,nS    nn F

 has precisely one positive recurrent ss, which contains 
n  and is a  to S g distri

cla
.n  sub of or equalset Its limitin

j
- 

bution  πnn  satisfies       π π
n n nn ni S

i Q i
 , 0   

Frfor all .j S  om Theorem 4.1, we also see that 

  nn F
 

is stochastically monotone. 

Let  n Q
 

be an arbitrary augmentation of   
and 

note that 

n Q

 n Q
 

is stochastically comparable with   .Q
 

As per our comments above, the minimal  

nn

n Q -function 

 n F
 

subsets and hen  for

is positive recurrent on on r more irreducible e o  

of ce any invariant distribution   nS  
 n Q , say  π,n  

is stochastically dominated by  π .nn  

Now  extend   nn Q
 

and  , let us n Q
 

to S as follows: 

  

 
 
 1

, , if ,

, , if and ,

, , , if and ,

k n

i

n k n

Q i j j n

Q i k j n

Q i j Q i k i n j n









 


 , ,if and ,
k i

Q i k i n j i


0,otherwise,

n

i n


  



    (18) 

 




and 

   

   

 
 

1

, , if 0 , ,

, , if and 0,
,

, ,if and ,

0,otherwise.

n

i

k n
n

k i

Q i j i j n

Q i k i n j
Q i j

Q i k i n j i







  

   
  






 

We also extend and to by appending 
a countably infinite number of 0’s to each, so that 

 πnn   πn  
S  

       πni iπnn 0 
(resp. π ) remains 

 
inva

for all Note that 
  

riant fo esp.

.  
Q

i n
r 

 πnn

 n   nn  (r   n Q ). 

Moreover, since the minimal -function   nn Q   nn F
 

is  

positive recurrent on some subset of  0,1, ,n
,S  the m

 con-
taining n and transient elsewhere in easure 

is the limiting distribution of  
 

 πnn  
         : ,

n n

t
nn πn nF F i j j  as   for all  

, .i j S

 t 

  
the mini

Similarly,  πn  is the limiting distribution for  

mal  n  Q -function n F
 

wh pro

atrix inat

en given an ap -  

priate initial distribution. 
The stochastically monotone m   nn Q dom es  

 
 n Q

 
while   nn Q

 
and   11 nn Q

  
are stochastically  

comparable for all 0,1, 2,n    So too are   nQ and  

Thus, 

 

for all 
n  

Q  .n       11 .
n n

Q

n n nQ Q  

 
Q An  

applicatio ofn of Part i  Theorem 4.1 then shows that 

     11n nn n nF F F F


   all .n  Con-  for 

squently, 

      11π π π
n n

π,n n   

wher

n         (19) 

e π  is the unique stationary distribution for .F  
The sequence   π e tight and so is therefor  n  

  π πj  for all jn  
j S  as The sam.n   e is  

true for   π .n  

 

n

From (19), we observe that 

Copyright © 2012 SciRes.                                                                                  AM 



A. G. HART, R. L. TWEEDIE 2212 

            π π π π ,nni k i k
i i i

 
   0   n i  for all  

 and so is at least as good a
 ed

no  in

As was poin  [7], intwi
res on a c ble se
nce in tal variation. We therefore have the 

fo
Theorem 4.2 Let be the matrix of a

recurre
 

,k S  πnn  

e
 is opti

n approxima- 
tion to p as  πn . Thus, any invariant measure deriv  
from a rth-w st corner truncation of Q  augmented  
its last column mal for approximating π . 

ted out in  the po se convergence 
ounta t can easily be extended to of measu

converge to
llowing result. 

