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Abstract - Zusammenfassung 

Convergence of Method of Lines Approximations to Partial Differential Equations. Many existing 

numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as 

method oflines (MOL) schemes. This paper treats the convergence ofone-step MOL schemes. Our main 

purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. 

The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this 

connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic 

equation and the cubic Schrodinger equation are used for illustrating the ideas. 
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Konvergenz von auf der Linienmethode basierendeo Approximationen partieller Differentialgleichungen. 

Viele numerische Verfahren fiir Anfangswertprobleme fiir partielle Differentialgleichungen kann man 

als Linienmethoden interpretieren. Diese Arbeit behandelt solche Verfahren vom Einschritt-Typ. Unser 

Ziel ist die Behandlung von Konvergenzfragen, insbesondere filr nichtlineare Probleme. Unsere 

Hilfsmittel zum Nachweis der Stabilitiit entnehmen wir der stark entwickelten Theorie fiir nichtlineare 

steife gewohnliche Differentialgleichungen. Wichtig sind hierbei die logarithmische Matrix.norm und der 

C-Stabilitatsbegriff. Eine nichtlineare parabolische Gleichung und die kubische SchrOdingergleichung 

werden verwendet, um die Ideen zu illustrieren. 

1. Introduction 

A well-known approach in the numerical solution of evolutionary problems in 

partial differential equations (PDEs) is the so-called method oflines (MOL). In this 

approach the solution process is thought of as consisting of l wo parts, viz .. the spa1.:e 

discretization and the time integration. In the space discretii'ation the PDE is 
approximated by a system of ordinary differential equations (ODEs) by discretizing 

the space variable by finite differences, finite elements, spectral techniques, etc. The 
time t is then the independent variable of the ODE system. In the second part, the 

time integration, this system is discretized in time to yield the final, fully discrete 
scheme. It is well known that many existing numerical schemes for time dependent 

PDEs can be viewed in this way. Concerning the time integration, we shall confine 
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our discussion to the class of one-step schemes. Concerning the discreti.zation in 

space, we restrict our attention to finite differences. However it should be mentioned 

that the treatment of finite elements or spectral methods offers no essential 

novelty [9]. 

This paper deals with the convergence of MOL schemes. Our purpose is to set up a 

general framework for the convergence analysis. The stability materials for this 

framework are borrowed from the field ofnonlinear stiff ODEs. As a matter of fact, 

the whole analysis is centered around the semi-discrete problem. This is most 

convenient for the analysis and, in particular, allows for a general treatment. For 

example, in setting up the framework it is not necessary to distinguish between linear 

and nonlinear problems, although nonlinearities normally will make the hypotheses 

more difficult to check. 

C-stability 

method of lines analysis 

Fig. 1 

The diagrammatic picture of the stability analysis shows the concepb u;;etl. ln the 

direct grid approach, i.e., when only the PDE and the fully dis1.:rete problem are 

considered, one normally proves the necessary stability by using energy method 

arguments. In the MOL approach the necessary stability for the discretization in 

space can be based on the existence of a bounded logarithmic matrix norm, a 

concept which goes back to Dahlquist [3] (see Section 3 ). The concept of C-stability 

is employed for deciding upon the necessary stability for the time integration. C­

stability is an abbreviation for convergence stability (cf. [11]) and is Jinked with 

stability in the Lax-Richtmyer sense and, more closely with stability in the sense·of 

Kreiss [7]. In many ap.plica,tions C-stability can be concluded directiy from known 

results from the field of nonlinear stiff ODEs [4]. The existence of a bounded 

logarithmic matrix norm is often a prerequisite for proving C-stability. 
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In order to give insight into the feasibility and applicability of the convergence 

theory we shall present a full convergence proof for approximations to a nonlinear 
parabolic problem (Section 5) and a nonlinear Schrodinger problem (Section 6). 

This work is a sequel to the survey papers of Sanz-Serna [9] and Verwer and Dekker 
[11]. Part of our terminology stems from these two articles. 

2. Some Preliminaries 

We consider a real abstract Cauchy problem 

u,=Y'(t,u), 0<t5 T, u(x,O)=u0 (x), (2.1) 

where :F represents a partial differential operator which differentiates the unknown 
function u (x, t) w. r. to its space variable x in the space domain in IR, IR2 or IR: 3 . :F 
should not differentiate w.r. to the time variable t. The function u(x, t) may be a 
vector function. Boundary conditions are supposed to be included in the definition 

of /F. 

To the problem (2.1) we associate a real Cauchy problem for an ODE system, 

U=F(t, U), O<t:S; T, U(0)=U 0 , F(t,·): IR"'-+IRm, (2.2) 

which is defined by a discretization of the space variable in (2.1). For the moment it is 

not necessary to discuss in detail how the semi-discrete, continuous time approxi­
mation (2.2) arises from (2.1). Nor is it necessary, for the time being, to be specific 

about the partial differential equation. The reason is that our convergence analysis is 
centered around the ODE system (2.2). This is most convenient for the analysis and 

allows for the general treatment we aim at. We merely assume that U and F 
represent the values of grid functions on a space grid covering the space domain of 

(2.1 ). Further, we let h refer to the grid spacing, i. e., to the grid distances which may 
vary over the grid. In what follows, p (h)->O means that the grid is refined arbitrary 
far in a suitable manner: p stands for a distance function, e.g., the maximal distance 
in the grid. Note that the dimension m of problem (2.2) depends on h. 

