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CONVERGENCE OF KÄHLER-RICCI FLOW

GANG TIAN AND XIAOHUA ZHU

0. Introduction

In this paper, we prove a theorem on convergence of Kähler-Ricci flow on a
compact Kähler manifold M which admits a Kähler-Ricci soliton. A Kähler metric
h is called a Kähler-Ricci soliton if its Kähler form ωh satisfies equation

Ric(ωh) − ωh = LXωh,

where Ric(ωh) is the Ricci form of h and LXωh denotes the Lie derivative of ωh

along a holomorphic vector field X on M . As usual, we denote a Kähler-Ricci
soliton by a pair (gKS , X). According to [TZ1], X should lie in the center of a
reductive Lie subalgebra ηr(M) of η(M), which consists of all holomorphic vector
fields on M . If X = 0, ωh is just a Kähler-Einstein metric. Since ωh is d-closed,
we may write LXωh =

√
−1
2π ∂∂θ for some real-valued smooth function θ. It follows

that the first Chern class c1(M) is positive and it is represented by ωh.
The Ricci flow was first introduced by R. Hamilton in [Ha]. If the underlying

manifold M is Kähler with positive first Chern class, it is more natural to study
the following Kähler-Ricci flow (normalized):

(0.1)

{
∂g(t,·)

∂t = −Ric(g(t, ·)) + g(t, ·),
g(0, ·) = g0,

where g0 is a given metric with its Kähler class representing c1(M). It can be shown
that (0.1) preserves the Kähler class.

Let Autr(M) be the connected Lie subgroup of the automorphism group of M
corresponding to ηr(M). Let K be a maximal compact subgroup of Autr(M).
According to [TZ1], we may assume that a Kähler-Ricci soliton (gKS , X) is K-
invariant and the imaginary part Im(X) of X generates a one-parameter subgroup
KX of K. The following is our main result.

Main Theorem. Let M be a compact Kähler manifold which admits a Kähler-
Ricci soliton (gKS , X). Then any solution g(t, ·) of (0.1) will converge to the gKS

in the sense of Cheeger-Gromov if the initial Kähler metric g0 is KX-invariant.

Corollary. If M admits a Kähler-Einstein metric, then any solution of (0.1) will
converge to a Kähler-Einstein metric in the sense of Cheeger-Gromov for any initial
Kähler metric g0 with Kähler class c1(M).
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This corollary was first announced by G. Perelman [P2] when he was visiting
MIT in the Spring of 2003.

Our proof of the main theorem is to study a certain complex Monge-Ampère
flow which arises from (0.1). The flow of this type has been studied before by many
people (cf. [Ca], [CT1], [CT2]). Indeed, our proof used a deep estimate of Perelman
([P2]; also see [ST]). We combined Perelman’s estimate with estimates on solutions
of complex Monge-Ampère equations we have used in our proving the uniqueness
of Kähler-Ricci solitons [TZ1].

The organization of this paper is as follows. In Section 1, we describe an un-
published estimate of Perelman on the time derivative of potential functions of
evolved Kähler metrics along the Kähler-Ricci flow. In Section 2, we use the rela-
tive capacity theory, which was first developed in [Ko] and adapted to the case of
Kähler-Ricci solitons in [TZ1], to obtain a C0-estimate for a certain Monge-Ampère
equation. Then in Section 3, we obtain a global Harnack-type inequality for solu-
tions of complex Monge-Ampère flow associated to the Kähler-Ricci flow (0.1). In
Section 4, we derive monotonicity of the generalized K-energy introduced in [TZ2].
A C0-estimate on a modified complex Monge-Ampère flow is obtained in Section 5
and the Main Theorem will be proved in Section 6.

1. An estimate of Perelman

In this section, we first reduce the Kähler-Ricci flow to a fully nonlinear flow on
Käher potentials. Then we discuss a recent and deep estimate of Perelman.

Let (M, g) be an n-dimensional compact Kähler manifold with its Kähler form
ωg representing the first Chern class c1(M) > 0. In local coordinates z1, · · · , zn,
we have

ωg =
√
−1
2π

n∑
i,j=1

gijdzi ∧ dzj , gij̄ = g(
∂

∂zi
,

∂

∂zj
).

Moreover, the Ricci form Ric(ωg) is given by{
Rij = −∂i∂j log(det(gkl)),
Ric(ωg) =

√
−1
2π

∑n
i,j=1 Rijdzi ∧ dzj .

Since the Ricci form represents c1(M), there exists a smooth function h on M such
that

(1.1) Ric(ωg) − ωg =
√
−1
2π

∂∂h.

An easy computation shows that the flow (0.1) preserves the Kähler class of its
solution g(t), so we may write the Kähler form of g(t) at a solvable time t as

ωϕ = ωg0 +
√
−1
2π

∂∂ϕ

for some smooth function ϕ = ϕ(t, ·) = ϕt. This ϕ is usually called a Kähler po-
tential function associated to the Kähler metric g(t). Using the Maximal Principle,
one can show that (0.1) is equivalent to the following complex Monge-Ampère flow
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for ϕ(t, ·):

(1.2)

{
∂ϕ
∂t = log det(gij+ϕij)

det(gij)
+ ϕ − h,

ϕ(0, ·) = 0.

Observe that ∂ϕ
∂t |t=0 = −h.

Differentiating on both sides of (1.2) on t, we have

(1.3)
∂

∂t

∂ϕ

∂t
= ∆′ ∂ϕ

∂t
+

∂ϕ

∂t
,

where ∆′ denotes the Laplacian operator associated to the metric ωϕ. Then it
follows from the standard Maximal Principle that

| ∂

∂t
ϕ(t, ·)| ≤ Cet,

and consequently,
|ϕ(t, ·)| ≤ Cet.

By using these facts and arguments in deriving the higher order estimates in Yau’s
solution of the Calabi conjecture [Ya], H.D. Cao showed that (1.2) is solvable for
all t ∈ (0, +∞) [Ca].

Using his W -functional and arguments in proving noncollapsing of the Ricci flow
[P1], recently, G. Perelman proved the following deep estimate [P2].

Lemma 1.1. Let ϕt be a solution of Monge-Ampère flow (1.2). Choose ct by the
condition ht = −∂ϕ

∂t + ct such that∫
M

ehtωn
ϕt

=
∫

M

ωn
g0

.

Then there is a uniform constant A independent of t such that

(1.4) |ht| ≤ A.

For the reader’s convenience, we will present a proof of Lemma 1.1 taken from
[ST] in the appendix. Lemma 1.1 is crucial in proving our main theorem. Recall
that ht is defined by (1.1) with ωg replaced by ωϕt

and can be different from a
constant. In Section 4 below we will further prove that ct is uniformly bounded
and so ∂ϕ

∂t is.

2. Relative capacity and C0
-estimate

In this section, as in [TZ1], we will use the relative capacity theory for plurisub-
harmonic functions first developed in [Ko] to derive a C0-estimate on a certain
Monge-Ampère equation.

First we recall some notation which can be found in [BT]. For any compact
subset K of a strictly pseudoconvex domain Ω in Cn, its relative capacity in Ω is
defined as

cap(K, Ω) = sup{
∫

K

(
√
−1∂∂u)n| u ∈ PSH(Ω),−1 ≤ u < 0},

where PHS(Ω) denotes the space of plurisubharmonic functions (abbreviated as
psh) in the weak sense. For any open set U ⊂ Ω, we have

cap(U, Ω) = sup{cap(K, Ω) | for any compact K ⊂ U}.
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The extremal function of K relative to Ω is defined by

uK(z) = sup{u(z)| u ∈ PSH(Ω) ∩ L∞(Ω), u < 0 and u|K ≤ −1}.
One can show that u�

K(z) = limz′→zuK(z′) is a psh function. It is called the upper
semicontinuous regularization of uK . A compact set K is said to be regular if
u�

K = uK . The following are some properties of u�
K (cf. [BT], [AT]):

u�
K ∈ PSH(Ω), −1 ≤ u�

K ≤ 0, lim
z→∂Ω

u�
K = 0,

(
√
−1∂∂u�)n = 0 on Ω \ K,

u�
K = −1 on K, except on a set of relative capacity zero.

