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CONVERGENCE OF ITERATIVE SOLUTIONS TO INTEGRAL
EQUATIONS FOR SOUND RADIATION*

By GEORGE CHERTOCK! (Naval Ship Research and Development Cenier, Washington, D. C.)

1. Introduction. In a recent paper [1] it was shown that the sound pressure at the
surface of a body vibrating in a specified but arbitrary pattern could be calculated
by solution of an integral equation. And once this is done, the entire sound radiation
field could be calculated by simple quadratures from the Helmholtz integral. The
method of solution can be used for nonanalytical surface shapes and vibration patterns
such as oceur in technical engineering usage, and is easily adapted to machine calculation.

In such applications, a preferred method for solving the integral equation is by
an iterative solution of a finite set of simultaneous equations which approximate the
integral equation, because any more direct method may require excessive storage
capacity in the computer. This paper proposes and illustrates a more general iteration
scheme than the classical Neumann series and derives conditions for its convergence
which apply when the kernel function of the integral equation has a spectrum of eigen-
values and a complete set of eigenfunctions defined on the vibrating surface. If there
are no eigenvalues the simple Neumann series always converges.

2. Iterative solution to the integral equation. The integral equation for the sound
pressure at the vibrating surface is of the form

p®) = 18 + [[ (s, §)p(s) do’ 1)

where S and S’ are two points on the surface, f(S) is a known function related to the
vibration pattern,

d (eikR)
N =2 (=2 _

K(S) S) an/ 27TR H (2)
k is a wavenumber, R is the distance between S and 8, »’ is the normal to the surface
at §’, and the integration is over the surface area. The kernel function here is a particular
solution to the scalar wave equation. A sufficient condition that it have a complete
set of eigenvalues on the surface is that the surface is one of a family of confoeal quadric
surfaces [2].

The proposed iteration scheme is of the form

p(nH) — Hp(n) + (1 _ II)(f +f Kp(n) do,l) (3)

where p™ denotes the nth iterate and H is a complex constant. Let ¢.(S) be the eigen-

functions of the kernel and \; be the associated eigenvalues, i.e.
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n [[ K, 890408 do = 445). @
Then expand 7(S) and p™ (S) in terms of these eigenfunctions, and (3) becomes

p™P = 2ol , NA ~ H) + @, 2™)H + v: — Hy)), (5)
where v; = A7 and (¢, f) = [[ ¢:f do. Or, by induction,

™ = T odloe, N = ML+ Ai+ A1+ o + AT + 6, p) A1)

2ol , N — M)A — AD/A — A) + (@, pM)47)
where A; = v; + H — v,H. Hence if |4, < 1, then

™Y = 2 biles , Nl — H)/(L — A) = 2 oulehs , /(L =) =p(S) (@)

for all choices of p‘*.

Thus the condition that (3) converge to the solution of the integral equation is
that all the A, are within the unit circle in the complex plane. A more useful condition
which can easily be verified is that the reciprocal eigenvalues v, = ;= (H —A,)/(H—-1)
are all within the circle passing through the point (1, 0), with center at H/(H — 1),
and with radius equal to [1/(1 — H))|.

When H = 0 (and p’ = f) this iteration scheme reduces to a simple Neumann
series for which the convergence requirement is that there be no eigenvalues \; within
the unit circle. The more general case where H is a real constant was apparently first
analysed by Wiarda [3] for symmetric kernels, and later by Buckner [4] for more general
kernel functions. If H is a positive number less than unity the domain of convergence
is a larger circle including the unit circle of the simple iteration scheme. In fact this
condition, 0 < H < 1, was discovered and used on an ad hoc basis in the examples
described in [1].

The case of complex H is a special case of general iterative methods for operator
equations in abstract Hilbert or Banach spaces which have been investigated by Schon-
berg {5], Rall [6], and Petryshyn {7]. However, it was independently derived as in the
present paper before the author was aware of the prior investigations, in order to solve
the sound radiation problem discussed below.

3. Numerical example. We consider the surface of a prolate spheroid of reciprocal
eccentricity £ = 1.10 which vibrates only in a narrow band between n = 0.537 and
7 = 0.620 (4 is the spheroidal angle coordinate) with velocity », normal to the long-
itudinal axis. The vibration frequency is specified by ka = 7.26 where k is the wave
number and «a is the semimajor axis. The integral equation for the sound pressure at
the surface is

(6)

I

+1
p(n) = f(n) + f_ 1 K(n, v")p(n") dv’ (8)
where the kernel function is now

Ko = [ S0 [ 2 (5] a ®

and where E is the distance between two points (¢, 9, ¢) and (¢, %', ¢’} (in spheroidal
coordinates) on the spheroid ¢ = ¢ = &, ; and where
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fy = B a_%‘;r& [ G a— ey as (10)

and p is the density and ¢ the sound velocity in the fluid.

Then, by expansion of the kernel function in spheroidal wave functions [8], it may
be verified that the kernel has eigenfunctions ¢,(») = S,:(ka, #) which are the spheroidal
angle functions of the first kind, of order 0, and degree 7. The associated eigenvalues A,
are given by

N =1 — 2ka(® — DRVR® + 24ka(s — DRVR™ (11)

where RV (ka, £) and R{¥ (ka, £) are the spheroidal radial functions of the first and
second kind respectively, and the prime denotes a derivative with respeet to £.

The numerical values for the first seven reciprocal eigenvalues are plotted in Fig, 1.
The values for 7 > 6 are presumed to cluster about the origin. Four of these v; are
outside the unit circle, which means that an iteration with H = 0 will not converge.
When H = %, or when H is any real number smaller than unity, v, remains outside
the circle of convergence. But when H = (1 + ©)/2, all v; are within the circle and the
iteration process of (3) converges for all f(3) and for any choice of p‘".

Using this value of I, Fqs. (8)—(10) were solved on an IBM 7090 computer with
the results for the real and imaginary parts of the surface pressure, p, and p, respec-
tively, shown in Iig. 2.

An explicit, noniterative solution to this particular problem can easily be given
as a series in spheroidal wave functions. But this series would be most laborious to
evaluate numerically because the functions have not been tabulated. Since the width
of the moving zone is only about 1/25 of the length of the spheroid, it would be necessary
to use more than 25 terms in the series expansion for the velocity distribution in order
to achieve any reasonable accuracy. In fact Hanish [9] did compute the first 20 orders
of spheroidal wave functions for this problem and used them to calculate the surface
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Fia. 1. Location of reciprocal eigenvalues v, relative to circles of convergence for different values of H.
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F1a. 2. Sound pressure at surface of spheriod compared with mean values from [9].

pressure. He reported only the mean surface pressure at eight different narrow zones
on the surface, each value being averaged over the width of the zone as indicated by
the width of the bar in Fig. 2. Note that the real components of his mean values are
in fair agreement with the values computed here, but the imaginary component at the
moving zone is too low by 25 percent or so.

4. Remarks. An alternative method which is being used to solve sound radiation
problems [10], [11] (or more generally to solve the wave equation [12] or the Laplace equa-
tion [13] with mixed boundary conditions) requires that the strength of the equivalent
simple source surface distribution be determined by solution of a Fredholm integral
equation. But the kernel function in this equation is exactly the same as in Eq. (2),
and so the problems of convergence of an iterative solution are the sameas discussed here.
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