In this paper we a"oid questions concerning existence, uniqueness and smoothness 
or exact and numerical solutions. Hence, we suppose throughout that the two 
Cauchy problems at hand possess unique solutions u(x.1) and L" (I f. respecti've!y. In 
addition, it is supposed that the true PDE solution is as smooth as the numerical 
analysis requires. 

Let rh be the natural restriction operator on the space grid. We write uh (t)= rh u (x, t). 
If the discretization in space is convergent, the space discretization error 

(2.3) 

can be made arbitrarily small upon grid refinement. We shall discuss an error bound 
for 17 which depends merely on the smoothness of uh and on the stability of the ODE 
system (2.2) through a logarithmic matrix norm ( cf. Dahlquist [3]). This error bound 
exploits fully the ad vantage of the notion oflogarithmic matrix norm which is also 
used later on in the paper. This error bound for 17 is discussed in Section 3. 



For the !imc mtcgra:1nn I he semi-dis..:rete 

con.:-entrate one-step schemes. Let the relation 

represent such a scheme. Here t 0 =0 and L'" is the approximation to L \!.'.At this 
we !et rand be parameters l f 1 he scheme 

formula. the time discretization error. or time error 

will vanish as r -.o for any fixed grid spacmg. h should be emphasized. however. that 
the use of a convergent ODE solver and a convergent diseretizalion in space, no! 

guarantees that the full d1scret1Lation error 

(2.6) 

will v~rnish for 1.k"Creasing rand p \h). It may be necessary to impose an additional 
relation between rand p (h).A classical example is furnished by the one dimensional 
heat equal km u1 = u_.,. If we discretize in space on an equidistant grid using second 
order finite differences and integrate in time with the forward Euler method, the 
well-known additional relation r ~ ! h2 is required [8]. The explanation of this 
behaviour is related lo the fact that the standard bounds for otl.-1 .l used in the 
convergence theory of ODE solvers, involve the Lipschitz constant of the system 
(2.2) and these constants increase with decreasing h. Therefore in order lo achieve 
the convergence of U" to uh as t -->0 and p --•O, we must demand that the 
convergence of c~ to l (t 0 ) be uniform, in some appropriate sense, in the grid 
spacing. Here the recent results from the field of nonlinear stiff OD Es fit into the 
picture, as the Leitmotiv in those developments is the derivation of error hounds 
which hold uniformly with respect lo the Lipschitz constant or the stiffness of the 
problem [4], [5]. We shall discuss these matters in Section4. 

3. Convergence of the Oiscretization in Space 

Consider the two Cauchy problems (2.l l, (2.2). Introduce the space trum.:at1on error 

:x(t1=F(t, (3. !) 

where 111, (tj =dun (t). dt = r, u1 (x, t), i.e., the restriction of the derivative u1 of the true 
PDE solution u to the space grid. The defect a is obtained by substituting the true 
solution u, into the semi-discrete approximation. Loosely speaking, it measures how 
the partial differential operator :F is approximated by the vector function F. The 
consistency of the method for a given norm means, by definition, that ii ::t{I) ·-+Oas 
p (h) ·-+ 0 uniformly in t. 

It now trivially follows that 11. the d1scretization error in space, is a solution of the 
ODE system 

~=f(l,ui,+11)-F(r, + :x(tl, (l<t:::; T. 

Using the mean value theorem for vector functions, we can write 

~=:\1(tl11+ci(ti, O<t:-<; T, 

(3.2) 

(3.3 a) 
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M(t)=j F 1 (t,u,,+871)d8, 
0 

where f' (t, ·} is the Jacobian matrix of F (t, ·). 
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(3 .3 b) 

This result shows that 17 (t) depends essentially on o:: (t), which is determined 

completely by the smoothness of u and the quality of the approximation in space, 

and on the stability of the ODE system (2.2). We shall give a bound for 11 from which 

convergence of U to u,, can be derived, provided that the discretization in space is 

consistent. This bound leans completely upon the fundamental concept of a 

logarithmic matrix norm and is due to Dahlquist [3]. For details on the important 

role of the logarithmic matrix norm in proving stability of stiff nonlinear ODE 

systems the reader can also consult [4], Section 1.5. 

Introduce a norm II· II on ~"'. Letµ[·] be its corresponding logarithmic matrix 

norm. Let T,,(t)= {( :( =uh(t)+811 (t),0.:::;;8::;; l} and let µmax be a constant such that 

µmax ~ max {p [F' (t, m : ( E Th (t)} for all t E [O, T]. 
{ 

(3.4) 

Hence for each t we compute the maximal logarithmic matrix norm of F' on the line 

segment T,, (t) and majorize these by µmax· Then 

I 

~I 11 (t) II 5el''""'' ii 17(0)11+Jeµ .. ,.u-ri11 :>:(r) !! dt. (3.5) 

0 

Supposing that II ri (0) II = 0, we can write 

:iry(t}ll.:::;;C(t,µmaxl max Jloc(r)ll,O.:::;;r.:::;;T, 
O::;r::;r 

(3.6) 

where C (t,µmaJ = (eµm,,t -1)/µmax depends solely on t and µmax· Consequently, if a 

constant µmax exists independent of the grid spacing, I! I'/ (t) I\ -40, for p (h)-+O. Thus 

we can state 

Theorem 3. l: Suppose that the discretization in space is consistent and that µmax 

exists independent of the grid spacing. Then the discretization in space is con­

vergent. D 

The practical importance of this theorem lies in the fact that in many applications in 

the field of nonlinear, time dependent PDEs a µmax can be determined which is 

indeed independent of h (see the Sections 5, 6 and [9, 11]). Applications can also be 

found in the solution of stationary problems in PD Es by means of iterative methods. 