Q   Q -  positive 
nt, stochastically monotone Markov process on 

.S  Let p be the stationary distribution of the minimal 
Q -function F  and denote the invariant distribution of 
an arbitrary n n  north-west corner augmentation  

 n Q
 

by  π.n  Furthermore, let   nn Q
 

be the n n   

north-west corner truncation augmented in column n and 
take  π nn  

to be its invariant distribution. Then, 
 

 π π 0n  
 

as .n  The same is true of the se- 

quence   π
nn  

which is the optimal approximation in  

its tail mass more closely approximates 
that of π . 
the sense that 

Pro The of: fact that, for all     , π πnj S j  j
and  

  nn    π πj j

 
as a

  
the preceding discussion. So too was the optimality of 

as n   was established in

 πnn n approximation to π.  To prove convergence 
in total variation, fix an arb
obtain 

itrary finite .k S  Then, we 

       

           

       π π 2 π .

n
j k

n
j k j k

j j j



 

 

The analogous statement holds for 
 

and the 
proof is completed by letting first n  and th n k  tend 
to infinity. 

π π πn n j jπ

π π π πn
j k

j j j j


 

   

 



   

As remarked in [6], will be strictly positive 
for sufficiently large n  arbitrary state in 
Thus, contains a po recurrent class to whic
belon mputationa ing, this means that an
inva istribution ffice as an approximatio

 pr  n is sufficien e. 
Finally, if n is large enough so that  possesses a 

qu on
th

s 

j S

  nn Q
e

   πn a
 where a is an

sitive 
lly speak

will su
tly larg

.S  
n 
y 

n to 

nS  
gs. Co

riant d
ovided

h 

π ,

  n

asistationary distribution (n)r supported  a nonde-
generate irreducible subset of ,nS  en the sequence of 
distribution

Q
 

 n 
 

conve aklrges we y to π. We can 
al

 
ways find a sequence  ,n 1,2,n 

 
of irreducible  

sets such that 1 2C C S    and .nn
C S



C


   

See Lemma 5.1 in [16] for a proof of this; the ana-

logue for discrete-time Markov chains may be found in 
[3], Theorem 3.1. 

For a finite state Markov process, every quasistation- 
ar abili

 
a fini in

y distribution is equivalent to a prob tynormalised 
left eigenvector of its Q -matrix restricted to an ire- 
ducible class. In other words, If  is a nonconservative 
Q -matrix on te state space S contain g an ire- 
ducible class 

Q

  r i C
n on C he

,C S r  a quasistation- , i
 pr

 is 
 if and onlyary distributio ocess  if  for t

  1
i C

r i


  and, for some 0,   

     , , .
j S

r i Q i j r j j C


    

Note that by virtue of  -theory,  r i  is strictly pos-
itive for all .i C  By convention, we extend r to S  
by setting   0r i 

 
for .i S C \  If we then construct 

the linear augmentation Q  as 

       , , , ,
k C

Q i j Q i j Q i k r j


   
 
      (20) 



, ,i j S  
bution 

it is not difficult to see that the inv riant distri-a
  for Q  is unique and equivalent t  

us return to the case of a count finite  
o .r  
ably inNow, let 

state space. Given n large, we may construct  n Q
 
from  

 n Q
 

in the sam anner as sing a left eigenvector 

 n r
 

of  n Q
 

supported on an
e m  (20) u

 irreducible class 
e cond  of Theorem 4.2 are satisfied and so th  

sequence 

.nC  
e Th itions

  n r
 

converges in total variation

variant distribution of This observation subsumes 
results 

tio b-
cr

istribu
e o

proc
cuss e ne

esses 
ses 

 to the in- 

 .Q  
concerning the truncation approximation of in-

variant distribu ns of birth-death processes and su
itical Markov branching processes, for example, see 

[16-18]. The convergence of quasistationary d tions 
of truncations to the invariant distribution of th riginal 

ess also holds under the weaker conditions we dis-
 in th xt two subsections. 