Moreover, we have

(2.1) cap(K, Ω) =
∫

Ω

(
√
−1∂∂u�

K)n =
∫

K

(
√
−1∂∂u�

K)n.

Lemma 2.1. Let Ω be a strictly pseudoconvex domain in Cn and let u < 0 be a
smooth solution of the following complex Monge-Ampère equation on Ω:

det(uij) = f.

Suppose that u and f satisfy
u(p) > c (p ∈ Ω) and∫

K

fdv ≤ Acap(K, Ω)
cap(K, Ω)

1
δ

1 + cap(K, Ω)
1
δ

(2.2)

for any compact subset K of Ω. If the sets

U(s) = {z|u(z) < s} ∩ Ω′′

are nonempty and relatively compact in Ω′′ ⊂ Ω′ ⊂⊂ Ω for any s ∈ [S, S + D],
where S is some number, then there is a uniform constant C, which depends only
on c, D, δ, Ω′, Ω, such that

(2.3) − inf
Ω′′

u ≤ CAδ + D.

Proof. This lemma is essentially due to [Ko]. For the reader’s convenience, we will
include a proof using an argument from [TZ1]. Put

a(s) = cap(U(s), Ω) and b(s) =
∫

U(s)

(
√
−1∂∂u)n.

Then we define an increasing sequence s0, s1, . . . , sN by setting s0 = S and

sj = sup{s| a(s) ≤ lim
t→s+

j−1

e a(t)}

for j = 1, . . . , N , where N is chosen to be the greatest integer such that sN ≤ S+D.
By using an argument in Lemma 4.1 of [TZ1], we can prove

(2.4) S + D − sN ≤ (Ae)
1
n a(S + D)

1
nδ

and

(2.5) sN − S ≤ 2(Ae)
1
n (1 + nδ)a(S + D)

1
nδ .

However, it was proved in [AT] (or Theorem 1.2.11 in [Ko]) that

cap({u < s} ∩ Ω′, Ω) ≤ c′

|s| ,
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where c′ depends only on c and Ω′. It implies that

(2.6) a(S + D) ≤ c′

−D − S
.

Combining (2.4)–(2.6), we get

D ≤ 2(2 + nδ)(Ae)
1
n (

c′

−D − S
)

1
nδ .

It follows that

−S ≤ c′(
2(2 + nδ)

D
)nδeδAδ + D.

Consequently, we have

− inf
Ω′′

u ≤ c′(
2(1 + nδ)

D
)nδeδAδ + D,

so (2.3) is proved. �

Lemma 2.2. Let Ω be a strictly pseudoconvex domain in Cn and let u < 0 be a
smooth solution of the following complex Monge-Ampère equation on Ω:

det(uij) = f,

where f(≥ 0) ∈ L1+ε0(Ω) for some ε0 > 0. Suppose that u satisfies

u(p) > c (p ∈ Ω).

Define U(s) as in last lemma. If the U(s) are nonempty and relatively compact in
Ω′′ for any s ∈ [S, S +D] for some S, then for any positive δ ≤ δ0 and ε ≤ ε0, there
is a uniform constant C = C(c, D, δ0, ε0, Ω′, Ω) such that

− inf
Ω′′

u ≤ C(
1
δε

)n+δ‖f‖δ
L1+ε(Ω) + D.

Proof. Let uK be the relative extremal function of a regular set K with respect to
Ω and let v = cap− 1

n (K, Ω)uK . Then v is a psh function and satisfies∫
Ω

(
√
−1∂∂v)n = 1 and lim

z→∂Ω
v = 0.

By Lemma 2.5.1 in [Ko], we have

λ(U ′(s)) ≤ c′ exp{−2π|s|}

for some uniform constant c′ independent of v, where λ(U ′(s)) is the Lebseque
measure of U ′(s) = {v < s}. It follows that for any q ≥ 1,∫

Ω

|v|qdµ ≤ |Ω| +
∞∑

i=1

∫
−s−1≤v≤−s

|v|qdµ

≤ |Ω| + c′
∞∑

i=1

(s + 1)qe−2πs

≤ |Ω| + c′e4π

∫ +∞

2

sqe−2πsds

≤ C12q+2([q] + 2)! ≤ C12q+2(q + 2)q+2.

(2.7)
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On the other hand, we have

cap(K, Ω)−1(1 + cap−1/δ(K, Ω))
∫

K

fdµ

≤
∫

K

|v|n(1 + |v|n
δ )fdµ

≤
∫

Ω

(|v|n + |v|n(1+ 1
δ ))fdµ

≤ [(
∫

Ω

|v|
n(1+ε)

ε dµ)
ε

1+ε + (
∫

Ω

|v|
n(1+δ)(1+ε)

δε dµ)
ε

1+ε ]‖f‖L1+ε(Ω).

(2.8)

Combining (2.7) and (2.8), we get∫
Ω

fdµ ≤ Acap(K, Ω)
cap(K, Ω)

1
δ

1 + cap(K, Ω)
1
δ

,

where

A = 2C12
n(1+δ)

δ +2(
n(1 + δ)(1 + ε)

δε
+ 2)

n(1+δ)
δ +2‖f‖L1+ε(Ω)

≤ C2(
c0

δε
)

n(1+δ)
δ +2‖f‖L1+ε(Ω).

Therefore, it follows from Lemma 2.1 that

− inf
Ω′′

u ≤ C(
c0

δε
)n+3nδ‖f‖δ

L1+ε(Ω) + D.

Now the lemma follows from replacing 3nδ by δ. �

Proposition 2.1. Let (M, g) be a compact Kähler manifold and let ϕ be a smooth
solution of the complex Monge-Ampère equation on M ,{

det(gij + ϕij) = det(gij)f,

supM ϕ = 0.

Then, for any positive δ ≤ δ0 and ε ≤ ε0, there are two uniform constants C, C ′

which depend only on g, δ0, ε0 such that

− inf
M

ϕ ≤ C(
1
δε

)n+δ‖f‖δ
L1+ε(M) + C ′.

Proof. This is a direct corollary of Lemma 2.2 (cf. the proof of Proposition 4.1 in
[TZ1]). We omit its proof. �

3. A Harnack-type inequality

In this section, we use Proposition 2.1 to develop a C0-estimate for solutions of
the Monge-Ampère flow (1.2).

Proposition 3.1. Let ϕ = ϕt be any solution of (1.2). Then, for any positive
δ ≤ 1, there are two uniform constants C = C(g, n, δ) and C ′ = C ′(g, n, δ) such
that

oscMϕ = sup
M

ϕ − inf
M

ϕ ≤ C(
∫

M

ϕ(ωn
g − ωn

ϕ))n+δ + C ′.
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Proposition 3.1 is analogous to Proposition 4.2 in [TZ1] for the complex Monge-
Ampère equation which arises from the equation for Kähler-Ricci solitons.

As before we assume that (M, g) is an n-dimensional compact Kähler manifold
such that ωg represents the first Chern class c1(M) > 0. We need two lemmas in
order to prove Proposition 3.1.

Lemma 3.1 (Poincaré-type inequality). Let h be the smooth function deter-
mined by the relation (1.1). Let C∞(M, C) be the space of complex-valued smooth
functions. Then for any ψ ∈ C∞(M, C), we have

(3.1)
∫

M

|∂ψ̃|2ehωn
g ≥

∫
M

|ψ̃|2ehωn
g ,

where

ψ̃ = ψ − 1
V

∫
M

ψehωn
g .