As it is well known many of these methods can be thought of as integrating in time a 

related time dependent PDE whose asymptotic solution uh (co) should give the 

desired stationary solution (see, e. g., [13]). Here it is required that µm•• < 0. 

The inequality (3.5) is in fact nothing else than a stability inequality for the Cauchy 

problem (2.2). To see this, Jet U, 0 be two solutions belonging to two different initial 

values U0 and 0°, respectively. Let µmax now satisfy 

µmax~max {µ [F' (t, OJ: ( =e U (t}+(l -8) 0(t),0.:::;;es1}, 0 -:=;t.:::;; T. (3.4') 
( 

Then (cf. [3]), 

ii U(t)-U(t)!I :s;;el"max' II Oo-Uo 11, O.:::;;t~ T. (3.5') 
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The inequality (3.5) is equivalent to this stability inequality which can be refined 

somewhat by taking µm•x time dependent. The growth factor exp (µmax t) is then 
replaced by 

exp (i µmax(r)di:). (3.7) 

Observe that the inequality (3.5') trivially implies uniqueness of solutions for system 
(2.2) for any grid spacing. 

Remark 3.1: For the standard fP norms the expression forµ is known. Let A =(aii) 

be a realm x m matrix. For the norms 11·11 1 and 11 · llw on IR1"', 

µ1 [A]=m~x(et;rr L laiJI), µ"' [A]=m~x (a;;+ L Ja1il). (3.8) 
J iT-j ' j'/'i 

For inner product norms, Ii (II=((, 0 112 , 

µ[A]=max(A(,D/11~11 2 • 
~'1'0 

(3.9) 

Hence, for the spectral norm, µ2 [A] is the maximal eigenvalue of the symmetric part 

(A + A T)/2 of A. 0 

Remark 3.2: It follows from (3.9) thatµ [A] ~ v if v represents a one-sided Lipschitz 
constant of A, i.e., (A(, O :$ v Ii ( 11 2, 'v' ( e !Rm. Loosely speaking, the logarithmic 
matrix norm might be considered as a generalization of the one-sided Lipschitz 
constant for norms other than inner product norms. When dealing with inner 
product norms it is sometimes more convenient to use the one-sided Lipschitz 

condition for F, 

(F(t,,1)-F(t,(2),(1 -(2)~v Ii (1-(211 2, 

\f(1,(2E Tdt), 'v'tE[O, T], 
(3.4"} 

rather than computing F' and using (3.9). Any constant v satisfying (3.4"), a one­
sided Lipschitz constant for F, may be used for llmax in the inequalities (3.4),(3.4'). 0 

Remark 3.3: Obviously, the accuracy of U will depend largely on the magnitude of 
the truncation error a. For finite times, i.e., T < ;x,, the bound (3.6) shows that 

;; Y/ (t) II has the same rate of convergence as II a: (t) JI, provided that itmv.> exists 
independent of h. If µmax<O, this bound also applies to Cauchy problems on infinite 
time intervals. For dissipative pro bi ems it is often possible to prove the existence of a 

negative µmax· If µrnax = 0, (3.6) allows a linear growth of the space error in time. If 
µma,>0, it allows an exponential growth of this error in time and will mostly be 
rather pessimistic on long time intervals. D 

4. Convergence of the Full Discretization 

Consider the integration method (2.4) for the Cauchy problem (2.2}. in this section 
we shall study the full convergence of this method as -t-+O and p (h)-+O. For ease of 
presentation we restrict ourselves to constant stepsizes i:, i.e., in the limit process 
we take t.+ 1 e{O, T] fixed and suppose that -r-+O, n-+oo in such a way that 
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(n+ 1) • = tn+ 1 . The restriction to constant stepsizes is not essential for our results 

and, as it is well known, can be removed. 

Let us introduce the full truncation error 

~ +1 
/3(tn+d= un -uh(tn+1L 

On+ 1 =uh (tn)+i- <P [r, uh(tn), On+ 1]. 

(4.1) 

Observe that f3 is defined with respect to the true PDE solution and not for the true 

ODE solution U. If we had used Uthe time truncation error 

y(t.+ i) =on+ 1 - u (t.+ 1), o•+l = u (tn}+ t <P [i-, u (t.), o•+l J (4.1') 

would have been obtained which is considered normally in numerical ODE theory. 

ln the setting of PD Es the error (4.1) is to be preferred for the convergence analysis 

for reasons which will be discussed in Section 7. Note that, in a sense, the full 
truncation error f3 contains the space truncation error a, given by (3.1), as the 

increment operator <P of the integration formula depends on the ODE operator F. 

