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ABSTRACT The central question in evaluating
almost any result from a molecular dynamics simu-
lation is whether the calculation has converged.
Unfortunately, assessing the ergodicity of a single
trajectory is very difficult to do. In this work, we
assess the sampling of molecular dynamics simula-
tions of the membrane protein rhodopsin by com-
paring the results from 26 independent trajectories,
each run for 100 ns. By examining principal compo-
nents and cluster populations, we show that rho-
dopsin’s fluctuations are not well described by 100 ns
of dynamics, and that the sampling is not fully con-
verged even for individual loops. The results serve as
a reminder of the caution required when interpreting
molecular dynamics simulations of macromolecules.
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INTRODUCTION

Molecular dynamics simulation has long been consid-
ered a powerful tool to help develop our understanding of
biomolecular systems, allowing us to connect atomic-scale
interactions and fluctuations to the kinetics and thermo-
dynamics measured experimentally. However, making
this connection is complicated by issues of scale: experi-
ments typically track macroscopic numbers of protein
molecules for time periods ranging from microseconds to
minutes, while molecular dynamics is typically restric-
ted to a single macromolecule, simulated for tens or
hundreds of nanoseconds. The situation is further compli-
cated when membrane proteins are involved, because of
the long range structural correlations and slow relaxation
times of lipid membranes. As a result, one of the primary
problems associated with molecular simulation is conver-
gence. That is, do we know if the simulation has run long
enough that the results are well determined? This is an
extremely difficult question, because it involves attempt-
ing to use what has been measured to deduce whether
there is anything of importance which remains unmeas-
ured. Experimentalists often attempt to answer the analo-
gous question by replicating the experiment; repeatability
is a necessary but not sufficient condition for a good mea-
surement. This sort of test, while conceptually straightfor-
ward, has not been broadly adopted by the simulation

community for the simple reason that it is too computa-
tionally expensive; available computer time is consumed
simply by running each simulation as long as possible, de-
spite evidence that multiple short simulations sample
more broadly than a single long trajectory.1

It has long been known that standard molecular dy-
namics is not a particularly efficient technique for ther-
modynamic sampling, and as a result many specialized
techniques have been developed to improve its conver-
gence. For example, umbrella sampling2 and steered dy-
namics3 have been used to enhance sampling to allow the
calculation of potentials of mean force along a particular
reaction coordinate.4–6 The methods are extremely useful
in a broad range of calculations, such as ion permeation,7

peptide conformation,8 and ligand unbinding.9 However,
these calculations are not without their difficulties. For
one thing, one must determine in advance the relevant re-
action coordinate, which in a complex system may not be
obvious. Second, the addition of artifical restraint poten-
tials to the system precludes the analysis of any kinetic
phenomenon. Finally, both methods rely on sampling of
all degrees of freedom orthogonal to the reaction coordi-
nate, some of which may relax slowly and inhibit simula-
tion convergence.

Replica exchange or parallel tempering molecular dy-
namics has become very popular in recent years.10 The
technique combines a large number of simulations at dif-
ferent temperatures, with periodic exchange of tempera-
tures to enhance the sampling at low temperatures. De-
spite significant successes,11 this method too has a number
of drawbacks. The number of replicas needed for efficient
sampling increases rapidly with system size;12 this is espe-
cially significant when considering membrane proteins,
which typically require large numbers of lipids and waters
to form a realistic environment. Moreover, much of the
computational effort is spent sampling at artificially high
temperatures (>400 K). Although several recent methods
have been introduced to reduce the number replicas re-
quired,13,14 they have yet to be broadly adopted.
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Finally, there are a number of sampling techniques
that work by smoothing the potential energy surface, ei-
ther analytically as in algorithms based on Tsallis statis-
tics15 or multicanonical dynamics,16 numerically as in
adaptive umbrella sampling,17,18 or algorithmically by
conducting a random walk in energy space, as in density
of states Monte Carlo.19,20 These methods can also be
combined with replica exchange21 or other external varia-
bles22 to further improve sampling. However, they do suf-
fer some of the same deficiencies as the methods men-
tioned above: they are most efficient for small systems,
require a significant amount of preliminary knowledge of
the system, and distort the kinetic information that is
necessary to compare to many experiments.
Further, standard molecular dynamics has a number of