4.2. Proc Dominated by Stochastically 
Monotone Proces

Now we shall consider a much larger class of Markov 
processes, namely those whose transition functions are 
stochastically dominated by a positive recurrent, stochas- 
tically monotone process. To begin, let F  be the sto- 
chastically monotone transition function of an irreducible, 
positive recurrent Markov process. Suppose that F  do- 
minates a transition function F. We sh
to denote the corresponding -mat

butio ing to 

all use 
rices. As

Q  and 
 noted ear- 

di

Q  

stri- 
Q

ond
lier, F must be positive recurrent and the invariant 

ns π  and π , corresp F  and F  re-
spectively, satisfy π π . 

Let   nn Q  and   nn Q  respectively denote the n n   
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north-west corner truncations of Q  and Q  augmented 
in the n th column. By extending these in the analogous 
way to (18) and applying Part i of Theorem 4.1, we see 
that   nn F  and   nn F  are stochastically comp able.  
Also, let  

ar

n Q  be an arbitrary augmentation of an n n   
north-west corner truncation o and note that  

 

 
f Q

  ,nn nQ Q  whence     .nn nF F
 

From the previous 

subsection,     11 nn nF F F  for 

C ing t e obt


 

 
ombin hese, w ain  

0,1, 2n    

        11,
n n nn n n nF F F F F

     which plies that  

        11π, π π π π.n n nn n n n       Thus, the sequence  



 im

  π tight an π π  componentwise as .n  n  n

s me  

 is d 

f  way
2  

Convergence in total variation ollows in the a
as in the proof of Theorem 4. and the same is true of 

  π .nn  
 we have p llowing result. 

Theorem Q -ma red

Thus roved the fo

 4.3 Let be the trix of an ir uci- 
 inated by a positive 

recurrent, stochastically monotone ,  

Q  
ble Markov process which is dom

 Markov process. Then

 π π 0n  
 

as wher - 

variant distribution for and for  con-
stitute di

n   e p is the unique in

Q  
stribu

 n  s an invariant tion of an arbitrary 
π, ,n

n n  
north-west corner augmentation of .Q  

As the augmentation   nn Q
 

is a special case of   ,n Q
  

it follows from the theorem that  π π 0nn  
 

  as

.  However, unlike the situation in which F is 
stochastically monotone, it is not clear which of  πn  and  πnn  

provides the better approximation to 

n

π.  

4.3. Finitely 
 

 Mar-
 that 

Q of
lumns. Let 

stochast
et  

Perturbed Stochastically Monotone 
Markov Processes

Finally, we consider an even more general class of
ko s introv processes which wa duced in [7]. We say

 is a finite perturbation  Q̂  if the two Q-matrices 
differ in at most a finite number of co  be Q̂

ically monotone and suppose without loss of ge- 
nerality that Q and Q̂  differ in the first k columns. L

  ˆin Q: m : 0,1, , 1m m k  
 

and construct a  

-matrixQ Q   as follows: 

, if j 

 
 

 
 

0

0

ˆ , , if ,

ˆ, , f ,

ˆ , , if

0,o erwise

k

m

k

m

Q i m i k j k

Q i j Q i m i k j k

Q i j j k







  


  







  

,0 ,

, i

th

i i k 

Observe that is stochastically monotone. This is 

due firstly to the way in which th ave 
been construct , and secondly to t -
ment betwe ing columns of  with the 
corresponding column  the stochastical monotone 

. Now, satisfies (  and so, by The  4.1, the 
imal unction F unction e stochas-

tically com arable. Di cation of em o 
 and en yields wing resu

 Let nite pert n of a Q- 
 hose -functio ucible, 

positive rrent and st stically m Also, let 
nv

Q  

e first k columns h
he agreeed from Q

en the remain  Q
ly 
orem

 ar
eor

batio
n is irred

. 

s of
17)
 and

rect ap
 the fo
 be
imal
ocha

Q

Q̂
min

F

matrix

p b

Q  
Q -f

p
  th

 w
recu

Q -f
pli
llo

 a fi
 Q̂

F
 Th
lt. 