Let us express the full discretization error i:(t.,+ 1), given by (2.6), as 

e(t,,+1)= u•+1_0•+1 +/3(tn+il. 

and suppose that for a positive KE !Rand a norm on !Rm, 

1: 0"+ 1 - u•+ 1 11 -5,.K II U"- un II, On=uh(tn)-

(4.2) 

(4.3) 

Then II s(t.+tl\1-5,.K i[8(t.) II +x, where x is an upper bound for {3. The error e(t.+i), 

i. e., the error after n + 1 time steps, then is easily shown to satisfy 

1-K•+I 

ileUn+1)Jl-5,.K"+ 1 lle(tolll+x , Kfl. 
1-K 

(4.4) 

This standard inequality is the starting point for the full convergence analysis which 

is based on the concept of C-stability. In the definition below a second numerical 

solution O•+i is considered, i.e., On+i = U"+i <P [i-, 0", 0"+ 1]. 

Definition 4.1: Let :I . Ii be a norm on !Rm. The integration method is called C-stable 

for the Cauchy problem (2.2), with respect to this norm, if a positive real number 

r0 = i-0 (h) and a real constant C0 , independent of• and h exist, such that for each 

i-r=(O,i-0] and each V", 0 11 e!Rm 

(4.5) 

Remark 4.1: Note that for On, on+I one may substitute uh(tn) and On+I 

(cf. (4.3)). D 

C-stability is an abbreviation for "convergence stability" and is linked with stability 

in the Lax-Richtmyer sense [8] and, more closely with stability in the sense of Kreiss 

[7] (sometimes referred to as strong stability [8]). If C0 $;0 and we think of U", as 

being a numerical solution, and of 0" as being-a perturbation of U ", then ( 4.5) shows 

that the perturbation will not increase in time. l1he bound (4.5) then prov.ides the 
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definition of contractivity, also called "computing stability" [11], a concept which 

plays a major role in recent developments in ODEs [ 4]. If C0 > 0, we allow an 

increase in the difference U" - un. In this case C-stability is mainly useful in the 

convergence analysis and not as a concept of "computing stability". Finally note 

that the essence of C-stability in the context of PD Es, is that C0 is independent of the 

grid spacing. 

Let us now suppose that for a given Cauchy problem (2.2) the integration method is 

C-stable. We then may substitute 1e == l + C0 r into the bound (4.4). An easy 

derivation yields the familiar expressions 

{ 
r - 1 X I Co 1- 1 , 

11s(tn+i)11 ~ 'L - 1 X tn + 1' . 

,-1 xC01(eco1.+1-l), Co>O, 

(4.6) 

where, for convenience, Ii c:(t0 ) II is taken to be zero. By the hypotheses of C-stability, 

we can conclude that this error bound is valid uniformly in the grid spacing under 

the stepsize restriction re(O, r0 (h)]. Note that for C0 <0 (strict contractivity) the 

bound is useful for infinite time intervals. 

Finally we suppose that the full discretization is consistent, i.e., 

{4.7) 

uniformly in n. It is then evident that we can state 

Theorem 4.1 : Suppose that the Jui! discretization is consistent and the integration 

method C-stable. Then the full disCl'etization is convergent. 0 

At this place we want to emphasize that the stepsize restriction for C-stability, i.e., 

re (0, r 0 (h)], may lead to additional conditions on the refinement of the time- and 

space grid. It is well known that for explicit integration formulas r0 (h)-+O as 

p(h)-+O. 

Remark 4.2: The C-stability theory of implicit Runge-Kutta methods for stiff 

ODEs, where the statement "independent of the grid spacing" is to be replaced by 

"independent of the stiffness", has already been developed to a considerable extent 

[ 4]. For example, for constant coefficient linear systems dissipative in inner product 

spaces the celebrated property of A-stability implies C-stability where C0 =0. 

Likewise, the property of B-stability [2] for nonlinear dissipative problems is a 

C-stability property where again C0 =0. A general result for non-linear problems 

satisfying the one-sided Lipschitz condition (3.4") can be found in [4], 

Theorem 7.4.2. Because of the intimate relationship with semi-discrete PDEs many 

results from the field of nonlinear stiff ODEs apply to PDEs in a straightforward 

manner. For integration methods not belonging to the class of implicit Runge-Kutta 

methods the hypotheses of C-stability must be verified separately. By way of 

illustration we shall devote the Sections 5 and 6 to two examples. O 



Convergence of Method of Lines Approximations 305 

5. A Nonlinear Parabolic Equation 

We consider a nonlinear, one space dimensional, scalar parabolic initial-boundary 

value problem of the type (cf. [12]) 

74= f (t,x, u, aax &(t,x) ::) ). 0<t5. T, xe.Q=(O, 1), 

u(O,t)=b0 (t), u(l,t)=b1 (t), O<t:s=;; T, (5.1) 

u(x,O)=u0 (x), Osxsl, 

where the functions p(t,x) andf(t,x,a,b) satisfy the familiar conditions 

p(t,x):2:::p0 >0, O<ts T, xe.Q, 

of(t,x,a,b)/iJb;::::fo >0, 0<t5. T, xe.Q, a,bE~. 