important advantages. First, the kinetics of the system are
as realistic as can be managed classically, especially if the
microcanonical ensemble is used. Second, one does not
have to impose a particular reaction coordinate, biasing
function, etc. at the beginning of the simulation, and thus
do not have to worry about artifacts due to those perturba-
tions. Third, unperturbed molecular dynamics can make
contact with experiments that have both thermodynamic
and kinetic components; for example, magnetization trans-
fer experiments in magic angle spinning NMR are related
to the time correlation function for proton–proton distan-
ces.23 For these reasons, the performance of large scale
molecular dynamics is still quite important.
Recent advances in supercomputer technology24,25 have

significantly increased our ability to run long time scale
molecular dynamics simulations. Recently, we presented
the results of 26 independently constructed molecular dy-
namics simulations of the G-protein coupled receptor rho-
dopsin embedded in an explicit lipid membrane.26,27

Where those works focused on the interactions between
the protein and lipid, we examine here the behavior of
the protein, focusing in particular on its fluctuations, and
on the degree to which the individual simulations pro-
duce consistent results. We do so using two techniques,
principal component analysis (PCA) and cluster popula-
tion analysis. The former technique seeks to isolate large
scale cooperative motions, while the latter focuses on the
relative populations of substates on the energy landscape.
Despite their differences, both methods give us the same
basic message: the protein fluctuations are not quantita-
tively converged by a single simulation on the 100 ns
time scale.

METHODS

Molecular Dynamics

We performed 26 independent 100 ns molecular dy-
namics simulations of rhodopsin in a membrane contain-
ing 50 1–stearoyl–2-docosahexaenoyl–phosphatidyletha-
nolamine molecules, 49 1–stearoyl–2-docosahexaenoyl–
phosphatidylcholine molecules, and 24 cholesterols. The
details of system construction and simulation methodol-
ogy have been discussed previously,26 and so we will only

briefly summarize them here. The all-atom CHARMM27
force field was used to model the protein,28 while the most
recent CHARMM parameters were used for the satu-
rated29 and polyunsaturated30 chains, and cholesterol.31

The initial protein coordinates were taken from a 2.2 Å
crystal structure of rhodopsin (PDB code 1U1932,33). In
each case, the initial coordinates for the lipid and choles-
terol were regenerated, to ensure that the membrane
environments are truly independent. Construction and
equilibration were performed using CHARMm version
27,34 while production calculations were performed using
Blue Matter,25 a molecular dynamics package specially
written to take advantage of the Blue Gene/L hardware.24

Analysis was performed using Tinker version 4.2,35 with
local additions and modifications. To simplify the analysis,
we used only the backbone a-carbons. The first 20 ns of
each simulation were excluded from the analysis as equili-
bration. Coordinate snapshots were saved every 100 ps,
yielding roughly 800 snapshots per trajectory.

Average Structures

The average structure for a flexible molecule in a molec-
ular dynamics simulation is usually computed by first
aligning the coordinates from each snapshot onto a refer-
ence structure, then averaging the resulting coordinates.
However, the choice of reference structure can clearly
affect the result, and in the case of a complex system like
a protein it is not clear that any of the obvious choices (e.g.
the crystal coordinates, final snapshot, etc.) are optimal.
To avoid this difficulty, we computed the average using an
iterative procedure. First, all snapshot coordinates were
aligned against the first frame, and the average structure
computed. Next, the first pass average structure was used
as the new reference structure, and a new average com-
puted. The procedure was repeated until the RMS differ-
ence between successive average structures was less than
0.001 Å, typically 3 or 4 iterations. These average struc-
tures computed in this manner always had significantly
lower average RMS deviations from the trajectory coordi-
nates than average structures computed in the conven-
tional manner. The procedure was implemented as part of
the Tinker simulation package.35

Principal Component Analysis

PCA is one of the most commonly used tools for analyz-
ing protein fluctuations.10,36–39 This technique seeks to
describe protein motions using a new basis set that
directly reflects the collective motions undergone by the
system. The principal components are computed by find-
ing the eigenvectors (~v) and eigenvalues (k) of the fluctua-
tion covariance matrix

Cij ¼ ðxi # x$i Þðxj # x$j Þ
D E

ð1Þ

where xi is a coordinate of the protein, x8i is the equivalent
coordinate for the reference structure, and the brackets
denote an ensemble average.
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The simplest way to assess the similarity of eigenvec-
tors from different simulations is to compute dot prod-
ucts, which in effect measure the cosine of the angle
between two eigenvectors. Because ~v and #~v are effec-
tively the same eigenvector, we use the absolute value of
the dot product

dij ¼
X3N

k¼1

vik & v
j
k

!!!!!