In particular, for any ϕ ∈ C∞(M), we have

(3.2)
∫

M

|∂ϕ|2ehωn
g ≥

∫
M

ϕ2ehωn
g − 1

V
(
∫

M

ϕehωn
g )2.

Proof. Let L be the linear differential operator on C∞(M, C) defined by

Lψ = 
ψ + 〈∂h, ∂ψ〉, for ψ ∈ C∞(M, C),

where 
 denotes the Laplacian operator of g. Then L is elliptic and self-adjoint
with respect to the following Hermitian inner product:

(ψ, ψ′)h =
∫

M

ψψ
′
ehωn

g , for ψ, ψ′ ∈ C∞(M, C);

namely,

(Lψ, ψ′)h = (ψ, Lψ′)h.

It follows that all eigenvalues of L are real. Denote by 0 = λ0 < λ1 ≤ . . . ≤ λi ≤ . . .
the sequence of eigenvalues of L and by ψi (i = 0, 1, 2, · · · ) the corresponding
sequence of eigenfunctions with the property (ψi, ψj)h = δij , for any i, j. Note that
ψ0 is constant. Then {ψi} is a complete orthonormal basis of the space W 1,2(M, C)
with respect to the weighted L2-norm (·, ·)h. On the other hand, using the Bochner’s
technique, one can prove that λ1 ≥ 1 ([F2]). So (3.1) holds, so does (3.2). �

Lemma 3.2. Let ϕ = ϕt be any solution of (1.2). Then there is a uniform constant
c0 > 0 independent of t such that

(3.3)
∫

M

exp{− c0

I(ϕ)
(ϕ − sup

M
ϕ)}ωn

ϕ ≤ C,

where I(ϕ) = 1
V

∫
M

ϕ(ωn
g − ωn

ϕ) > 0.

Proof. As in [TZ1], we will use an iteration argument to prove this lemma. Without
loss of generality, we may assume I(ϕ) > 1.
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Let ϕ = ϕ − supM ϕ. Then for any p > 0, we have∫
M

(−ϕ)p(ωn
ϕ − ωn−1

ϕ ∧ ωg) =
√
−1
2π

∫
M

(−ϕ)p∂∂(ϕ) ∧ ωn−1
ϕ

= p

√
−1
2π

∫
M

(−ϕ)p−1(−∂ϕ) ∧ (−∂ϕ) ∧ ωn−1
ϕ

=
4p

n(p + 1)2

∫
M

|∂(−ϕ)
p+1
2 |2ωn

ϕ.

It follows that

(3.4)
∫

M

|∂(−ϕ)
p+1
2 |2ωn

ϕ ≤ n(p + 1)2

4p

∫
M

(−ϕ)pωn
ϕ.

Applying Lemma 3.1 to function (−ϕ)
p+1
2 in the case of the metric ωϕ, we have

(3.5)
∫

M

|∂(−ϕ)
p+1
2 |2ehtωn

ϕt
≥

∫
M

(−ϕ)p+1ehtωn
ϕt

− 1
V

(
∫

M

(−ϕ)(p+1)/2ehtωn
ϕt

)2,

where ht = −∂ϕ
∂t + ct which are uniformly bounded for t (cf. Lemma 1.1). Thus by

using the Hölder inequality, we get∫
M

(−ϕ)p+1ehtωn
ϕt

≤ cp

∫
M

(−ϕ)pehtωn
ϕt

+
1
V

∫
M

(−ϕ)pehtωn
ϕt

·
∫

M

(−ϕ)ehtωn
ϕt

,

and consequently

(3.6)
∫

M

(−ϕ)p+1ωn
ϕ ≤ c′[p

∫
M

(−ϕ)pωn
ϕ +

1
V

∫
M

(−ϕ)pωn
ϕ ·

∫
M

(−ϕ)ωn
ϕ],

where c, c′ are uniform constants.
By the mean-value inequality, we have

sup
M

ϕ ≤ V −1

∫
M

ϕωn
g + C.

It follows that ∫
M

(−ϕ)ωn
ϕ = V sup

M
ϕ +

∫
M

(−ϕ)ωn
ϕ

≤
∫

M

ϕ(ωn
g − ωn

ϕ) + C V

≤ a I(ϕ),

where a is a uniform constant. Thus inserting this inequality into (3.6), we get

(3.7)
∫

M

(−ϕ)p+1ωn
ϕ ≤ ac′(p + I(ϕ))

∫
M

(−ϕ)pωn
ϕ.

Iterating (3.7), we have∫
M

(−ϕ)p+1ωn
ϕ ≤ 2(ac′I(ϕ))p(p + 1)!

∫
M

(−ϕ)ωn
ϕ ≤ (c′I(ϕ))p+1(p + 1)!.
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Now choosing ε < 1
ac′I(ϕ) , we obtain

∫
M

exp{−εϕ}ωn
ϕ =

+∞∑
p=0

εp

p!

∫
M

(−ϕ)pωn
ϕ

≤
+∞∑
p=0

(εac′I(ϕ))p

≤ 1
1 − ac′I(ϕ)ε

.

Put c0 = 1
ac′ . Then (3.3) is proved. �

Proof of Proposition 3.1. Let ct and ht be given as in Lemma 1.1. Let ϕ = ϕ − ct

and ϕ̃ = ϕ − supM ϕ. Then (1.2) becomes

(3.8)

{
det(gij + ϕ̃ij) = det(gij)f,

supM ϕ̃ = 0,

where f = h + ∂ϕ
∂t − ct − ϕ = h − ht − ϕ. Since∫

M

ehtωn
ϕ = V,

we have

(3.9) 0 < c1 ≤
∫

M

e−ϕωn
g ≤ c2

for some uniform constants c1 and c2. This implies

(3.10) sup
M

ϕ ≥ −C and inf
M

ϕ ≤ C.

By (3.10) and Lemma 3.2, we have∫
M

exp{−(1 +
c0

I(ϕ)
)ϕ}ωn

g ≤ ec0C

∫
M

exp{− c0

I(ϕ)
(ϕ − sup

M
ϕ) − ϕ}ωn

g

= ec0C

∫
M

exp{− c0

I(ϕ)
(ϕ − sup

M
ϕ) − ϕ}ωn

g

≤ C1

∫
M

exp{− c0

I(ϕ)
(ϕ − sup

M
ϕ)}ωn

ϕ ≤ C2.

It follows that

‖f‖
L

1+
c0

I(ϕ) (M)
≤ C3.

Thus, applying Proposition 2.1 to (3.8), we see that for any δ > 0 there are uniform
constants C4 and C5 only depending on δ such that

sup
M

ϕ − inf
M

ϕ = − inf
M

ϕ̃ ≤ C4I(ϕ)n+δ + C5. �
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4. Monotonicity of generalized K-energy

In this section, we show the monotonicity of the generalized K-energy intro-
duced in [TZ2] along the Kähler-Ricci flow. Since M has positive first Chern class,
associated to any holomorphic vector field X on M , there is a unique smooth,
complex-valued function θX = θX(g) on M such that

(4.1)

{
iXωg =

√
−1
2π ∂θX ,∫

M
eθX ωn

g =
∫

M
ωn

g ,

where iXωg is the interior product of X with ωg, that is, iXωg(Y ) = ωg(X, Y ) for
any vector Y . The first relation above implies

LXωg = d[iX(ωg)] =
√
−1
2π

∂∂θX .