(5.2a) 

(5.2b) 

Here Po and fo are constants. In addition, we suppose that there exist real numbers 

f_ 1,J1 such that 

f- 1 s8f(t,x,a,b)/8asf1, O<t:s=;; T, xe.Q, a,be~. (5.3) 

5.1. Discretization in Space 

We space discretize the problem on a nonequidistant finite difference grid. Define 

Qh={xi:xi=Xi-l +hi,j= 1 (l)m; x0 =0,xm+l = l}. 

Apply 3-point finite differences for the discretization of (p(t,x)u,J't. Let Viand Fi be 
thej-tb component of the grid functions U and F, respectively. Then, for j= 1 (1) m, 

Fi(t, V)= f(t,xi, Vi, ( 2 ) (si- Ui_ 1 -(si- +st) Ui+s/ Vi+), (5.4) 
Xj+l -Xj-1 ') 

where 

and 

Let us prove convergence of U to uh in 100 , i.e., in the maximum norm 

II U ll:o =maxi I Vil, along the lines of Section 3. The logarithmic matrix normµ"" is 

given by · 

µ 00 [A]=m~x(au+ I laiil), (5.5) 

' 

for any real m x m matrix A= (alJ). Let D be a point on the line segment Th (t) which 

appears in the inequality (3.4) for the logarithmic norm. The Jacobian matrix 

F' (t, 0) of the vector function F (t,-) defined by (5.4) is of the form 

F'(t,0)=D 1 +D2 D3 S, (5.6) 

where D1, D2 , D3 are m x m diagonal matrices and Sis a symmetric tridiagonal m x m 

matrix. The entries of D 1 are the derivatives off to the third argument. All en tries are 

21 Computing 33/3 -4 
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less than or equal to the constant/1• The entries of Di are the derivatives off w. r. to 

the fourth argument and, by assumption, Di is positive definite. D3 contains all 

numbers 2/(xi+ 1-xi_1), hence is also positive definite. Finally, the entries in thej-th 

row of Sare just the numbers si-, -(si- +s/), s/. It follows that Sis diagonally 

dominant with negative diagonal entries. 

Now we are ready to compute µ 00 [F' (r, 0)]. First, we conclude that µ,,, [S] = O. 

Then, using the positive definiteness of D2 and D3 , we findµ"" [D2 D 3 S] =0, too. It 

follows that 

µ"" [F'(r, 0)] -::;J;, 0 s t s T. (5.7} 

Clearly, this inequality is valid for any U E Th (t), 0 ::s; r ::s; T (it is even valid for 0 

arbitrary in ~m). Hence we have found a bound µmax = J; satisfying (3.4) for any h, 

and µmaxis independent of h. There remains to verify the consistency of the space 

discretization. As it is well known, any component ai of the truncation error (3. l) 

satisfies 

ai=O(p(h)) as p(h)->-0, p(h)=m~x(h), (5.8} 
J 

provided that max (h)lmin (hi) remains bounded. Consequently, the discretization is 

consistent oforder one. We have II Y- (t) :1~=0 (p (h)), 0 ~ t ~ T. The convergence in/"° 

follows from Theorem 3.1. 

5.2. Disc::retizacion in Space and Time 

Along the lines of Section 4 we shall prove["' convergence of the two fully discrete 

schemes which are obtained by applying the implicit and explicit Euler rules 

U"..-1 =Un+rF(tn+1.U"+1), 

un+ 1 = U"+r F(t,,, U"), 

(5.9) 

(5.10) 

to the semi-discrete continuous time system (5.4). We first consider the implicit 

scheme. Its C-stability can be concluded directly from the information available on 

the semi-discrete approximation using known results from the field of stiff OD Es. 

Let On, U" 11 be a second implicit Euler solution. Using (5.7) and Theorem 2.4.1 of 

[4] we find that, if rf1 < l, then 

iiOn+i_un+i 1 <--1-:10"-U"ll. 
"""-l-t/1' :;(. 

(5.11) 

This means C-stability under the stepsize restriction -cj~ < l, Note that the 

amplification factor and the restriction on' are both independent of the grid spacing 

and are in fact valid in the whole numerical solution space due to the introduction of 

the constant Ji in (5.3). 

We next examine the full truncation error (4.1) of the implicit scheme. According to 

the definition (3.1) of the space truncation error the true PDE solution satisfies 

uh Un+ i) = [uh(tn + il- r q; (tn+ i}-1: uh (tn+ 1lJ +' F Un+ 1, U11 (tll + il), (5.12) 
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while the local implicit Euler solution On~ 1 computed from uh(tn) satisfies 

On+ 1 = !lh (tn)+ t F (tn+ I• On+ 1 ). (5.13) 
.. 

By interpreting the relation (5.12) as an implicit Euler step, with the bracketed term 
playing the· role of Un, application of the C-stability inequality (5.11) to the 
equations (5.12), {5.13) yields directly 

1 
II P (tn+ d 11"" s;;--1- II uh(t,,+ i)-uh (tn)-t uh (t,.+ 1)- to: (t,.+ 1) II cc 

1-'tj1 

1 2 
=--1-11 O(t )+ta(tn+dll«>, 

1-r 1 

(5.14) 

for all rf1 < 1. This proves the consistency of the full discretization and according to 
Theorem 4.1, convergence for r, p (h)-+O without any further restriction on t and 
p(h). We emphasize that the second derivative with respect tot of the true PDE 
solution uh appears in the bound. 