!!!!! ð2Þ

instead, where N is the number of atoms. To compare two
sets of eigenvectors (e.g. from separate trajectories), we
use the covariance overlap40,41
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The covariance overlap ranges from 0, if all pairs of
eigenvectors are orthogonal, to 1, if they are identical,
and is in effect an average of the squared pairwise dot
products, weighted by the average displacement along
the vector.

Cluster Populations

We examined the convergence of structural fluctua-
tions of the protein using the technique recently devel-
oped by Lyman et al.42 First, we combined the data from
all 26 of our simulations, and performed a simple cluster-
ing procedure. After choosing the first frame as a refer-
ence structure, we collected all other frames with an
RMS deviation less than a given threshold value (Table I)
and defined them to be part of a cluster. We then chose
the first unallocated frame to be the new reference struc-
ture, and continued the procedure until all structures
had been allocated to a cluster. We then compared the
individual simulations to the cluster reference structures,
assigning each frame to the cluster it is most similar to,
allowing us to compute the populations for the clusters.
This procedure was implemented as part of the Tinker
simulation package.35

Examining the deviations of the cluster population dis-
tributions for the various trajectories provides a measure
of their convergence. We computed the population var-
iance for a pair of trajectories as the sum of the squares
of the population differences for each cluster

r2ðPÞ ¼
XN

i¼1

PðiÞ # P0ðiÞð Þ2 ð4Þ

where P(i) is the population of cluster i in a particular
simulation, P0(i) the population of cluster i for all simula-
tions, and N is the number of clusters. The population
variance in itself is not easily intepretable, since the
probability of a given value of r2 depends on P0. Rather,
we compared the mean population variance to that com-

puted via a bootstrap procedure,43 where we generated
artificial distributions by sampling randomly from P0.
Since each datum in the artificial distributions is truly
independent, we can compare the bootstrapped variance
as a function of sample size to the mean variance seen in
the simulations to estimate the effective number of inde-
pendent samples in the real data.

We began each calculation using an RMS threshold of
1.0 Å; reviewing Table I shows that in general this lead
to a reasonable number of clusters. The primary excep-
tions are the C-terminus, where even a 4.0 Å threshold
generated hundreds of poorly populated clusters, and the
C-III loop (connecting helices 5 and 6), where a threshold
of 2.0 Å still leads to 143 clusters, as opposed to thousands
for a 1.0 Å threshold. In the former case, we decided there
was no reasonable threshold that would produce a man-
ageable number of clusters, while in the latter case we
only pursued the higher threshold results.

RESULTS
Average Structures

The simplest way to check for convergence of a set of
protein simulations is to examine the average structures.
It is important to note that the average structure from a
simulation may not be physically meaningful, or even en-
ergetically accessible, if the molecule has multiple distinct
conformations. This does not diminish its value as a tool
for characterizing the sampling, in that large variations in
the average structures from the individual simulations in-
dicate a lack of convergence. In Table II, we list the RMS
deviations of the average structures for the various pieces
of rhodopsin, while Figure 2 shows the probability distri-
butions. Both show that the RMS deviation of the protein