Thus we see that (gKS , X) is a Kähler-Ricci soliton if and only if h = θX modulo
a constant, where h is a smooth function determined by the relation (1.1) associ-
ated to the metric gKS . As an obstruction to Kähler-Ricci solitons, the following
holomorphic invariant was introduced in [TZ2]:

FX(v) =
∫

M

v(h − θX)eθX ωn
g , v ∈ η(M),

where η(M) denotes the Lie algebra consisting of all holomorphic vector fields on
M . When X ≡ 0, the functional FX(·) is just the Futaki invariant [F1]. It was
shown in [TZ2] that FX(·) is independent of the choice of Kähler metric g and
FX(·) ≡ 0 if there exists a Kähler-Ricci soliton (gKS , X) on M .

Let ηr(M) be a reductive Lie subalgebra of η(M) and let X ∈ ηr(M). Let KX be
the one-parameter group generated by Im(X) and let g be a KX -invariant Kähler
metric. Set

MX(ωg) = {ϕ ∈ C∞(M)| ωϕ = ωg +
√
−1
2π

∂∂ϕ > 0, Im(X)(ϕ) = 0}.

Associated to the invariant FX(·), the following functional on MX(ωg) was intro-
duced in [TZ2]:

µ̃ωg
(ϕ) = − n

V

∫ 1

0

∫
M

ψ̇[Ric(ωψ) − ωψ

−
√
−1
2π

(∂∂θX(ωψ) − ∂(hωψ
− θX(ωψ)) ∧ ∂θX(ωψ))] ∧ eθX (ωψ)ωn−1

ψ ∧ dt,

where ψ = ψt (0 ≤ t ≤ 1) is a path connecting 0 to ϕ in MX(ωg), θX(ωψ) =
θX + X(ψ) and Ric(ωψ) denotes the Ricci form of ωψ. If X = 0, then µ̃ωg

(ϕ) is
just Mabuchi’s K-energy [Ma].

Let X be in the center of ηr(M) and let Autr(M) be the connected subgroup
associated to ηr(M). Then

ρ∗LXωϕ = LX(ρ∗ωϕ), ∀ ρ ∈ Autr(M).

Thus if ϕ ∈ MX(ωg), then

ϕρ ∈ MX(ωg), ∀ ρ ∈ Autr(M),

where ϕρ is the Kähler potential function determined by

ρ∗ωϕ = ωg +
√
−1
2π

∂∂ϕρ.
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Moreover, analogous to the case of the K-energy and the Futaki invariant, we have
the following for µ̃ωg

:
dµ̃ωg

(ϕρt
)

dt
= Re(FX(v)),

where ρt = exp{tv} is a one-parameter subgroup generated by a holomorphic vector
field v on M . This implies that if FX(·) ≡ 0, then

(4.2) µ̃ωg
(ϕρ) = µ̃ωg

(ϕ), ∀ ρ ∈ Autr(M).

Note that X must lie in the center of ηr(M) if FX(·) ≡ 0 [TZ1].

Lemma 4.1. Let ϕ be a solution of the flow (1.2). Suppose that the initial metric
g is KX-invariant and that the holomorphic invariant FX(.) vanishes. Then

(4.3) µ̃ωg
(ϕ) ≤ 0.

Proof. Let σt = exp{tX} be a one-parameter subgroup in Autr(M) generated by
X and let ϕ′ = ϕσt

be defined as above for the subgroup {σt}. Then ωϕ′ satisfies
the modified Kähler-Ricci flow,

(4.4)
∂

∂t
ωϕ′ = −Ric(ωϕ′) + ωϕ′ + LXωϕ′ .

Then, using integration by parts, we have

(4.5)
dµ̃ωg

(ϕ′)
dt

= − 1
V

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n ≤ 0.

It follows that
µ̃ωg

(ϕ′) ≤ 0,

and consequently, by (4.2), we get (4.3). �

It was shown in [TZ2] that if M admits a Kähler-Ricci soliton (gKS, X), then
the functional µ̃ωg

(·) is bounded from below on MX(ωg). So by (4.5), we have

1
V

∫ ∞

0

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n ∧ dt ≤ C.

It follows that

(4.6)
1
V

∫ ∞

0

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)−t(ωϕ′)n ∧ dt ≤ C.

By using the Maximal Principle, we get from (4.4) that

(4.7)
∂ϕ′

∂t
= log

det(gij + ϕ′
ij

)

det(gij)
+ X(ϕ′) + ϕ′ − h + θX .

Differentiating the above equation on t, we obtain

(4.8)
∂

∂t

∂ϕ′

∂t
= 
′ ∂ϕ′

∂t
+ X(

∂ϕ′

∂t
) +

∂ϕ′

∂t
.

Let

at =
∫

M

∂ϕ′

∂t
eθX+X(ϕ′)ωn

ϕ′ .

Then it is easy to see that

(4.9)
dat

dt
= at −

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n.
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Lemma 4.2. Suppose that M admits a Kähler-Ricci soliton (gKS, X). Let g be
a KX-invariant Kähler metric on M . We choose h in equation (1.2) by adding a
suitable constant so that

(4.10)
1
V

∫
M

(h − θX)ωn
g = − 1

V

∫ ∞

0

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)−t(ωϕ′)n ∧ dt.

Then the solution ϕ′(t, ·) of (4.7) with the initial condition ϕ′(0, ·) = 0 satisfies

lim
t→∞

∫
M

∂ϕ′

∂t
eθX+X(ϕ′)ωn

ϕ′ = 0.

Proof. By (4.9), we have

(4.11)
(e−tat)

dt
= −

∫
M

e−t‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n.

Note that

h − θX = −∂ϕ′

∂t
|t=0

and
a0 =

∫ ∞

0

∫
M

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)−t(ωϕ′)n ∧ dt.

Then we have

at =
∫ ∞

t

et−s‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n ∧ ds

≤
∫ ∞

t

‖∂ ∂ϕ′

∂t
‖2eθX+X(ϕ′)(ωϕ′)n ∧ ds

→ 0, as t → ∞.

Thus the lemma is true. �
Proposition 4.1. Suppose that M admits a Kähler-Ricci soliton (gKS , X). Let ϕ
be a solution of (1.2). Suppose that the initial metric g is KX-invariant and that h
is normalized as in Lemma 4.2. Then the constants ct in Lemma 1.1 are uniformly
bounded. Consequently, the ∂ϕ

∂t are uniformly bounded.

Proof. Let ϕ′(t, ·) be the solution of equation (4.7). Then
∂ϕ′

∂t
=

∂ϕ

∂t
+ θX + X(ϕ′).

Thus by Lemma 4.2, we get

|
∫

M

−∂ϕ

∂t
eθX+X(ϕ′)ωn

ϕ′ | ≤ C

for some uniform constant C, and so

V |ct| ≤ C + |
∫

M

hte
θX+X(ϕ′)ωn

ϕ′ |.

Here we use the fact that the |X(ψ)| are uniformly bounded for any ψ ∈ MX(ωg)
[Zh]. Therefore by Lemma 1.1, we obtain

|ct| ≤
C

V
+ A

and
|∂ϕ

∂t
| ≤ C

V
+ 2A. �
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5. A C0
-estimate

In this section, we use the properness and monotonicity of µ̃ωg
(·) to derive the

C0-estimate for solutions of (1.2). We will assume that M admits a Kähler-Ricci
soliton (gKS , X).

Let us recall two other functionals on MX(ωg) introduced in [TZ2]:

F̃ωg
(ϕ) = J̃(ϕ) − 1

V

∫
M

ϕeθX ωn
g − log(

1
V

∫
M

eh−ϕωn
g )

= − 1
V

∫ 1

0

∫
M

∂ψ

∂t
eθX+X(ψ)ωn

ψ ∧ dt − log(
1
V

∫
M

eh−ϕωn
g )

(5.1)

and

J̃(ϕ) =
1
V

∫ 1

0

∫
M

∂ψ

∂t
(eθX ωn

g − eθX+X(ψ)ωn
ψ) ∧ dt,

where ψ = ψt (0 ≤ t ≤ 1) is any path from 0 to ϕ and both functionals are
independent of the choice of path [Zh]. The following result was proved in [TZ2].