We now proceed with the explicit Euler scheme. The truncation error f3 ( t 0 +1) is given 
by 

P (t,.+ 1)= uh (t,,)+ t F (t., uh (t,,))- uh (t.+ 1) 

=uh (t,.)+ t uh(t,.)- uh(t,.+1)+ tct(t,,) 

= 0 (r2 ) + r o:(t.), 

(5.15) 

showing consistency. Next the C-stability. Let 0 11 , 0 11 + 1 be a second explicit Euler 
solution. Then, using the mean value theorem, 

On+ 1 - un+ 1 =(I +t M (t,.)) (U"- U"), 

1 (5.16) 

M(t,.)= J F'(t,.,B U"+(l-8) U")dB. 
0 

For obtaining a C-stability result, we must compute the maximum of 
II I+ r F' (t,., Ollco on the line segment '= e On+(I -8) V", e E [O, l]. Consider the 
Jacobian matrix (5.6). Let D;i be thej-th entry of the diagonal matrix D;for i = 1,2, 3. 
Then 

m~x 111 +t F' (tn, OIL., =m~x max {11 +r D1i-T D2iD3 i(si- +sf)I 
• ' J 

+ r D2 iD3 i(sj + st)} (5.17) 

= 1 +rmax maxDlis 1 +tf1 , 

' j 

if, for all ( and all j, 

(5.18) 

To appraise these inequalities, suppose first that the parabolic equation is ut = uxx 

and that Qh is equidistant (see (5.4)). Then, for all), D 1i=O, D2i= 1, D3 i= h- 1 and 
si- = st = h- 1 , so that the inequality reduces to the well known stability result 
r::;; t h2 • Consequently, in case of u1 = uxx and Qh equidistant, explicit Euler is C­
s table in /00 under the stepsize restriction t s;; t h2 • 

21* 
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Let us return to the general case. Inequality (5.18) yields a bound fort (the bound t 0 

in Definition4.l). However, this bound still depends on the numerical solution U" 

through the diagonal matrix entries D1 i and D2 i. TI1e dependence is removed by 
using the hypotheses (5.2 b), (5.3). If r satisfies 

l'(j0 D3 i(sJ·+s]")-f_ 1)sl, (5.19) 

we thus arrive at (for any pair of numerical solutions) 

11 On+ 1 - un+ 1 11 "'s{l + 't'fi) 11 0 11 - U 11 lie.,. (5.20) 

This proves C-stability in/"" of explicit Euler for the semi-discrete system (5.4) under 
the stepsize restriction 

(5.21) 

6. The Cubic Sehrod.inger Equation 

From [10] we quote the following initial-boundary value problem for the cubic 

Schrodinger equation (here u = [v, w Y), 

v1 +wxx+(v2+w2)w=0, O<tsT, xeQ=(xL,xR), 

w,-vxx-(v2 +w2)v=0, O<ts T, xeQ=(xL,xR), 

vx(x,t)=wx(x,t)=O, x=xL,xR and O<ts T, 

v(x,0)=v0 (x), w(x,0)=w0 (x), xLsxsxR. 

6.1. Discretization in Space 

Let us space discretize (6.1) on the equidistant grid 

Qh={x1 =xL,xi=Xi-l +h(25,j'5',N-1), 

xN=xR; h==(xR-xL)/(N-1)} 

(6.1) 

(6.2) 

for a given integer N. Suppose that standard second order finite differences are used 

for ux and ux,,. Let Jlj(t) and Wi(t) be the resulting approximation for v{xj, t) and 

w(xi,t), 1 sjsN. The semi-discrete, continuous time approximation to (6 .. l)is then 

given by, j = 1 (1) N, 

(6.3) 

where 

V0 = V2, W0 = W2 and VN+l = VN-1' WN+i = WN-t (6.4) 

in accordance with the boundary conditions. 

Let Vi= [Vi, Wi]T, U =[Uf, ... , U~]T. The system can then be rewritten as 

U=F(U)=(S+B(U))U, (6.5) 
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where S is the block tridiagonal matrix 

(
'-2A 2A \ 

-1 A. -2A._A.. I (0 1) 
S=7 l -.. ·A ~2-A ... A j'' A= -1 0 , (6.6) 

2A -2A 

and B(U) is block diagonal, i.e., 

B(U)= -diag(B1.(UJ, ... ,BN(UN)), 

( 0 V?+W~) 
Bi(U)= 2 2 J J • 

-Vi -Wi 0 
(6.7) 

This form is more convenient for our convergence analysis. 

We shall prove convergence of U(t) to uh(t) in the norm associated to the inner 

product 
N 

(U, 0>2 =h L" UJ Dj, U, 0 EIRm, m=2 N. (6.8) 
j=l 

The double quote means that the first and last element in the sum are multiplied by 

t. Observe that system (6.5) is conservative for this norm, i.e., II U (t) 11 2 is constant in 
time [10]. For the /2 norm, the logarithmic norm µ 2 is 

J (AC02 1 . 
µ2 [A =max 2 ., A area m x m matrix. 