TABLE I. Details of the Cluster Population Analysis

Structure Length Threshold Clusters
Sample
Size

Whole 348 3.0 79 2
Helices 232 1.5 70 2–3
N-terminus 33 1.0 426 11

1.5 50 2
2.0 12 *
3.0 3 *

C-I 8 1.0 9 1–2
E-I 8 0.6 37 1–2

0.8 10 *
1.0 4 *

C-II 7 1.0 42 3
E-II 28 1.0 52 3
C-III 18 2.0 143 5
E-III 9 1.0 39 2

‘‘Length’’ is the number of residues in a particular portion of the mol-
ecule, ‘‘Threshold’’ is the value used to determine which structures
should be clustered with a given reference structure, in Å, ‘‘Clusters’’
is how many clusters were found, and ‘‘Sample Size’’ is the estimated
number of independent samples in a trajectory. A ‘‘*’’ in the ‘‘Sample
Size’’ column meant the population was too skewed to allow estima-
tion of the effective sample size via bootstrap.
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as a whole is larger than that of the transmembrane por-
tion. This is unsurprising, since the helices are expected
to be very well structured. Perhaps more surprisingly, the
average loop structures for the most of the loops are very
similar; the mean pairwise RMS for the average structures
from the individual simulations are generally (1 Å. The
only exception is C-III, which connects helices 5 and 6 (see
upper right hand corner of Fig. 1): it is a long loop without
significant secondary structure. By contrast, the longer
E-II loop is well converged, most likely because it is stabi-
lized by a short beta sheet.
It is important to distinguish between the RMS deviation

of the average structures (columns 1 and 2 from Table II,
the pairwise average and the average deviation from the
global average), which should tend to zero in the limit of in-
finite sampling, and the RMS fluctuations within a given
simulation (column 3), which reflect the flexibility of the
molecule and must remain finite. This last number is par-
ticularly sensitive to the choice of a template structure; the
iterative procedure we used to define the average structure
consistently reduced the trajectory RMS, frequently by as
much as 50%. Unsurprisingly, the trajectory RMS and av-
erage structure RMS are strongly correlated; the average is
most easily sampled in the cases where the structural fluc-
tuations are small.
The C-terminus is a clear outlier, with much higher RMS

deviations than any other portion of the protein. There are
a number of possible reasons for this: it is a long peptide
(25 residues), without secondary structure, and unlike the
other loops it is tethered on only one end. Further, residues
330–333 are missing in several of the published crystal
structures (e.g. 1F88,45 1HZX,46 1GZM,47 1L9H,48) which
suggests that this region is highly flexible. In any event,
it is clear that the structure of this peptide is not well
sampled by 100 ns of dynamics.

Principal Component Analysis

PCA is a standard tool for extracting the large scale
motions from molecular dynamics simulations. The prin-
cipal components of protein motion are computed as the
eigenvectors of the C-a fluctuation covariance matrix.
The eigenvalue associated with each vector represents
the variance of the molecular along that vector, which in
the quasi-harmonic approximation has an associated fre-
quency and timescale. It is thus ironic that the most im-
portant eigenvectors have the slowest timescales, and
thus are most difficult to determine accurately in a finite
molecule dynamics simulation.40,49 As shown by Balsera
et al.,49 the orthogonality of the eigenvectors means that
inaccuracy in the low frequency modes ‘‘pollutes’’ the
high-frequency modes as well.

Figure 3 shows an attempt to measure the similarity of
the lowest frequency modes computed from the 26 inde-
pendent simulations. Specifically, we compute the abso-
lute value of the dot product for the first eigenvalue for
each pair of simulations; in the limit of good sampling, the
eigenvectors would be very similar, and thus the dot prod-
ucts would approach 1. Figure 3 shows the probability dis-
tribution for the dot products, using the eigenvectors com-
puted using the whole protein and various subsets of it.

Figure 3(A) shows the probability distribution com-
puted for the whole protein and for just the transmem-
brane helix region. The probability distribution for the
transmembrane helices is roughly Gaussian in shape,
and appears to be indicative of statistical fluctuations
about a single well-defined average eigenvector. By con-
trast, the first eigenvector dot products for the whole pro-
tein are much less similar; some simulations produce
similar eigenvectors (dot products ) 0.7), while others
are totally different. This is not surprising; the trans-
membrane portion of the protein is expected to undergo
limited fluctuations about a single average structure, in
contrast to loops which may have a number of distinct,
well-populated conformations. In particular, the inclusion
of the long unstructured C-terminal tail, which we have
already concluded is poorly sampled, is expected to
reduce the overall similarity of the modes.