Lemma 5.1. We have

µ̃ωg
(ϕ) = F̃ωg

(ϕ) − 1
V

∫
M

(hωϕ
− θX − X(ϕ))eθX+X(ϕ)ωn

ϕ +
1
V

∫
M

(h − θX)eθX ωn
g ,

where h and hωϕ
are smooth functions determined by the relation (1.1) associated

to ωg and ωϕ, respectively, and normalized by∫
M

ehωn
g =

∫
M

ehωϕ ωn
ϕ = V.

In particular, we have

(5.2) µ̃ωg
(ϕ) ≥ F̃ωg

(ϕ) − C.

The following lemma was proved in [CTZ] by using the same arguments in [TZ1].

Lemma 5.2. Assume that M admits a Kähler-Ricci soliton (gKS , X), and let
Λ1(ωKS , X) be the space of eigenfunctions of the first nonzero eigenvalue of the
second order elliptic operator L defined on MX(ωKS), where

Lϕ = 
gKS
ϕ + X(ϕ).

Then for any ϕ ∈ Λ1(X, gKS)⊥, we have

(5.3) F̃ωKS
(ϕ) ≥ CIωKS

(ϕ)
1

4n+5 − C ′

for some uniform constants C and C ′, where

IωKS
(ϕ) =

1
V

∫
M

ϕ(ωn
KS − (ωKS +

√
−1
2π

∂∂ϕ)n).

In order to apply the above lemma to obtain a C0-estimate for solutions of
(1.2), we shall modify the flow. Let ρt ∈ Autr(M) be a family of holomorphic
transformations on M . Let

(5.4) ωϕ̃ = ρ∗t ωϕ = ωg +
√
−1
2π

∂∂ϕ̃,

where ωϕ is the evolved metrics in the flow (1.2). Then ωϕ̃ satisfies

(5.5)
∂

∂t
ωϕ̃ = −Ric(ωϕ̃) + ωϕ̃ + LRe(X̃)ωϕ̃,
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where X̃ = X̃t = ρ−1
t · dρt

dt ∈ η(M) is a family of holomorphic vector fields on M .
Consequently we get a Monge-Ampère flow for ϕ̃ (modulo a constant),

(5.6)
∂ϕ̃

∂t
= log

det(gij + ϕ̃ij)
det(gij)

+ Re(X̃(ϕ̃)) + ϕ̃ − h + Re(θX̃),

where θX̃ is the smooth function defined by (4.1) for the holomorphic vector field X̃.
From the proof of the uniqueness of Kähler-Ricci solitons in [TZ1], one can choose
a holomorphic transformation ρt for each t so that ϕ̃(t, ·) − Ψ0 ∈ Λ1(ωKS , X)⊥,
where Ψ0 is a smooth function satisfying

(5.7) ωg = ωKS −
√
−1
2π

∂∂Ψ0.

Proposition 5.1. Suppose that M admits a Kähler-Ricci soliton (gKS , X). Let ϕ̃
be a solution of (5.6). Suppose that the initial metric g is KX -invariant and that
h is normalized as in Lemma 4.2. Then there is a uniform constant C such that

(5.8) ‖ϕ̃‖C0(M) ≤ C.

Proof. Note that the existence of Kähler-Ricci soliton (gKS , X) implies that FX(·) ≡
0. By (4.3) in Lemma 4.1, we have

µ̃ωg
(ϕ̃) = µ̃ωg

(ϕ) ≤ 0.

It follows that

µ̃ωKS
(ϕ̃ − Ψ0) = µ̃ωKS

(−Ψ0) + µ̃ωg
(ϕ̃)

≤ µ̃gKS
(−Ψ0).

On the other hand, by Lemma 5.2, we have

F̃ωKS
(ϕ̃ − Ψ0) ≥ CIωKS

(ϕ̃ − Ψ0)
1

4n+5 − C ′.

Thus by Lemma 5.1, we see that there is a uniform constant C1 such that

IωKS
(ϕ̃ − Ψ0) ≤ C1.

This shows that

(5.9) I(ϕ̃) ≤ C2.

It is clear that (5.6) is equal to

(5.10) det(gij + ϕ̃ij) = det(gij) exp{h +
∂ϕ

∂t
◦ ρt − ϕ̃}.

Since ∂ϕ
∂t ◦ ρt is uniformly bounded (Proposition 4.1), we can apply Proposition 3.1

to the solution ϕ̃ of (5.10). Thus by (5.9), we have

oscM ϕ̃ ≤ C3(I(ϕ̃)n+1 + 1) ≤ C4.

The estimate (5.8) follows from this. �
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6. Higher order estimates and proof of main theorem

In order to get higher order estimates of solutions to (5.6), we shall modify the
gauge transformations again which appeared in Section 5. The argument used here
is similar to one in Sections 6 and 7 in [CT2]. First we observe

Lemma 6.1. Let ρt be a family of holomorphic transformations defined in Section
5. Then for each integer i = 0, 1, . . ., we have

(6.1) ‖ρ−1
i+1 · ρi − I‖ ≤ C

for some uniform constant C, where the norm ‖ · ‖ denotes the distance between
two elements in Aut(M).

Proof. Let ϕ̃ be a solution of (5.6). Then

(ρi)∗ωϕi
= ωϕ̃i

= ωg +
√
−1
2π

∂∂ϕ̃i

and

(ρi+1)∗ωϕi+1 = ωϕ̃i+1 = ωg +
√
−1
2π

∂∂ϕ̃i+1.

It follows that

(ρi)∗ωϕi+1 − (ρi)∗ωϕi
= (ρi+1 · (ρ−1

i+1 · ρi))∗ωϕi+1 − (ρi)∗ωϕi

=
√
−1
2π

∂∂[ϕ̃i+1 · (ρ−1
i+1ρi) − ϕ̃i] + [(ρ−1

i+1ρi)∗ωg − ωg].

Thus

(ρ−1
i+1ρi)∗ωg − ωg = −

√
−1
2π

∂∂[ϕ̃i+1 · (ρ−1
i+1ρi) − ϕ̃i + (

∫ i+1

i

∂ϕ

∂t
dt) · ρi].

Since the smooth function

G = ϕ̃i+1 · (ρ−1
i+1ρi) − ϕ̃i + (

∫ i+1

i

∂ϕ

∂t
dt) · ρi

is uniformly bounded by Proposition 4.1 and (5.1), we have

‖ρ−1
i+1ρi − I‖ ≤ C

for some uniform constant C. �

Using Lemma 6.1, one can choose a modified family of holomorphic transforma-
tions ρt ∈ Autr(M) (0 < t < ∞) to replace ρt such that for any t ∈ (0,∞) (cf.
[CT2]),

(6.2) ‖ρ−1
t ρt − Id‖ ≤ C

and

(6.3) ‖(ρ−1
t )∗

dρt

dt
‖g ≤ C,

where the (ρ−1
t )∗

dρt

dt = Xt ∈ ηr(M) induce a family of holomorphic vector fields on
M . Furthermore, for any k ≥ 0, we may assume that there is a constant Ck such
that

‖∂kXt

∂tk
‖g ≤ Ck.
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Let ϕ = ϕt be a family of smooth functions determined by

(ρt)
∗ωϕ = ωg +

√
−1
2π

∂∂ϕ.

Such a family is unique modulo addition by constants. Then by adding appropriate
constants if needed, we may assume that ϕ satisfies a complex Monge-Ampère
equation

(6.4) det(gij + ϕij) = det(gij) exp{h +
∂ϕ

∂t
· ρ − ϕ}.