~'i'O H 1!2 

(6.9) 

Let 0 be a point on the line segment Th(t). The Jacobian matrix F' (0) can be written 
as 

I - • (-2VjWj -VJ-3WJ\ 
F (V)=S+diag(D), Dj= -2 TTT2 - - )-

3 Vi+ ""J 2ViWi, 
(6.10) 

Because S is skew-symmetric, <SC O = 0, V (, so that 

µ2 [F' (0)] = µ 2 [diag(D)] ~m~x(VJ + WJ). (6.11) 
J 

It follows that (3.4) can be satisfied for a µmax independent of h if VJ+ WJ remains 
bounded as h-+0 for V'te[O, 1]. 

In order to remove this additional hypothesis on boundedness of the semi-discrete 
solution we now resort to a standard argument which was also used in [10]. 
Consider, instead of the problem (6.1), 

Vi+ wxx+a(v2 +w2)w=O, O<ts T, XE D=(xL, xR), 

wt-vxx-a(v2+w2)v=O, O<t~ T, xeti=(xL,xR), 

vx(x,t)=wAx,t)=O, X=XvXR and t>O, 

v(x,O)=v0(x)=w0(x), xL~x5xR, 

(6.12) 

where a(z): IR-+IR is a smooth function such that (i) a(z)=z in a neighbourhood of 
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the exact solution {u(x,t), xLsxsx1b Osts T} of the problem (6.l) (ii} ia'(z}iz is 
bounded. Obviously, such a function can be constructed. 

Lemma 6.1: The initial-boundary value problem (6.12) has a unique solutfon which is 

just the solution u= [v, wY of the problem (6.1). 

Proof: It was assumed that the problem (6.1) has a unique solution u=[v, w]T. 

Clearly, this solution u also satisfies (6.12) because due to hypothesis (i) on the 

function a (z), a (v2 + w2 ) = v2 + w2 . To prove that this solution is unique, we suppose 

that a second solution exists, say u = [v, wY, satisfying the homogeneous Neumann 

conditions and the initial condition u (x, 0) = [v0 (x), w0 (x)Y. Now consider the 

energy functional 
XR 

E(t)= J [(v-v)2 +(w-w)2]dx,OstsT, (6.13) 

which satisfies E (0) = 0. It can be shown that E (t) satisfies a differential inequality 

E(t)sCE(t), O<ts T, C being a positive constant. Consequently, E(t) =0 for all 

t E [0, T]. Thus there is at most one solution. O 

Let (J = F" ( U) be the semi-discrete approximation to (6.12). A calculation similar 

to that for the original system (6.5) reveals that the logarithmic norm 

µ2 [F~(O)] satisfies 

(6, 14) 

By hypothesis (ii) on a(z), for 0=F.(U) a µmax exists independent of h. Because 

0 =F. ( U} is a consistent approximation (of order two) to (6.12), its solution U thus 

converges in 12 to the solution uh of (6.12) as h-+O. This implies also convergence in 

l"' (II • ii oc; ~h- 1i2 II • 11 2 ) so that from Lemma 6.1 and hypothesis (i) on a (z) it now 

follows that for h small enough the solutions of both semi-discrete systems coincide. 

This observation completes the proof of the boundedness of the term VJ+ WJ in the 

inequality (6.11). 

Summarizing, according to Theorem 3.1 we have proved that the ODE system (6.5) 

is a second order convergent approximation in 12 to the cubic Schrodinger problem 

(6.1) (the proof of second order consistency is trivfal). 

6.2. Disc:retization in Space and Time 

Along the Jines of Section 4 we shall prove l2 convergence of the fully discrete scheme 

defined by the implicit midpoint rule 

(6.15) 

This is an obvious scheme for conservative problems such as (6.5) as it is 

conservative, too, i.e., II un llz= ii U(O)ll 2 (n~O). A particular predictor corrector 

implementation of-(6.15) which exploits the pseudo-linear form of the Schrodinger 

equation was studied in [6]. 

The proof of C-stability can be stated again from known results [1, 2, 4, 5, 12] from 
the field of nonlinear stiff ODEs. Let On, (J•+l' be a second• implicit mid-point 
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solution. Then, using (6.10), (6.11) and the inequality (4.5) from [12], it follows that 

- tl l (2+-rv) -
II U" -U"+ 11 2 :::; 2_-rv ii U"-U"llz, Os;n<2, (6.16) 

for any one-sided Lipschitz constant v >maxi (VJ+ WJ), 0 now being a point on the 

linesegmentconnecting1(U" + u•+ 1) and}( U" + Qn+t ). Consequently, the implicit 

midpoint rule is C-stable for the Schrodinger problem (6.5) if componentwise the 

implicit midpoint solution remains bounded ash ->O. Let us assume, for the moment, 

that this is true and let us proceed with the proof of consistency. 

For this purpose it is convenient to introduce the defect (sometimes called truncation 

error, too) 

di (t 11 + 1 )=uh(tn)+r F(iuh(tn)+iuh(tn+1))-uh(tn+1l· (6.17) 

Note that d1 depends solely on the true PDE solution. The full truncation error fJ is 
given by 

[J(tn+1l= un+l _uh(tn+l), 

Qn+l =Uh(tn)+i- F(ruh(tn)+} On+!). 
(6.18) 

We write 

/3 (rn+1l = d l (tn+ l)+ '[ F (t uh (tn)+ t U" + 1 )-i- F Hu,, (t.) +t uh (tn + 1)). (6.19) 

By applying the same techniques which are used for deriving the C-stability 

inequality (6.16) one can prove that 

ll/3(tn+1)ll2:S;(l-}i-v)- 1 ii di(tn+l)[j2, rv<2, (6.20) 

where vis again an upper bound for the logarithmic norm (here computed on the line 

segment connecting On+ 1 and uh(tn+ 1)). 