Parts B and C of Figure 3 show the same probability
distributions, computed for the first eigenvectors of the
loops and terminal tails. The results show that the simu-
lations do not as a rule produce consistent eigenvectors;
that is, 100 ns of sampling is not sufficient for the lowest
frequency mode to converge. The exception is the C-I
loop, which connects helices 1 and 2. This is a relatively
short loop (8 residues), which appears to be quite rigid;
Table II shows that the RMS Ca deviation within a simu-
lation is 0.32 Å. Even here, there is evidence of at least 2
distinct populations of eigenvectors; the vast majority of
them are quite similar, with dot products *0.9, but there
is a secondary peak around 0.5; these eigenvectors are
associated with the simulations which produced the small
secondary peak in the C-I curve in Figure 2(C).

In a sense, selecting out only the eigenvector with the
largest eigenvalue is an arbitrary if reasonable approach
to measure the similarity of fluctuations. However, be-

TABLE II. Average Root Mean Square Deviations of
Rhodopsin Structures

Molecule Pairwise RMS RMS to average Traj RMS

Whole 2.80 1.94 1.93
Helices 1.36 0.94 0.94
N-terminus 1.02 0.72 0.90
C-I 0.39 0.28 0.32
E-I 0.25 0.17 0.31
C-II 1.05 0.74 0.64
E-II 0.65 0.45 0.64
C-III 2.12 1.47 1.62
E-III 0.74 0.53 0.61
C-terminus 5.89 4.20 4.32

Superposition was performed using only the backbone a-carbons.
The pairwise RMS was computed by computing the average of the
RMS deviations between the average structures from the of the 26
trajectories. The RMS to average was computed by comparison to the
average of the 26 average structures. The ‘‘Traj RMS’’ is the average
of the RMS of each trajectory to its own average structure. ‘‘Whole’’
indicates the entire rhodopsin molecule, while ‘‘Helices’’ indicates the
transmembrane portion. The loops are labelled ‘‘C’’ and ‘‘E’’, indicat-
ing the cytoplasmic or extracellular faces. Thus, loop C-I connects
helices 1 and 2, E-I connects helices 2 and 3, and so forth (Fig. 1). All
RMS values are in Å.
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cause it concentrates on only the largest mode, it does
not measure the overall similarlity of the fluctuation
spaces. For example, if the second largest mode from one
simulation were very similar to the largest-eigenvalue
mode from another, that would not show up in Figure 3.
A better and more rigorous technique is the covariance
overlap [Eq. (3)], which compares all pairs of eigenvec-
tors, weighted by their respective eigenvalues. The proba-
bility distribution for the covariance overlap between dif-
ferent simulations is shown in Figure 4.
Figure 4(A) shows the probability distributions for the

whole protein and the transmembrane region. As with
Figure 3, these results indicate that the fluctuations of
the transmembrane portion are more similar than those
for the protein as a whole. In both cases, the overlap val-
ues are similar to but smaller than the ones reported by
Faraldo-Gómez et al.41 The authors of that paper found
that the overlap values for rhodopsin dropped as they con-
sidered longer trajectories. The trajectories considered
here are significantly longer (26 independent 100 ns tra-
jectories, as opposed to a single 40 ns trajectory divided
into pieces). Thus, it seems likely that their conclusion—
that large-scale protein motions look like random diffusion

on the 10 ns time scale—continues to hold for the time
scales considered here.

Parts B and C of Figure 4 show the probability distri-
butions for the covariance overlaps of the loops and ter-
mini. On the whole, the extracellular face of the protein
(Part B) appears better converged than the cytoplasmic
face. This could imply that the cytoplasmic loops are more
flexible, a notion that could have functional significance,
since these loops are expected to undergo significant re-
arrangement upon rhodopsin activation. However, in the
present context, the results mostly indicate that 100 ns
is not sufficient to sample the fluctuations of even a sin-
gle loop with any degree of statistical certainty. Once
again, the C-I loop is an exception; most of the trajectories

Fig. 1. Ribbon diagram of rhodopsin, built from the 1U1933 crystal
structure. The helices are colored from blue (N-terminus and Helix 1) to
red (Helix 8 and C-terminus). The extracellular (or intradiscal) side of pro-
tein is on the bottom, while the cytoplasmic face is on top. The figure was
generated using Pymol.44

Fig. 2. Probability distribution of pairwise RMS deviation of average
structures. Part A shows the distributions for the whole protein and the
transmembrane helices. Parts B and C show the distributions for loops
on the cytoplasmic and extracellular faces of the protein.
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sample very similiar conformations spaces, although as
before there is evidence of a small secondary population of
simulations where the loop behaves differently. On the
extracellular face, E-I and (surprisingly) the N-terminus
appear to be reasonably well sampled, while E-III is more
poorly converged than any portion of the protein except
the C-terminus.