Since √
−1
2π

∂∂ϕ = (ρ−1
t ρt − I)∗ωg +

√
−1
2π

∂∂((ρ−1
t ρt)

∗ϕ̃),

Proposition 5.1 implies that

(6.5) ‖ϕ‖C0(M) ≤ C

for some uniform C.
To obtain a C2-estimate and C3-estimate for ϕ, we need to further modify

the Kähler-Ricci flow equation. Let σt = exp{tX} be an one-parameter sub-
group generated by X associated to the Kähler-Ricci soliton ωKS and let ωρ =
(ρ−1

t · σt)∗ωKS . Define fρ = fρt
by

(ρ−1
t · σt)∗ωKS = ωKS +

√
−1
2π

∂∂fρ.

Since (ρ−1
t · σt)∗ωKS is also a Kähler-Ricci soliton w.r.t to X, we may assume that

fρ modulo a constant satisfies the equation

(6.6) det(gij + (fρ + Ψ0)ij) = det(gij)e
h−θX−X(fρ+Ψ0)−fρ−Ψ0 ,

where Ψ0 is given as in (5.7). Differentiating the equation on t, we have

∆ρ
∂fρ

∂t
+

∂fρ

∂t
= −X(

∂fρ

∂t
),

where ∆ρ = ∆ρt
is the Laplacian operator of the metric ωρ. This implies

(6.7)
∂fρ

∂t
= (ρ0ρ

−1
t · σt)∗

∂fρ

∂t
|t=0.

On the other hand, ∂fρ

∂t satisfies

LX−X(ωρt
) =

√
−1
2π

∂∂
∂fρ

∂t
.

It follows that modulo constants, we have
∂fρ

∂t
= θX−X(ωρt

),

where θX−X(ωρt
) is determined by{

iX−X(ωρt
) =

√
−1
2π ∂θX−X(ωρt

),∫
M

eθX−X (ωρt )ωn
ρt

= V.

Observing that ∫
M

∂fρ

∂t
eθX (ωρt )ωn

ρt
= 0,
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CONVERGENCE OF KÄHLER-RICCI FLOW 691

we can deduce

|θX−X(ωρt
) − ∂fρ

∂t
| ≤ C0

for some uniform constant C0. In particular,

‖∂fρ

∂t
|t=0‖C0(M) ≤ ‖θX−X(ωρt

)|t=0‖C0(M) + C0.

Combining this with (6.7), we get

‖∂fρ

∂t
‖C0(M) ≤ C.

Moreover, for any integer l ≥ 0, one can have

(6.8) ‖∇l
ρ

∂fρ

∂t
‖ωρ

≤ C,

where ∇l
ρ denotes the l-th covariant derivative with respect to the metric ωρ.

Let ψ = ψt = (ρ−1
t · σt)∗(ϕ − Ψ0). Then ψ is uniformly bounded. Note that ψ

satisfies

ωϕ′ = (ρ−1σ)∗ωKS +
√
−1
2π

∂∂ψ

= ωg +
√
−1
2π

∂∂(ψ + fρ + Ψ0),

where ωϕ′ is defined as in Section 4. Thus by (4.4) and (6.6), we get a parabolic
equation for ψ:

∂ψ

∂t
= log

ωn
ϕ′

ωn
ρ

+ X(ψ) + ψ − ∂fρ

∂t
.

This is equivalent to

(6.9)
∂ψ

∂t
= log

(ωρ +
√
−1
2π ∂∂ψ)n

ωn
ρ

+ X(ψ) + ψ − ∂fρ

∂t
.

Since
(ωρ +

√
−1
2π ∂∂ψ)n

ωn
ρ

= (ρ−1
t · σt)∗(

ωn
ϕ

ωn
KE

)

and

| log
ωn

ϕ

ωn
KS

| = | log
ωn

ϕ

ωn
g

+ log
ωn

g

ωn
KS

|

= |h +
∂ϕ

∂t
· ρ − ϕ + log

ωn
g

ωn
KS

| ≤ C,

we have

| log(
(ωρ +

√
−1
2π ∂∂ψ)n

ωn
ρ

)| ≤ C.

It follows that

|∂ψ

∂t
| ≤ | log(

(ωρ +
√
−1
2π ∂∂ψ)n

ωn
ρ

)| + |X(ψ)| + |ψ| + |∂fρ

∂t
| ≤ C ′.

Here we have used the fact that the |X(ψ)| are uniformly bounded for all ψ ∈
MX(ωg) [Zh].
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Lemma 6.2.

(6.10) n + ∆ρψ ≤ C.

Proof. Let ∆′ = ∆′
t be the Laplacian operator associated to ωϕ′

t
. Set

F =
∂ψ

∂t
− X(ψ) − ψ +

∂fρ

∂t
.

Then for sufficiently large c, using (6.9) and following arguments in [Ya], we compute

∆′(e−cψ(n + ∆ρψ)) ≥ e−cψ[
F − C1 − cn(n + ∆ρψ)

+
c

2
(n + ∆ρψ)

n∑
i=1

1
1 + ψii

],
(6.11)

where we choose a local coordinate system at a given point p ∈ M so that ωρ =√
−1
2π

∑n
i=1 dzi ∧ dzi at p and C1 depends only on the metric ωKS . Note that

∆ρF = ∆ρ
∂ψ

∂t
− (n + ∆ρψ) + n − ∆ρ(X(ψ)) + ∆ρ

∂fρ

∂t

≥ ∂

∂t
(n + ∆ρψ) − (‖∇ρX‖ωρ

+ 1)(n + ∆ρψ) − c(n + ∆ρψ) sup
M

X(ψ)

− ecψ(X(e−cψ(n + ∆ρψ))) −
n∑

i=1

(
∂fρ

∂t
)iiψii + ∆ρ

∂fρ

∂t

and
‖∇ρX‖ωρ

= ‖∇X‖ωKS
.

Thus by (6.8), we get

∆ρF ≥ ∂

∂t
(n + ∆ρψ) − C2(n + ∆ρψ) − C3

− ecψ(X(e−cψ(n + ∆ρψ))).
(6.12)

Since
n∑

i=1

1
1 + ψii

≥
n∏

i=1

(1 + ψii)
− 1

n−1 (n + ∆ρψ)
1

n−1

= e−
F

n−1 (n + ∆ρψ)
1

n−1

≥ C4e
ψ

n−1 (n + ∆ρψ)
1

n−1

and
∂

∂t
(e−cψ(n + ∆ρψ)) = e−cψ ∂

∂t
(n + ∆ρψ) − c

∂ψ

∂t
(n + ∆ρψ)

≤ e−cψ ∂

∂t
(n + ∆ρψ) + C5(n + ∆ρψ),

we get from (6.11) and (6.12) that

− ∂

∂t
(e−cψ(n + ∆ρψ)) + ∆′(e−cψ(n + ∆ρψ)) + X(e−cψ(n + ∆ρψ))

≥ e−cψ(−C6 − C7(n + ∆ρψ) + C8e
1

n−1 ψ(n + ∆ρψ)1+
1

n−1 ).
(6.13)
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Applying the Maximal Principle to function e−cψ(n + ∆ρψ) in (6.13), we obtain

n + ∆ρψ ≤ C exp{c(ψ − inf
M

ψ)}(1 + exp{− inf
M

ψ}).

Then (6.10) follows from (6.5). �

Proposition 6.1. Assume that M admits a Kähler-Ricci soliton (gKS, X). Then
(i) the metric ωg +

√
−1
2π ∂∂ϕ is uniformly equivalent to the metric ωg;

(ii) we have a uniform estimate

‖ϕ‖C3(M) ≤ C.

Proof. It follows from (6.9) and Lemma 6.2 that

0 < c1 ≤ n + ∆ρψ ≤ c2.

It follows that
c1 ≤ n + ∆ωKS

(ϕ − Ψ0) ≤ c2.