Next we introduce a second defect 

which is associated to the trapezoidal rule (Crank-Nicholson), and establish that for 

the ODE system (6.5) the difference d(t.+ 1)=d1 (tn+ 1)-d2 (tn+i) is given by 

d Un+ i) =t' B (t uh (t,,) + t uh (tn + i)) (uh (tn) + u,, (tn+ i}) 

-t'r B (uh (tn)) uh (tn)-t-r B (uh(t,. + 1)) uh Un+ 1). 
(6.22) 

It follows that dis independent of the space differencing. A straightforward Taylor 

expansion shows that 

11 d (tn+ 1) 11 2 :S;et3, c independent of r and h. (6.23) 

The final step in the proof of consistency is the examination of d2 • Using the space 

truncation error (3.1) we can write 

d2 (t,, ·f il =uh (tn)-uh (tn+ 1l+h(uh (t.) +uh (tn+ 1)) + h (o: (tn) + Cf. (t,.+ 1l). (6.24) 

From the second order consistency of the trapezoidal rule, the second order 

consistency of the discretization in space, the inequalities (6.20) and (6.23), we thus 

arrive at the consistency result 
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Ii r-l /3(tn+1)ll2::s;C1 r 2+C2h2, rv<2, 

where C1 and C2 are constants independent of i; and h. 

(6.25) 

There remains to remove the boundedness hypothesis on the components of the fully 
discrete solutions un+ 1 • This can be done in exactly the same manner as we did for 

the semi-discrete solution U. In conclusion, according to Theorem 4.1 we have 

proved that the fully discrete implicit midpoint solution U"+ 1 converges in 12 to the 

true PDE solution uh(tn+ 1), as r,h~o. without any further condition on rand h. 

Convergence of the fully discrete trapezoidal solution (Crank-Nicholson) can be 
proved in the same manner. 

Remark 6.1: Substitution of x = C1 r3 + C2 • h2 into (4.6) yields the corresponding 

bound for the discretization error e ( tn + 1 ). Here C0 > 0 as the amplification factor Kin 

(4.4) is given by K=(2+rv)/(2-..-v), where v>O stands for an upper bound for the 

logarithmic matrix norm µ2 computed in a tube around uh (t), 0::::; t::;; T. Due to the 

earlier mentioned property of conservation we can deduce that in (4.6) the 

exponential behaviour for increasing time cannot be realistic. In fact, using 
conservation, we can state the crude bound 

II e(tn+ ,) ll 2:::;; II un+ I iii+ II uh(tn+ 1)112 =II uh(O) 112 +II uh (tn+1) 112. (6.26) 

which shows that e is bounded in time. O 

7. Some Remarks on the Use of the Time Truncation Error 

To conclude this paper we consider briefly the possibility of a convergence analysis 

which is set up completely in accordance with the MOL approach. More precisely, 

an analysis with proves the convergence of the ODE solution to the true PDE 

solution as p (h)-+0 and, separately, the (uniform in h) convergence of the fully 

discrete solution to that of the ODE as r-+O. The convergenceofthediscretization in 

space can be proved along the lines of Section 3. The convergence proof of the time 
integration then requires the use of the time truncation error y given by (4.1') in 

combination with the property of C-stability. Let e be an upper bound for y. 

Supposing C-stability and using y(tn+i) instead of fJ(tn+i) in the derivations of 

Section 4, one thus arrives at the error bound 

II e (tn + 1) 11 ::::; 1111 (t" + i) II + II fJ (tn + 1) II , 

where, similar to (4.6), the time integration error b (tn+ i) satisfies 

{
i:-'(ICol-1, Co<O, 

llli(tn+1)!!::;; i:- 1et.+1•. Co=O, 

i:-1.;=c;1(e<.:o'•+1-I), Co>O. 

(7.1) 

(7.2) 

Obviously, the task is now to prove that r- 1 e~o as r~o, uniformly in the grid 
distance. More precisely, a constant C3 and an integer q should exist, both 

independent of i- and h, such that 

(7.3) 
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As pointed out earlier in [9] this hypothesis of time consistency uniform in h may be 
difficult to verify. For example, consider the inequality (S.14). Using the present 

approach, one finds 

1 I 2 •. · 
iiy(t 11 +dl\ 00 ~--2i- max\Ui(tn+tlj'r)\, O~ei~l, i-}1 <1. (7.4) 

l-i-.f1 j 

In order to ensure time consistency uniform in h, it is necessary to prove that the 
second derivative 0 (t) of the semi-discrete solution U (t) is bounded as p (h)-+0. 

Despite convergence of U ( t) to uh ( t) this property of boundedness of 0 ( t) requires an 
additional investigation. This is the main reason why we prefer the direct approach 
for the consistency part in the convergence proof. An additional reason lies in the 
fact that the approach via(7.l)is not able to account for cancellations between errors 
in the time and space discretization (an example of such a cancellation is provided by 
the Douglas high accuracy scheme for the heat equation, [8], p.190, formulaG). 
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