Cluster Population Analysis

PCA, while a valuable tool for characterizing the fluctu-
ations captured by a simulation, does not directly describe
the protein energy landscape or how it was sampled, infor-

mation that is often critical to make contact with experi-
mental thermodynamics. In this context, it would be valu-
able to have a convergence test which is more directly cor-
related with the probability distributions in the system.
Accordingly, we apply the cluster population test recently
published by Lyman and Zuckerman42 to our rhodopsin
trajectories. This method proceeds in two steps: First, the
structures from all trajectories are combined and clus-
tered (see earlier section for details). Second, each struc-
ture is assigned to a cluster, and the cluster probability
distribution for each individual simulation is computed.

Each trajectory would produce the same probability
distribution in the limit of infinite sampling time, as pre-
dicted by the ergodic hypothesis. In practice, sampling is

Fig. 3. Probability distribution for pairwise dot products of the first
eigenvector for different portions of rhodopsin. Part A contains the whole
protein and the transmembrane helices, while Parts B and C contain the
extracellular and cytoplasmic loops.

Fig. 4. Covariance overlap [Eq. (3)] for different portions of rhodop-
sin. Part A contains the whole protein and the transmembrane helices,
while Parts B and C contain the extracellular and cytoplasmic loops.
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limited, and there will be statistical variations; the mag-
nitude of these variations is a measure of the degree to
which the simulations have converged. Unfortunately,
there is no simple theoretical tool for interpreting the
population variance directly. Instead, we applied a boot-
strap Monte Carlo approach,43 attempting to deduce the
expected variations for a given sample size and thus
quantify convergence. Specifically, we generate a series of
artificial probability distributions by sampling randomly
from the ‘‘true’’ distribution—in this case, we combine the
26 simulations and use the aggregate probability distribu-
tion as the best estimate—and compare their variance to
that seen in the individual simulations. As the number of
samples in each bootstrapped data set is increased, the
population variance will drop. We varied the sample num-
ber such that the bootstrap variance matched that of the
trajectories, which tells us the effective number of inde-
pendent samples per trajectory. Given a known amount of
sampling time () 80 ns per simulation), this in turn gives
us a measure of the correlation time. Of course, there is
not a single correlation time for the entire simulation.
Rather, the correlation time depends on the details of the
measurement, including what part of the protein is being
examined, and the resolution with which it is examined.
The results are summarized in Table I. The effective

sample sizes for the various components of the protein
typically range from 2 to 5. Given that the sampling por-
tions of our simulations are roughly 80 ns, this is equiva-
lent to saying that the correlation times for protein or
loop structural fluctuations are roughly 16–40 ns. These
correlation times are comparable to the simulation times
of current molecular dynamics simulations of proteins,
suggesting that in many cases these simulations are not
long enough for their results to be well converged. This is
not surprising, given the poor PCA convergence described
above.
While we believe these numbers to be qualitatively cor-

rect, there is a question as to how senstive they are to the
details of the procedure, in particular to the size of the
clusters. For example, the results for the N-terminus in
Table I show there is clearly some dependence. The esti-
mate of the effective sample size changes from 2 to 11
when the cluster threshold is reduced to 1 Å from 1.5 Å.
In some cases, it is possible to use other structural

analyses to independently estimate the timescales for
protein motion. For example, fluctuations in the axis for
individual helices ought to be at least roughly related to
the timescales measured by cluster analysis for the trans-
membrane region. Accordingly, we computed the fluctua-
tion correlation function for each helical axis, by comput-
ing the principle moment time series for each helix, sub-
tracting the average orientation vector, and constructing
the renormalized time correlation. The correlation func-
tions from the individual simulations are extremely noisy,
but averaging over the 26 simulations produces smooth
monotonic decay. However, the behavior is clearly nonex-
ponential, and at long time intervals (20–40 ns) all 7
transmembrane helices show statistically significant neg-
ative correlation values. As such, it is difficult to quantify

the long-time dynamics of helical orientation, other than
to say they are slow enough to be poorly sampled.