ur

onotone

 4.3 t
F

Theorem 4.4
Q̂

Q
min

e the unique i ariant distribution for Q  and denote 
the invariant distributions of arbitrary n n  north-west 
corner augmentations  n  by  πn . Then,  

 π π 0 asn n    

4.4. Example 

Conrth-death process, whose tridiagonal -matrixQ  

 
 
0

, if 0, 1,

, if 0, 1,

, , if 0,

, if

erwis

i

i i

i j i

j i j

Q i j j i

j



 

   


 
  
 0,

0, e,




oth

i

i  


 



wh  , 0  i i  are strictly poere sitive birth   rates and 

 , 1i i   are strictly positiv

the state space S

e d

e set of 

ks

of a
hown 

eath rates. we take  

 to be non-n e integers. 
s having 

mo al and ice time le circuit- 
tched t raffic net  and buffe omputer 
works,
Let th n irreduci rth-death 

process (see [1], C r 3) that  

is regular if and on

Here, 

tiv
ueue

p
n c

le i
hapte

 th

 serv
wor

rix  
be s

ly if 

ega

s, sim
rs i

b

Such processes can be used to model q
me
swi
net

Q  

riless arriv
elet

 etc. 
 be 
h

Q
. T

e -matQ
en, it can 

 b

0 0


 

1 i

i j
i i j

   
  

where 0 1   and 0 1 -1i

1 2
i

i

  


  





  
for 1i . Now for  

Q  regular, the unique minimal transition function F  is  

positive recurrent if and only if 
0

1

i i i

A






    and 

iB 


0i

   . The statio istribu r F is  nary d tion fo  

  π π ,i i S 
 

where  π ii B  
Now, it is straight forward to

) and hence, by Theor
ay use 

 verify th  satisfies 

 4.1,  i ly 
onotone rtherm o

o ate in

at

s
 4.2, 

Q

 Q

we m
 d

(17
m

no

em
 The
. Lett

F
rem

g

 stochastical
. fu
app

ore, by
 π πnn  t roxim   n enote the 

rth-west corner truncation on  0,1, ,n , augm nta- e
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tion in column n yields the matrix ffers 

n

  nn Q
 

ent. 

which di

from only in its  elem More precisely,   n Q  

 ,nQ n n

 ,n n

  n    and          , ,nn nQ i j Q i j Q i j  ,  ,

if eit  oher i n r j n . The stati istribution onary d

 n πn  corresponding to the augmentation  n  
is given  

by    

nq

0

,0
n

n i jn
j

i i n  


  
 

From this closed form  

     π πnn i i  as n   since j B

expressi a  on, it c n immediately be seen that 

0

n

j



    as  

n  . Convergence in total variatio n follows as in 
the proo f Theorem 4.2


n the

sitiv

 the co

hat the 
e augm



f o

5. Conclusion 

e stationa
us-tim

markov chains 
g. 

. 

ions of
ss

effica

s sh
onding

Here we have investigated procedures based on the aug-
ation of state-space truncations for oximating ment appr

th ry distribut  po e recurrent, 
o e Markov proce es

ation tech-
iscrete-time 

a o ntinuous-t
settin

own t invariant
rresp  to th ented 

con-
tinu  on countably infinite 

hstate spaces. We have shown t at approxim
niques first proposed for application to d

re als cious in ime 
Two classes of Markov process were considered: 

Exponentially ergodic processes and stochastically 
monotone processes. It wa  dis-  
tributions  n π  co

 n-matrixQ Q  of finite statespace truncations of a  

-matrixQ  converge in total variation to the invariant 
distribution of the Markov process generated by that 

-matrixQ . It remains to study the speed of such conver- 
gence. An understanding of the convergence rate would 
enable the truncation size to be selected in order to guar- 
antee that the measure  n π  approximates π  to a de- 
sired degree of accuracy. 
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