Then (i) follows easily from this.
For the third derivative estimate, we consider Calabi’s function

S = g
′irg

′sjg
′ktψijkψrst,

where (g
′ij) is the inverse of the Hermitian matrix function associated to the metric

ωρ +
√
−1
2π ∂∂ψ. Note that S is equal to the quantity

girgsjgkt(ϕ − Ψ0)ijk(ϕ − Ψ0)rst,

where (g)ir denotes the inverse of the Hermitian matrix function associated to the
metric ωϕ.

Following Calabi’s computation as in [Ya], by Lemma 6.2, one can get

(∆ρ − ∂

∂t
)(S + c∆ρψ) ≥ C1S − C2.

Here c is sufficiently large, and C1 and C2 are uniform positive constants depending
only on the metric ωKS . Then by the Maximal Principle, we see that S ≤ C. Hence
by part (i), we obtain

‖ϕ‖C3(M) ≤ C ′. �

Proof of Main Theorem. We shall prove that ωϕt
converges to a Kähler-Ricci soli-

ton. First we show that the solution ϕ of (6.4) has uniformly bounded Ck-norms.
Note that ϕ is a solution of the following equation:

(6.14)
∂ϕ

∂t
= log

det(gij + ϕij)
det(gij)

+ Re(X(ϕ)) + ϕ − h + Re(θX).

Differentiating this equation on zk in a coordinate chart of M with local holomor-
phic coordinates (z1, . . . , zn), we have

(∆′ − ∂

∂t
)(

∂ϕ

∂zk
) = gij

∂gij

∂zk
− g

′ij
∂gij

∂zk
− ϕk − (h − Re(θX − X(ϕ)))k.

Since ∆′ is uniformly elliptic and is at least of Cα (0 < α < 1), by the standard
Schauder estimates, we see that ∂ϕ

∂zk
has a uniform C2,α-norm. Similarly, ∂ϕ

∂zk
has a

uniform C2,α-norm. Hence, the C3,α-norm of ϕ is uniformly bounded. Repeating
this process, one can easily show that the Ck-norm of ϕ is uniformly bounded for
each integer k ≥ 0.
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From the above arguments, we see that for any sequence of functions ϕt, there is
a subsequence which converges to a smooth function ϕ∞ on M in the Ck-topology.
Next we show that ωg +

√
−1
2π ∂∂ϕ∞ is a Kähler-Ricci soliton. Let σt = exp{tX}

and σ′ = σ′
t = σ−1

t · ρt. Since∫
M

‖∂((σ′)∗
∂ϕ′

∂t
)‖2

ωϕ
eθX+X(ϕ)ωn

ϕ =
∫

M

‖∂ ∂ϕ′

∂t
‖2

ωϕ′ e
θX+X(ϕ′)(ωϕ′)n,

then by (4.5), we have

(6.15)
∫

M

‖∂((σ′)∗
∂ϕ′

∂t
)‖2

ωϕ
eθX+X(ϕ)ωn

ϕ = −
dµ̃ωg

(ϕ′)
dt

.

By the lower bound of µ̃ωg
(ϕ′) [TZ2], one concludes that there is a sequence of ti,

i = 1, 2, . . . , such that Xi → X∞ and

(6.16)
∫

M

‖∂((σ′)∗
∂ϕ′

∂t
|ti

)‖2
ωϕti

ωn
ϕti

→ 0, as i → ∞.

On the other hand, by (4.4), we have

(6.17)
√
−1
2π

∂∂[(σ′)∗
∂ϕ′

∂t
] = −Ric(ωϕ) + ωϕ + LXωϕ.

Then the Ck-norm of (σ′)∗ ∂
∂tϕ

′ is uniformly bounded, so there exists a convergent
subsequence of (σ′)∗ ∂

∂tϕ
′|ti

. Hence by (6.16) and Lemma 4.2, we conclude that
(σ′)∗ ∂

∂tϕ
′(ti, ·) (still denoted by the same indices ti) converges to zero in the Ck-

topology, and consequently, by (6.17), Kähler metrics ωϕti
converge to a Kähler-

Ricci soliton associated to a holomorphic vector field X∞. By the uniqueness [TZ1]
and [TZ2], we see that X∞ = X and the limit Kähler-Ricci soliton ωg +

√
−1
2π ∂∂ϕ∞

must be β∗ωKS for some element β ∈ Autr(M). For simplicity, we may assume
that β is just the identity in Autr(M).

It remains to prove that ωϕt
converges to (ωg +

√
−1
2π ∂∂ϕ∞, X) as t goes to

infinity. If this is false, then there is a convergent sequence ωϕti
whose limit is not

(ωg +
√
−1
2π ∂∂ϕ∞, X). But by (6.15) and the lower bound of µ̃ωg

(ϕ′), we see that
for any fixed number ε > 0 there is a sequence si ∈ (−ε + ti, ε + ti), i = 1, 2, . . .,
such that relation (6.16) holds for the sequence (σ′)∗ ∂ϕ′

∂t |t=si
. It follows from (6.17)

that ωϕsi
converges to (ωg +

√
−1
2π ∂∂ϕ∞, X) in the Ck sense. On other hand, on

each interval [−ε + ti, ε + ti], ϕ − ϕsi
satisfies the following Monge-Ampère flow:

∂(ϕ − ϕsi
)

∂t
= log

(ωϕsi
+

√
−1
2π ∂∂(ϕ − ϕsi

))n

ωn
ϕsi

+ Re(X(ϕ − ϕsi
)) + (ϕ − ϕsi

) + G,

where
H = −∂ϕ

∂t
|si

+ Re(θX − θXsi
) + Re((X − Xsi

)ϕsi
).

Note that ‖H‖Ck(M) ≤ Cε, when i is sufficiently large. Thus by using the implicit
function theorem, we see that

‖ϕt − ϕsi
‖Ck(M) ≤ δ(ε), ∀ t ∈ [−ε + ti, ε + ti],

when i is sufficiently large. Here δ(ε) → 0 as ε → 0. Since ε can be chosen to
be small, the sequence ϕti

will converge to ϕ∞, which contradicts the assumption.
The proof is completed. �
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Remark 6.1. To get the C2-estimate and C3-estimate of ϕt, we used (6.9) instead
of (6.14). The reason for this is that in (6.9), the holomorphic vector field X is
fixed and X(ψt) is uniformly bounded according to a result in [Zh], while in (6.14),
we do not know how to bound Re(Xt(ϕt)).

Remark 6.2. Following arguments in Section 10 in [CT1], one can further prove
that the evolved metrics ωϕt

of (6.17) will exponentially converge to a Kähler-Ricci
soliton with respect to X in the sense of Cheeger-Gromov. More precisely, there
is a family of automorphisms βt ∈ Autr(M) with ‖βt − Id‖ ≤ C such that for any
integer k ≥ 0 it holds that

‖Dk[β∗
t (Ric(ωϕt

) − ωϕt
− LXωϕt

)]‖gKS
≤ Ck(ε)e−2(λ2−1−ε)t → 0, as t → ∞,

where Dk denotes the covariant derivative of degree k with respcet to the Kähler-
Ricci soliton gKS and ε > 0 is a small number and λ2 > 1 is the second nonzero
eigenvalue of operator 
gKS

+ X(·) on the KX -invariant functions space.

Appendix

In this appendix, we outline a proof of Lemma 1.1 which is taken from [ST]. The
proof consists of three main steps.

Step 1. Let u = −ht. Then we show that u is uniformly bounded from below.
To prove this, we need to introduce Perelman’s W -functional for a pair (g, f):

(A.1) W (g, f) =
∫

M

[(R(g) + |Df |2) + f ]e−fdVg,

where g is a Riemanian metric on M and R(g) denotes the scalar curvature of g
and where f is a smooth function on M which satisfies a normalization condition

(A.2)
∫

M

e−fdVg =
∫

M

dVg ≡ V.