Further, Table I shows we were not always able to esti-
mate the sample size, because the mean simulation var-
iance was larger than the bootstrap variance for a sample
size of 1; this occured only when the probability distribu-
tion was dominated by a single state (population >95%),
with the other states poorly populated. In this case, we
may violate one of the cardinal assumptions underlying
the use of bootstrap Monte Carlo methods, that the source
probability distribution function is reasonably accurate.
If this is not the case, the variance in the actual data
may be larger than that seen in the artificial data sets,
even when only 1 data point is used to generate each set.
This can occur if the clustering is either exceedingly
coarse or exceedingly fine. For example, if the probabil-
ity distribution is dominated by a single state, it follows
that statistics for the other states are necessarily less
precise, which in turn propagates to the artificial data
sets, where it can cause them to significantly underesti-
mate the variance. This is because the true substructure
of the potential surface is usurped into a single state,
with the other ‘‘states’’ being the edges of the distribu-
tion. On the opposite extreme, if the binning is too fine,
none of the state probabilities are accurately deter-
mined, and the entire procedure devolves into noise.
Further effort must be invested in order to better under-
stand this phenomenon.42

However, even this significant uncertainty does not
change the basic message, that flexible loops and termini
have relatively long correlation times, and are thus diffi-
cult to sample on the molecular dynamics time scale.
While further research is clearly necessary to determine
the optimal threshold size, etc., for performing these
analyses, it is clear that cluster population analysis can
be a valuable tool for assessing simulation convergence,
especially when used to complement to other techniques,
such as PCA.

DISCUSSION

From the beginning of the protein molecular dynamics
field,50,51 the issues of sampling and convergence have
been of major concern. A number of techniques have been
developed to test the degree of ergodicity in a simula-
tion,52–55 but the simple fact remains that, outside of cer-
tain trivial cases, there is no way to prove that simulation
has converged. Rather, in direct analogy to scientific proof
in general, we can only demonstrate either that a simula-
tion is not converged or that it may be converged. In some
sense, we know a priori that any protein simulation has
not fully sampled phase space, because extremely rare
events (such as spontaneous unfolding of a soluble protein
under native conditions) are not seen. However, the ab-
sence of such rare events does not necessarily undermine
the general utility of the simulation, if the rare events do
not make a significant contribution to the partition func-
tion. Rather, the relevent question is, has the simulation
run long enough that we can have confidence in its pre-
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dictions? Even this question must be refined, because the
question depends on which predictions are evaluated, since
different phenomena have different relaxation times. For
example, the conformations of individual lipids are well-
sampled on the molecular dynamics time scale, but overall
lipid reorganization is not.26

The present work is an attempt to measure the ability
of 100 ns of molecular dynamics to sample the structure
and fluctuations of a well-studied membrane protein, rho-
dopsin. However, we believe that its implications extend
well beyond the context of membrane proteins. Our anal-
ysis of rhodopsin’s loops has direct implications for the
loops of other proteins, including soluble proteins. More-
over, a protein loop could be considered the best-case sce-
nario for sampling a soluble peptide; the effective tether-
ing of the ends of the loop greatly reduces the conforma-
tion space that needs to be explored, without strong loop-
protein interactions to slow the kinetics. Certainly, the
poor convergence seen for the C-terminal tail should act
as a caution in any analysis of an unstructured peptide,
especially if only a single trajectory is examined. Indeed,
the cluster population method used here was developed
to analyze the fluctuations of Met-enkaphalin, where it
showed that many tens of nanoseconds were required to
produce ergodic behavior for even a 5 residue peptide.42

However, the rest of the loops are more ordered, and as a
rule their average structures are fairly consistent from
simulation to simulation.
PCA has been applied to macromolecular simulations

under several names, including quasiharmonic analysis56,57

and essential dynamics.36,37 In many cases, the goal was
to extract the large-scale (and presumably low-frequency)
motions of the system, with the goal of reducing the sys-
tem to a manageable number of modes. These modes were
then used for extrapolation to longer time scales,36 visual-
izing system motions,58 or as effective reaction coordi-
nates10,38,39 for potentials of mean force.
Unfortunately, these applications presuppose that the

large-scale principal moments derived from molecular dy-
namics are sufficiently well-converged as to be meaningful.
However, there is significant evidence that this may not be
the case. Balsera et al.49 published an examination of PCA
suggesting that until the sampling time approaches the
longest time scales relevant to the system (likely to be of
order a microsecond or longer), none of the computed
modes will be reliable. They followed this analysis with a
numerical test, comparing the modes computed in two
halves of a 490 ps simulation of G-actin, demonstrating
qualitatively that there was little agreement between
them. More recently, Faraldo-Gómez et al.41 applied the
same basic test to 10 ns trajectories for several membrane
proteins, drawing similar conclusions. Hess40,59 performed
a rigorous quantitative analysis, concluding that in a mo-
lecular dynamics simulation, the ‘‘long’’ time scale motions
of folded proteins resemble random diffusion rather than
systematic motion.
The simulations involved in the present work are an

order of magnitude longer than the ones examined previ-
ously,41,59 and we compare a large number of independent

trajectories instead of different portions of a single trajec-
tory. However, we still find that, despite our much larger
computational investment, the principal modes from the
individual simulations still are not well converged. Fur-
ther, the added computational effort does not appear to
have improved the convergence; the covariance overlaps
for two halves of a 10 ns rhodopsin simulation41 and the
individual 100 ns trajectories from the present work are
comparable. Furthermore, the situation does not improve
significantly when smaller subsets of the protein are con-
sidered. With the exception of the C-I loop, even the fluc-
tuations of individual loops do not appear to be well
sampled, as measured by either principal component anal-
ysis or cluster population analysis.

The analysis presented here is specific to a particular
membrane protein, rhodopsin. However, the results are
consistent with previous results from other membrane
proteins41 and soluble proteins,40,59 and it is reasonable to
assume that the dynamics of rhodopsin’s loops are compa-
rable to those of soluble proteins. It is more difficult to
generalize the results for the transmembrane helices; the
lipid membrane is ordered on far larger length- and time-
scales than water, and this clearly will have implications
for protein dynamics; lipid lifetimes at the surface of the
protein are in the tens of nanoseconds, as opposed to tens
of picoseconds for water. Moreover, the basic GPCR archi-
tecture is quite different from anything found outside a
membrane, and it is these gross geometric features which
largely determine the large-scale fluctuations.60

CONCLUSIONS

Molecular dynamics simulation has long been used to
develop our understanding of biomolecules, including
proteins, nucleic acids, and membranes. As computer
power has increased, so too have the lengths of molecular
dynamics simulations. However, assessing the degree to
which the simulations have converged has remained
problematic, largely due to difficulties in analyzing a sin-
gle trajectory. The present work seeks to resolve this diffi-
culty by comparing the results from 26 independent tra-
jectories, using the variations between the simulations as
a measure of ergodicity. We find that 100 ns of simula-
tion, while long by today’s standards, is not sufficient to
describe the fluctuations of rhodopsin in any quantitative
way. Further, we find that even the individual loops are
not well sampled, due to their high flexibility and long
correlation times. In particular, the results of principal
component analysis, a very popular technique for charac-
terizing large protein motions, are not consistent among
the individual simulations.

This work has major implications for the design of
future simulations involving proteins and peptides. Rho-
dopsin is similar in size to many membrane proteins,
especially other G-protein coupled receptors, and its loops
can serve as exemplars for the sampling requirements of
structured peptides and the loops of soluble proteins.
These results demonstrate clearly even relatively small
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systems require extensive sampling before their results
converge, and serve to caution us in our attempts to
interpret simulations of ever larger systems. Moreover,
we believe that it is important to consider the advantages
of running several relatively long trajectories, as this
approach not only improves convergence but also pro-
vides the means to measure it.
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