Let
µ(g) = inf{W (g, f)| f satisfies (A.2)}.

It is easy to see that µ(g) can be attained by some f . In [P1], it was shown that
µ(g(t)) is increasing if g(t) is a family of evolved Riemanian metrics along the Ricci
flow. Since in our case of Kähler-Ricci flow (0.1),

R(g(t)) = 4(−
u + n),

we have
C ≤ µ(g(t)) ≤ W (g(t), ht)

=
∫

M

[4(−
u + |∇u|2 + n) + u]e−uωn
ϕ = 4n

∫
M

ωn
g0

+
∫

M

ue−uωn
ϕ,

where 
 and ∇ denote the ∂-Lapalace operator and the covariant derivative of type
(1,0) associated to metric g(t), respectively. Thus

(A.3)
∫

M

ue−uωn
ϕ ≥ −C1.

By (1.3), we have

(A.4)
du

dt
= 
u + u + a,
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for some constants a = at. Using (A.2), we get

a = − 1
V

∫
M

ue−uωn
ϕ ≤ C1.

On the other hand, by using the Maximal Principle, it is known that scalar curva-
ture R = R(g(t)) is uniformly bounded from below. Thus

(A.5)
∂u

∂t
= −R + n + u + a ≤ C2 + u,

where R = −
u + n is the scalar curvature of g(t) after a scale for the case of
Kähler metrics.

Now we assume that u(t0)(x0) < −2C2 < 0 for some time t0 and some x0 ∈ M .
So it holds that

u(t0)|U ≤ −2C2

for some neighborhood U of x0. Thus

∂u

∂t
(t0)|U ≤ C2 + u < −C2 < 0.

It follows that

(A.6) u(t)|U ≤ −C2e
t−t0 ≤ −C3e

t,

for any t ≥ t0.
We choose some constants bt so that ϕ̃ = ϕ̃t = ϕt + bt and u = ∂ϕ̃

dt . Then by
(A.6), we have

ϕ̃(t)|U ≤ −C ′
3e

t,

for any t ≥ t0. Since ϕ̃(t) is an almost subharmonic function, one can apply the
Green’s formula to obtain

(A.7) maxM ϕ̃t ≤ maxU ϕ̃t + C(g0) ≤ −C ′
3e

t + C(g0),

for any t ≥ t0. On the other hand, by (A.5), one sees

∂

∂t
(u − ϕ̃) ≤ C2.

It follows that

(A.8) maxM ϕ̃t ≥ −C2t − maxM (u0 − ϕ̃0).

(A.8) is a contradiction to (A.7) for sufficiently large t. This implies that u(t) ≥
−2C2 for any t and so Step 1 is proved.

Step 2. Choose B so that u + B > 0. Then we claim

(A.9) |∇u|2 ≤ C(u + B)

and

(A.10) −
u ≤ C(u + B).

(A.9) and (A.10) can be proved by using the standard Maximal Principle for the
parabolic operator ∂

∂t −
 (see [ST] for details). For simplicity, we outline a proof
for (A.9).

By (A.4), we have

(
∂

∂t
−
)(
u) = −|∇∇u|2 + 
u
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and

(
∂

∂t
−
)|∇u|2 = −|∇∇u|2 − |∇∇u|2 + |∇u|2.

Let H = |∇u|2
u+B . Then

(
∂

∂t
−
)H =

|∇u|2(B − a)
(u + B)2

− |∇∇u|2 + |∇∇u|2
u + B

+ 2
〈∇u,∇|∇u|2〉

(u + B)2
− 2

|∇u|4
(u + B)3

.

(A.11)

After a simple estimate of the last three terms on the right side of (A.11), one shows

(
∂

∂t
−
)H ≤ |∇u|2(B − a)

(u + B)2
+ (2 − ε)

〈∇u,∇H〉
u + B

− ε

2
|∇u|4

(u + B)3
,

for some small ε. Thus one can use the Maximal Principle to get

maxMH ≤ C.

This proves (A.9).
By (A.9), we get

(A.12) u(x, t) ≤ CDiam(M, g(t))2 + C ′.

So to complete Lemma 1.1, it suffices to prove that the diameters Diam(M, g(t)) of
M are uniformly bounded. Note that we can also get from (A.10) and (A.12) that

(A.13) R(g(t)) ≤ CDiam(M, g(t))2 + C ′

and

(A.14) |∇u| ≤ CDiam(M, g(t)) + C ′.

Step 3. Prove

(A.15) Diam(M, g(t)) ≤ C.

We use an argument by contradiction to prove (A.15). The proof is similar to one
of Perelman’s noncollapsing theorems ([P1]). Let x = xt ∈ M be a minimal point of
function u(t, y) and denote dt(z) = distt(x, z). Let Bt(k1, k2) = {z| 2k1 ≤ dt(z) ≤
2k2} be an annuli in M . Then by using the noncollapsing result of Ricci flow ([P1],
[KL]) together with (A.13) and (A.14), one sees that the following statement is true
([ST]): If Diam(M, g(t)) is large enough, then for every ε > 0 there exists Bt(k1, k2)
such that

(A.16) Vol(Bt(k1, k2)) < ε and Vol(Bt(k1, k2)) ≤ 210nVol(Bt(k1 + 2, k2 − 2)).

Moreover, there exists r1 and r2 and a uniform constant C such that 2k1 ≤ r1 ≤
2k1+1, 2k2 ≤ r2 ≤ 2k2+1 and

(A.17)
∫

Bt(r1,r2)

R(g(t))ωn
ϕt

≤ CVol(Bt(k1, k2)).

Now we suppose that there is a sequence ti such that Diam(M, g(ti)) → ∞.
Then by the above statement there are sequences {ki

1}, {ki
2}, {ri

1} and {ri
2} such

that (A.16) and (A.17) are satisfied for these sequences. Let fi be a sequence of
smooth cut-off functions on R such that fi ≡ 1 on [2ki

1+2, 2ki
2−2] and fi ≡ 0 on
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(−∞, ri
1] ∪ [ri

2,∞). Let ui(z) = eCifi(dt(z)) be a sequence of functions on M such
that

∫
M

u2
i ω

n
ϕti

=
∫

M
ωn

g0
by choosing suitable constants Ci. Since

Vol(Bti
(ki

1, k
i
2)) < εi → 0,

it is easy to see that Ci → 0.
By the monotonicity of µ(g(t)), we have

C ≤ µ(g(ti)) ≤ W (g(ti),−2 lnui)

= e2Ci

∫
Bti

(r1
i ,r2

i )

(4|f ′
i(distti

(z))|2 − 2f2
i ln fi)ωn

ϕti

+
∫

Bti
(r1

i ,r2
i )

R(g(ti))u2
i ω

n
ϕti

− 2Ci.

(A.18)

On the other hand, by (A.16) and (A.17), we estimate∫
Bti

(ri
1,ri

2)

R(g(ti))ui
2ω

n
ϕti

≤ e2Ci

∫
Bti

(ri
1,ri

2)

R(g(ti))ωn
ϕti

≤ C1e
2CiVol(Bti

(ki
1, k

i
2))

≤ C1e
2Ci210nVol(Bti

(ki
1 + 2, ki

2 − 2))

≤ C1210n

∫
M

u2
i ω

n
ϕti

= C1210n

∫
M

ωn
g0

.

(A.19)

Similarly by (A.16), we have

(A.20) e2Ci

∫
Bti

(r1
i ,r2

i )

(4|f ′
i(distti

(z))|2 − 2f2
i ln fi)ωn

ϕti
≤ C2210n

∫
M

ωn
g0

.

Thus inserting (A.19) and (A.20) into (A.18), we get

C ≤ C3 − 2Ci → −∞,

which is impossible. Therefore, (A.15) is true.
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